Long-range forces A theory review

The Low-Energy Frontier of Particle Physics

Philip Sørensen INFN-LNF, 12.02.2025

Università degli Studi di Padova

Why do we care about long-range forces?

The low-energy frontier promises hope for progress in physics. For low-energy, long-range forces can become relevant:

$$m \approx 10^{-5} \text{ eV } \leftrightarrow \lambda_{\text{compton}} \approx 2 \text{ cm}$$

This allows us to scale up to macroscopic size

Coherent enhancement of even a tiny signal!

Main competition: Gravity

How can we discriminate a fifth force from gravity?

The inverse square law:

$$F \propto \frac{1}{r^2}$$

A geometric property characteristic of *massless* mediators.

The (weak) equivalence principle:

Mass and weight are locally in identical ratio for all bodies - Isaac Newton

Or more simply:

 $m_I = m_g$

Minimal example: A light scalar

Consider a light scalar ϕ coupling to a fermion f:

$$\mathcal{L} \supset rac{1}{2}m_{\phi}^2 \phi^2 + g_s \phi \overline{f} f$$

In the NR limit, this yields a Yukawa-type potential:

$$V_{
m Yukawa}pprox rac{g_s^2}{4\pi r}e^{-m_\phi r}$$

The mass suppresses the range of the force. This is the reason nuclear forces are short-range, suppressed by m_{π} and $m_{W,Z}$.

Minimal example: A light scalar

 V_{Yukawa} competes against gravity:

$$V_G = G \frac{m_f^2}{r}$$

Write $V_{\text{total}} = V_G + V_{\text{Yukawa}}$ in the standard from:

$$V_{\text{total}} = V_G \left(1 + \alpha e^{m_{\phi} r}\right)$$

where

$$\alpha = \frac{V_{\rm Yukawa}}{V_G} e^{m_\phi r} = \frac{g_s^2}{4\pi m_f^2 G}$$

Coupling to a whole atom

Violation of the inverse-square law

A whole atom consists Z electrons and A nucleons of mass m_{N}

- > Gravity couples to nucleons
- > In our example, the new force coupes only to e

The α parameter between atom 1 and atom 2 is:

If coupling to electrons:
$$\alpha_{\phi e} = \frac{Z_1 Z_2}{A_1 A_2} \frac{g_s^2}{4\pi m_N^2 G}$$

If coupling to nucleons: $\alpha_{\phi N} = \frac{g_s^2}{4\pi m_N^2 G}$

Tests of the inverse square law

Torsion balance sketch

HUST torsion balance Photo credit: Shanqing Yang https://doi.org/10.1093/nsr/nwz210

Constraints from inverse-square law

Adelberger et al., Prog. Part. Nucl. Phys. 62 (2009)

Long-range forces, A theory review | Philip Sørensen | INFN-LNF, 12.02.2025

Coupling to a whole atom

Violation of equivalence principle

For EP violation, factor out material dependence:

$$V_{\text{total}} = V_G \left(1 + \tilde{\alpha} \left[\frac{\tilde{q}_1}{g_{a\overline{f}f} A_1} \right] \left[\frac{\tilde{q}_2}{g_{a\overline{f}f} A_2} \right] e^{-m_a r} \right)$$

Where \tilde{q}_1 , \tilde{q}_2 are the per-atom couplings to material 1 and 2.

$$\tilde{\alpha}_{\phi e} = \tilde{\alpha}_{\phi N} = \frac{g_s^2}{4\pi m_N^2 G}$$

NB: Because a part of the nucleus mass is binding energy, even universal nucleon couplings are constrained!

MICROSCOPE Touboul et al 2012 Class. Quantum Grav. 29 184010

Constraints from both inverse-square law and EP

Ohare and Vitagliano, Phys. Rev. D 102, 115026 (2020) https://cajohare.github.io/ AxionLimits/

Imperfect QCD Axions

As a pseudo-scalar, scalar interaction for the QCD-axion implies CP violation. This is heavily constrained,

$$\langle \theta \rangle \lesssim 10^{-10}$$

As pointed out yesterday by Luca, the standard model sets a lower bound

$$10^{-18} \lesssim \langle \theta \rangle$$

This CP violation induces a scalar interaction:

$$g_{aN}^S \simeq \frac{\langle \theta \rangle}{f_a} \frac{m_u m_d}{m_u + m_d} \frac{\langle N | \bar{u}u + \bar{d}d | N \rangle}{2} \simeq 1.3 \cdot 10^{-12} \left\langle \theta \right\rangle \left(\frac{10^{10} \text{GeV}}{f_a} \right)$$

A minimal axion band!

Minimal axion expectation

Ohare and Vitagliano, Phys. Rev. D 102, 115026 (2020) https://cajohare.github.io/ AxionLimits/

Beyond minimal axion models

Ohare and Vitagliano, Phys. Rev. D 102, 115026 (2020)https://cajohare.github.io/ AxionI imits/ Di Luzio. Gisbert. Nesti. Sørensen. Phys. Rev. D

110 (2024)

Scalar and pseudoscalar interactions

Consider now both scalar and pseudo-scalar couplings:

$$\mathcal{L} \supset g_s \phi \overline{\psi} \psi + g_p \phi \overline{\psi} i \gamma_5 \psi$$

These couple quite differently:

For scalar:

For pseudo-scalar:

> $\overline{\psi}\psi$ counts *number* density

$$\overline{\psi}\gamma_5\psi = i(\xi^{\dagger}\eta - \eta^{\dagger}\xi) \text{ where } \psi = \begin{pmatrix} \xi \\ \eta \end{pmatrix}$$

= $\xi^{\dagger} \frac{\vec{\sigma} \cdot \vec{p}}{2m} \xi$ after applying EOM $\eta = i \frac{\vec{\sigma} \cdot \vec{\nabla}}{2m} \xi$

> $\overline{\psi}\gamma_5\psi$ couples to the *spin* density

Monopole-Monopole

This is type of coupling we have considered until now:

To derive the NR potential:

- 1 Calculate momentum-space amplitude
- 2 Take non-relativistic limit
- 3 Furrier transform to position-space
- $\rightarrow V_{\rm monopole-monopole} = V_{\rm Yukawa}$

- Strong and broad constraint for true scalars
- > Pseudo-scalars require CP-violation
- > Suppressed for the QCD axion: $g_s^2 \sim \langle \theta \rangle^2 \lesssim 10^{-20}$

Dipole-dipole

The potential looks slightly more intimidating:

Important points:

- > Couples spin-polarized bodies
- > This implies a magnetic interaction \leftarrow potentially huge background!
- > Some progress is nonetheless achieved, see e.g. Budker et al. arXiv:2501.07865

Monopole-dipole

- > Avoids strong \vec{B} background
- > Only linear in $\langle\theta\rangle$ for QCD axion
- > New technique: NMR pickup

ARIADNE collab. arXiv:1710.05413

Monopole-dipole

Ohare and Vitagliano, Phys. Rev. D 102, 115026 (2020) https://cajohare.github.io/ AxionLimits/

Which constraints exist?

An overview from Dmitry's review Cong et al., 2408.15691 :

S	calar/Scalar interaction $g_s g_s$	Pseudoscalar/Pseudoscalar interaction $g_p g_p$	Pseudoscalar/Scalar interaction $g_p g_s$
1	. <i>e-e</i>	1. $e-e, e-e^+, e-\mu^+$	1. <i>e-e</i>
2	. <i>e</i> - <i>N</i>	2. $e-n$, $e-p$ and $e-\overline{p}$	2. e - N
3	. $e-\overline{p}$	3. <i>N</i> - <i>N</i>	3. $n-N$
4	. <i>N</i> - <i>N</i>		4. p -N
			5. Spin-gravity

Beyond scalar mediators:

Axial-vector/Vector interaction $g_A g_V$	Axial-vector/Axial-vector interaction $g_A g_A$	Limits for massless spin-1 bosons
1. <i>e-e</i>	1. $e-e, e-e^+ \& e-\mu^+$	1. $\operatorname{Re}(C_X)\operatorname{Re}(C_Y)/\Lambda^4$
2. e - N	2. e - N	2. $\operatorname{Im}(C_X)\operatorname{Re}(C_Y)/\Lambda^4$
3. <i>e</i> - <i>n</i>	3. <i>e</i> - <i>n</i>	3. $\operatorname{Im}(C_X)\operatorname{Im}(C_Y)/\Lambda^4$
4. <i>e-p</i>	4. e - $p \& e$ - \overline{p}	
5. n - N	5. N - N	
6. $p-N$		

A general basis for spin-dependent operators

Dobrescu and Mocioiu, JHEP11(2006)005

A general basis for spin-dependent operators

Cong et al., 2408.15691

This still only covers spin-dependent interactions! Other effects are possible.

Power-law modifications

The inverse-square law is a *geometric* effect.

> Instead of messing with fields, we can mess with geometry.

Example: The Arkani-Dimopoulos-Dvali model extends 4D space with $n \gtrsim 2$ extra dimensions to make the weak scale natural:

$$V = \begin{cases} -\frac{G_{4+n}M}{r^{1+n}}, & \text{if } r \ll \lambda, \\ -\frac{G_NM}{r}, & \text{if } r \gg \lambda, \end{cases} \text{ such that } G_{4+n} = \lambda^{\delta} G_N$$

This admits a power law parameterization:

$$V(r) = -\frac{G_N M}{r} \left(1 + \left(\frac{\lambda}{r}\right)^{\delta} \right)$$

| Long-range forces, A theory review | Philip Sørensen | INFN-LNF, 12.02.2025

Constraints on power-law modifications

- > Light mediators ($m \ll eV$) interacting with SM fields imply forces on macroscopic length-scales
- > A large field:
 - Constraints from EP violation, inverse-square law violation, and source-sensor tests
 - Most common: (psudo)-scalar mediated monopole/dipole forces
 - Frameworks exists to constrain even exotic interactions
- Progress in long-range force experiments have the potential yield important insight into new physics

Thank you!

Discussion!

Contact

Philip Sørensen 0 0000-0003-4780-9088 University of Padova / INFN Padova philip.soerensen@pd.infn.it +4530897153

Long-range forces, A theory review | Philip Sørensen | INFN-LNF, 12.02.2025

Backup slides

Università degli Studi di Padova

- > The QCD-band is only a minimal expectation
- > Other contributions can exist

Example:

This implies two contributions

$$g_{a\overline{N}N}^{\rm indirect} \approx \left< \theta \right> \frac{13 \; {\rm MeV}}{f_a} \quad {\rm and} \quad g_{a\overline{f}f}^{\rm direct} = n \frac{m_f}{f_a} \left(\frac{f_a}{\sqrt{2}\Lambda_{\rm UV}} \right)^n \sin \delta_{\mathcal{PQ}}$$

The minimal QCD band is based on the indirect contribution.

Trapped Misalignment

Trapped Misalignment Electron solution: Testable with long range forces

Electron scenario for n=2

 m_a/eV

Trapped Misalignment Gluon solution: Testable with nEDM

GG scenario for n=2