Proton Femtoscopy in ALICE

Neelima Agrawal 12 November, 2024 University of Bologna

Several femtoscopy measurements by ALICE at the LHC

ALICE experiment has provided unprecedented precise input for the study of hadronic interactions List of ALICE femtoscopy measurements

C ↑ 1	Dπ pD ⁻	DK		baryon meson meson Three-body sys	-baryon -meson -baryon stems	PRC 99 (2019) 2, 024001 PLB 797 (2019), 134822 PRL 123 (2019), 112002 PRL 124 (2020) 092301 PLB 805 (2020), 135419 PLB 811 (2020), 135849 Nature 588 (2020) 232-238 PRL 127 (2021), 172301	p–p, p–Λ, Λ–Λ (metho Λ–Λ p–Ξ p–K p–Σ0 p–p, p–Λ p–Ξ, p–Ω p–φ	ods)
0	pp, pp̄ , ΛΛ̄ pd, ppp ππ, πππ, KK̄ pφ, ΛΚ	рΛ, pΛ, pΣ ⁰ Λd, ppΛ πK, πK̄, ΞK pK, pk̄, Kd, ppK	ΛΛ, pΞ ΚΚ ΛΚ̄,Ξπ	ΛΞ, pΩ		PLB 822 (2021) 136708 PRC 103 (2021) 5, 055201 PLB 833 (2022), 137272 PLB 829 (2022), 137060 PRD 106 (2022) 5, 052010 PLB 833 (2022) 137335 PLB 844 (2022), 137223 EPJA 59 (2023) 7, 145 EPJA 59 (2023) 12, 298 EPJC 83 (2023) 4, 340	p–K Λ–K p–Λ baryon–(anti)baryon p–D K0–K0, Kch–K0 Λ–Ξ p–p–p, p–p–Λ p–p–K p–K	I
	0	1	2	3 S		<u>PLB 845 (2023), 138145</u> PRX 14 (2024) 3, 031051	Л–К p–d, K–d	2

Source determination

- Small particle-emitting source created in pp collisions at the LHC
- Source size provide information on the scale of the interaction region
- Constrain source with common m_{τ} scaling

Source determination

• The emitting source function used to describe the p-p correlation function

$$C(k^*) = \int \frac{S(\vec{r})}{\psi(\vec{k}^*, \vec{r})} \Big|^2 d^3 \vec{r}$$

measured known interaction

• The **source function** is parameterised by the **gaussian parameterization**

$$S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \times$$

Effect of short lived resonances (cτ ~ 1 fm)

- Small particle-emitting source created in pp collisions at the LHC *ALICE Coll., PLB, 811(2020, 135849), ALICE Coll., arXiv:2311.14527*
- One global source for all hadrons

<u>p-p source in pp collisions in ALICE at the LHC</u>

- Gaussian source used to study the p-p and p-Λ source size
- Argone AV18 + Coulomb potentials used to calculate the two particle wave function
- Two particle wave function as solution to Schrodinger's equation

 → by using CATS (Correlation Analysis Tool using the Schrodinger equation) framework

Source measurement in pp collisions in ALICE at the LHC

- Gaussian source used to study the p-p and p-Λ source size
- Observed to follows m_{τ} scaling
- Different source size (core radius) for different species
 - Here, an assumption is made that the Gaussian "primordial core" is common for all the species but modifies from short lived hadronic resonances.

 \rightarrow protons (³/₃ fraction of all) comes from resonance decay (Δ , heavier- Δ , N*, Λ resonances)

 \rightarrow similarly, Λ comes from resonance decay (prominently via Σ resonances, heavier-Δ, N*, Σ resonances)

Common baryon source in pp collisions

- Gaussian source used to study the p-p and p-Λ source size
- Observed to follows m_{τ} scaling
- Different source size (core radius) for different species
- Any baryon pair should follows this $m_{\rm T}$ scaling

→ source size can be extracted based on the m_{T} of the measured pairs → way to allows for precisely studying the strong interactions

Universal source for all the hadrons

- Gaussian core radius (r_core) results for protons, pions and kaon-proton pairs in High-multiplicity pp collisions at 13 TeV
- Remarkable agreement of r_core for meson-meson and meson-baryon pairs with the m_T scaling of the source size.
- Additional support for the scenario of a common emitting source for all hadrons in small system

Source measurement in pp collisions in ALICE - RUN3

<u>p-d correlation in pp collisions in ALICE at the LHC</u>

- P-d as an effective two-body
 →used LL approach
- Source size = 1.08 ± 0.06 fm
- Strong interaction is constrained from scattering measurements
- Picture of two-point like particle does not work
- Need of three-body calculations accounting for p-pn dynamics

PRX 14 (2024) 3, 031051 p-d correlation in pp collisions in ALICE at the LHC 1.2 1414141010101010101010101 0.8 ALICE 0.8 ALICE pp High-mult. $\sqrt{s} = 13 \text{ TeV}$ pp High-mult. $\sqrt{s} = 13 \text{ TeV}$ C(k*) 6.0 (×*) 0.6 $\circ p - d \oplus \overline{p} - \overline{d}$ o p-d⊕ p-d Coulomb + antisym. AV18+UIX (full) 0.4 Born approx. (optimized) AV18+UIX (s* wave) 0.4 Pionless EFT (NLO) Baseline Baseline 0.2 0.2 Do cb

• Deuteron treated as composite object, only full three-body calculation accounts for internal structure of deuteron can explain the data (Av18-NN + Urbana IX-NNN + Quantum statistics)

300

 k^* (MeV/c)

400

200

100

0

600

- The argonne AV18 potential is used for the calculation, 5% uncertainty to three-body forces
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

500

100

0

200

300

 k^* (MeV/c)

400

600

500

ALI-PREL-574442

PRX 14 (2024) 3. 031051

- Only full three-body calculation accounts for internal structure of deuteron can explain the data (NN + NNN + Quantum statistics)
- Analysed Run3 data at 13.6 TeV, promising results, possibility of $m_{\rm T}$ -differential analysis
- Expected uncertainty to three-body forces upto 1%

p-A correlation in pp collisions in ALICE at the LHC

- Gaussian source (modelled by CATS) with chiral magnetic field theory potentials
- Sensitive to different ΣN coupling strength
- Next to leading order (NLO19) is favoured within $n_{\sigma} = 3.2$
- Attractive interaction of Λ at large density

K-d correlation in pp collisions in ALICE at the LHC

- K-d as an effective two-body system by using LL approach
- Source size = 1.35 + 0.04 0.05 fm
- First measurement in pp collisions
- Deuterons are produced in shorter distances together with hadrons

Source size increases with increasing multiplicity

- Attempt of multiplicity dependent source size measurement
- Innovative behaviour of growing r_core with increasing multiplicity
- Scaling of r_core with increasing m_τ
- Saturation of source size below $60'0 \text{ MeV}/c^2$

https://arxiv.org/pdf/2004.08018 accepted by EPJC

Thank you for your attention!