
Saturation of the GEM gain
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Let's suppose that during the development of the avalanche within the gem multiplication channels a significant 
amount of electrons and positive ions are produced.  

Under the effect of the electric field present in the channel, these slowly migrate toward the lower potential 
plane of the GEM, tending to partially shield the field itself. 

If n0 is the number of electrons entering a GEM channel and E0 = VGEM/d the electric field in it:

VGEM is the voltage drop between GEM sides

d is the GEM thickness

n0

ntot

E0

neq

Multiplication is described by a modified Townsend equation 

where  is can be interpreted as the inverse of the number of charges  present on the GEM 
border of the channel and needed to produce E0 in it ( );

β β = 1/neq
β ∝ 1/VGEM
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VGEM is the voltage drop between GEM sides

d is the GEM thickness

n0

ntot

E0

where G=ntot/n0 is the average gain of the single channel. 

It should be noticed that it depends on the amount of primary electrons entering the channel. In particular it 
decreases with n0 and: 

- if  (i.e. negligible screen effect),  

- if  (i.e. total screen effect), 

βn0 ≃ 0 G = eαV

βn0 ≃ 1 G = 1
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To fix ideas let us now assume that after a drift over a path z drift and the multiplication process in the first 2 
GEMs (GEM#1 and GEM#2) the electron cloud has a distribution in space describable as a Gaussian in 3 
dimensions all with RMS equal to :  

the total volume will then be approximately proportional to  and the amount of charge collected by each 
channel will decrease as  

In the last GEM, the amount of charge collected by each channel n0: 

- Increases with the primary ionisation in the gas ne;  

- decreases as ; 

- increases as the product of the gains of G1 and G2

σ

σ3

1/σ3

1/σ3

n0 ∝ neG1G2/σ3 βn0 = p1G1G2/σ3



Gtot =
G1G2G3

1 + p1G1G2/σ3 (G3 − 1)
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- We can try to fit this last function on the data expecting: 

- p0 to be the not-saturated gain of the three GEMS; 

- p1 to almost constant and just slightly dependent on the VGEM 

If G1 = G2 = G3 = = p0eαV

Let's suppose that only in GEM#3 we have non linear gain because of the larger amount of charges.

Gtot =
p3

0

1 + p1p2
0 /σ3(p0 − 1)

=
p3

0σ3

σ3 + p1p2
0(p0 − 1)
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- From the GIN data we can evaluate the electron gain in 3 different VGEM setup (440, 430 and 420) 
and the behavior of  

- We can start from the light yield for 55Fe spots

σ

- The electron gain is evaluated by taking into account 0.07 , 150 ne and  γ/e Ω = 9.2x10−4
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We can fit the behavior

 p0 = 1.00615e+02  

p0 = 8.11983e+01

p0 = 6.72519e+01

Where p0 is the single GEM non-saturated gain; 

From their ratios we can evaluate two values of alphas: 0.021 and 0.019, close to the 
one used in the digitization 0.022;  

p1 is about 80 in all the three fits

Gtot =
p3

0σ3

σ3 + p1p2
0(p0 − 1)
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By using the fitted function and the fit results, 
one can evaluate the saturation as a function 
of energy released: 10, 8, 6, 4, 2, 1, 0,5 keV 
for different single GEM gains
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PMT saturation

We evaluated the behaviour of the PMT integrated charge as a function of z

A clear saturation effect is visible

In general is seems that light in PMT decreases faster than in the CMOS



PMT saturation

We evaluated the behaviour of the PMT integrated charge as a function of z

A clear saturation effect is visible

In general is seems that light in PMT decreases faster than in the CMOS 

Can it be a convolution with PMT saturation?


