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The flaws of the Standard Model (SM)

Universe content While currently a bedrock in our understanding of fundamental physical
"ib'e matter 5% interactions, the SM fails to explain cosmological observations of the energy
\ and matter content in the Universe

dark matter 27%

; ¢ Neutrino oscillations. In the SM, neutrinos are massless particles since they do not
| ] couple to the Higgs. However, it is an empirical fact that neutrinos change flavor as they
dark energy 68% . . .

travel long distances, implying a small mass.

e The strong CP problem. Quantum chromodynamics preserves the charge
conjugation-parity symmetry although, a priori, there is no reason for it. This problem
can be solved by invoking the existence of a new particle (Peccei and Quinn hypothesis):
the axion, which is not included in the SM.

e Dark Matter (DM). From the rotation curves of galaxies to the large-structure of the universe, there are strong evidences of the
existence of DM. Despite its ubiquitousness, its nature remains a mystery due to the large mass range in which one may expect
signals from SM-DM particles interactions.

¢ Dark energy. It is a global energy that accelerates the expansion of the universe, although its nature is unknown.

e Baryogenesis. The SM predicts that matter and antimatter should be created equally in almost any process. However, the
baryonic matter of the universe (i.e., excluding DM) appears to be constituted of fundamental particles instead of anti-particles.
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G.S. Adkins et al., Physics Reports 975, 1 (2022)

Among the theoretical models that accommodate some of the
phenomenology that the SM cannot explain one well-motivated
framework is the hidden sector, assuming that a set of fields
and symmetries are hidden in nature. The hidden and visible
sectors interact through portals containing mediators
between new particles and the SM model ones (e.g., the dark
photon in the case of dark matter).
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“Most physicists asked to think of searches for Physics beyond the SM immediately picture multi-billion-dollar particle accelerators
with detectors the size of office buildings, as very high energies (TeV) are required to produce and detect exotic particles. In fact,
though, modern laser spectroscopy of atoms and molecules allows measurements of astonishing precision, sufficient to detect the
subtle influence of new fundamental Physics at the eV energy scale.” C. Orzel, Phys. Scr. 86, 068101 (2012)
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precision measurements and higher sensitivity to certain phenomena

Ultra-accurate frequency measurements of ro-vibrational transitions in neutral stable molecules




Absolute frequency metrology of cold ro-vibrational spectra

1. Infrared narrow-linewidth and highly stable laser sources with absolute frequency calibration

v prestabilization against ultra-stable cavities, referencing to atomic clocks via optical frequency comb

synthesizers, metrological optical fiber links,...

L. Santamaria et al., Int. J. Mol. Sci. 22, 250 (2021) P. Maddaloni et al., Rivista del Nuovo Cimento 40, 135 (2017) www.ino.it
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v’ Lamb-dip spectroscopy, two-photon spectroscopy, Ramsey fringes,...
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Cold Molecules for Quantum Science and Technology

Photo/Magneto-association of ultracold atoms

Energy

Magnetic field B

Internuclear distance

Pairs of atoms are associated into a weakly bound molecule by
sweeping a magnetic field over a scattering (Feshbach) resonance.
These weakly bound molecules (dimers) are subsequently transferred
into the rovibrational ground state by a STIRAP via an excited state.
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Direct cooling of ground-state molecules

Quantum computation and quantum
simulation withultracold molecules
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Pseudo-spins (or qubits) can be
encoded in the rotational states of
ultracold polar molecules confined in
optical lattices (or tweezer arrays) for
applications in quantum simulation
(condensed-matter phenomena) and
computation.
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Buffer Gas Cooling
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Buffer Gas Cooling + Stark deceleration
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The molecular species is cooled via
collisions with a thermal bath of helium in
a copper cell in thermal contact with the
cold plate (4 K) of a cryostat; then, a
molecular beam is formed by expansion in
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Buffer Gas Cooling + Laser cooling

I I ——
2yt w0 0-1/2, + q
Laser cooling relies on the repeated ” * s " e EMOT  DOMOT Several species have be.en shown
scattering of photons (the e v W to possess a highly diagonal
collective actions of tens of Cals Franck-Condon matrix and
gl | ere favorable transition selection rules

thousands of photons, each with a
small individual momentum, lead to
sizable dissipative forces)

to limit vibrational and rotational
1731y branching. For example, alkaline
" earth monofluorides (e.g. SrF, CaF)
behave similarly to alkali atoms

The complex structure of molecules
makes it difficult to find a closed
cycling transition (an excitation

created by absorbing a photon can
easily decay into many vibrational
and rotational energy levels different

— afew re-pumping

lasers are enough to

pam accompany the main
cooling transition

buffer gas source

from the initial one) 3 Sub-Doppler cooling

L. Anderegg et al., Nature Physics 119, 103201 (2018) - e X (MQOT followed by

N.J. Fitch et al., AAMOP 70, 157 (2021) >9z molasses)
K. Langin etal., New J. S. s .
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Precision ro-vibrational spectroscopy of Buffer-Gas-Cooled Molecules

Any molecular species at rotational and translational temperatures of a few K
Improves state selectivity — reduced spectral congestion, increased absorption cross-sections

Restricts the distribution of velocities in the sample — narrower lineshapes

AEANEE NN

Suppresses collisional broadening effects (when using specimens in form of beams)

Great potential for accurate line-center frequency measurements

Infrared cavity-enhanced direct frequency comb
spectroscopy (CE-DFCS) of large species or
complex chemical mixtures: vinyl bromide, HR mirror _

diamantane, nitromethane, naphthalene, PBS ( | B To FTS
. Comb . ‘
hexamethylenetetramine,... light

Spaun et al., Nature 533, 517 (2016)
Changala et al., Science 363, 49 (2019) To PDH

lock
Quantum state-resolved ro-vibrational

transitions in C60 fullerene

Molecule inlet He inlet
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BGC Setup for Cavity-Enhanced Spectroscopy

Two-stage pulse
tube cryocooler
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vacuum
vessel

High-reflectivity

mirror Cavity-ring-down

photodetector

shields

High-reflectivity
mirror

Vacuum

\ N 4.2-K plate Activated
N vessel

, cell charcoal

charcoal /] Mol

o I 5 coococccc G .
inlet \ /,
Flow meter

vacuum radia
chamber

|
a2 |

skimmer

C;H; and He
inlet

L. Santamaria et al., Astrophys. J. 801, 50 (2015) L. Santamaria etal., PCCP 18, 16715 (2016) www.ino.it
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BGC Setup for Cavity-Enhanced Spectroscopy

pulse tube
cryocooler

vacuum
vessel

He line

N

35-K plate

shields
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, cell

charcoal
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Minimize vibrations from the cryocooler
on the high-finesse cavity mirrors:
mechanical noise is dominated by the
low-frequency components driven by the
compression cycle

V. Di Sarno et al., Optica 6, 436 (2019)

o = (vg/c)vV8In2M—1kpgT

The sample
2,5 temperature is
extracted by
Doppler
thermometry

1.5 1
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0,51

0,01

T T T T T T T T T T
stage 2 -300 -200 -100 0 100 200 300

Low-T Doppler-limited absoprtion (10'5 cm")

Absolute frequency detuning (MHz)

1. Effective homemade mounts to
mechanically isolate the HR mirrors from
the cryostat dewar by edge-welded
bellows forming the vacuum connection

2. The mirror mounts are incorporated in

massive bars (each resting on its own 3.
optical bench), connected by two rods
girdling the cryostat dewar

Additional Vulcuren damping
elements are placed in the points of the
apparatus most stressed by vibrations
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Lamb-dip Saturated-absorption Cavity Ring-down (SCAR)

Deviations from a pure exponential L 1of —~yt
- Ve 2 2
in the intra-cavity power due to Icav(t) — dcav,0 € f(t) o 4 hecl
sample saturation are exploited to sat = 3
P P o () = Leay(t) [ Leas 334

retrieve in each decay both the
linear and the saturated molecular
absorption — get rid of spurious
background fluctuations which

During the first part of the decay, empty-cavity losses
are measured (the high saturation level of the gas
makes it practically transparent to radiation); as the
prevent from achieving the intra-cavity radiation intensity and hence the
ultimate detection limit in CRDS — PN e AN ey saturation parameter S(t) decreases, the gas becomes
enhanced detection sensitivity o S absorbing again and the decay time returns to the

T T T
0 10 20 30 40 50 60 70 80 90 100

t(us) unsaturated ring-down time (linear absorption).
G. Giusfredi et al., Phys. Rev. Lett. 104, 110801 (2014) g ( P )

SCAR signal (V)

Res. (V)

Line-profile fitting routine expressly developed for Lamb dips
(inhomogeneous broadening regime)

Ye empty-cavity decay rate
V(t) = A + Be_%f Jc(t; Yes Vg Ug(y)) . :1 [L B l]
. 2, Vg linear absorption e lry)
f - — f(t) Conventional CRDS
1+ \/1 + e_ryctf(t) UQ(V) Ug(y) dip saturation profile

R. Aiello et al., Photonics Research 10, 1803 (2022) www.ino.it




Lamb-dip SCAR: room-T pilot experiment
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PDH-locked Crossed-pol SCAR

@ Spectum U The BGC-HFC length is controlled by phase-locking
: the beat note between the ECDL and the OFCS to a
local oscillator, via two PZTs
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Absolute determination of spectroscopic parameters

The SCAR beam frequency is tuned
across the target transition

C,H, (v;+v3) R(1)e line at 6561 cm™?

Each dip profile is fitted with a Lorentzian lineshape
to extract the line-center frequency and the FWHM
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10-12-level Frequency Metrology of Cold Ro-vibrational Spectra
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Time Stability of the Proton-to-Electron Mass Ratio

Measure the frequency of a ro-vibrational molecular transition relative to

Transition Energy scaling . ..
the Cs clock hyperfine transition
Gross structure Ry
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Measure the frequency of a ro-vibrational molecular transition relative to

Transition Energy scaling . ..
the Cs clock hyperfine transition
Gross structure Ry
mic e atrre 20 —~ =13
Atomic Fm.e structure , o’ Ry :E' 196696652928 ’ Slope = (-0.24+0.11) kHz/yr I
Hyperfine structure a*(n/np)Ry x 3
> .
[} _ —12
Electronic structure Ry 5 196696652918 ‘B/ﬂ - (2'4 + 1'2) x 10 /yr
Molecular  Vibrational structure B87Y2Ry o ams ' H
Rotational structure B~ Ry fh_’
S 196696652908
v(M) Hcs ‘ *%
sl o _,aatdal |10 ) 2 i
v(M) T ot 280t “laot| |Pes ot = 196696652898 -
V(CS) Hp ds
o - °© 0
where limits on a and pg /ug are inferred from 2 i
< 196696652888 ——n-—

atomic-clock measurements 0 2 4 6 8 10 12 14 16 18

R.M. Godun et al., PRL 113, 210801 (2014) Time (yr)

(8 Detection by MCP

B/8=(0.3041.0) x 107 /yr T 5 iii ii {}H 1o o0z
2 A a . — 2 Photoassociaton L] i } { § -0.02
Ultracold atoms in a dual-species MOT are photoassociated into a weakly & lonization ’% ! 795 nm _ 18 -
bound state; the molecules are transferred to the target internal state by s170m  grsam rsem ! onoT s
STIRAP and irradiated with a microwave pulse. State selective detection of NG g 12
. . . . . . . 1.0
the K-Rb dimers is achieved by ionization with a pulsed laser. lf:F=1.m=0> T &
T T T T
T4 20

J. Kobayashi et al. Nature Comm. 10, 3771 (2019) @ Merowave I

('n'e) senpisey

0 760 780 800 8
li:F=0,m=0> X'r* v-ss Frequency — 634,936,000 (Hz)

L. Santamaria et al., J. Mol. Spectrosc. 300, 116 (2014) www.ino.it




Time Stability of the Proton-to-Electron Mass Ratio

Measure the frequency of a ro-vibrational molecular transition relative to

Transition Energy scalin . .
i & the Cs clock hyperfine transition
Gross structure Ry
Atomic Fine structure (12Ry N Slope = (-0.24+0.11) kHz/yr Su remo IN FN-Csn2
Hyperfine structure a?(p/pp)Ry = IRRRRRERaeat ’ I N P .
’ ' = ¥ «% Constrain over a-few-year
[&] 3 _ —12
Electronic structure Ry & 196696652918 4 B/B=(24=1.2) X107 /yr timescale the temporal
Molecular  Vibrational structure 8~ 2Ry 3 ams ' H L.
Rotational structure B~ Ry fh_’ variation of = mp/me ata
& 196696652908 level of 107'%/yr = test of
9 [V(M) o(te) @ tring-type theori ki
v(Cs) 1 aﬁ 10a 1 Ug c 4 string-type theories seeking
= - 283~ L — S _
v(M) T ot 280t a dt % ot 5 196696652898 - to unify the four known
v(Cs) B 5 ) )
. - © fundamental interactions
where limits on a and pg /ug are inferred from 2 ;. i
atomic-clock measurements < 6 ) é ' 4" ' é " é " 1'0 " 1'2 ' 1'4 ' 1I6 ' 18 CJ.A.P.Martins, Rep. Prog.
R.M. Godun et al., PRL 113, 210801 (2014) Phys. 80, 126902 (2017)
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(8 Detection by MCP

3/8 = (0.30 £ 1.0) x 10~ 4/yr i;i;*”fnf}mﬂ“ g
Ultracold atoms in a dual-species MOT are photoassociated into a weakly & lonization ’% ! N _ 18 -
bound state; the molecules are transferred to the target internal state by 617om  grdom arsom ! onoT s
STIRAP and irradiated with a microwave pulse. State selective detection of } ;o Kand TRy g 12
g 1.0
the K-Rb dimers is achieved by ionization with a pulsed laser. lf:F=1.m=0> T &
T T T T T
20

J. Kobayashi et al. Nature Comm. 10, 3771 (2019) @Microwave 70 70 70 w0 e
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s
5
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L. Santamaria et al., J. Mol. Spectrosc. 300, 116 (2014) www.ino.it




Time stability of B: future perspectives

Exciting 2-photon Ramsey fringes on the BGC beam

A. Shelkovnikov et al., Phys. Rev. Lett. 100, 150801 (2008)

acetylene passes the baton...
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2 2,1) .
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Time stability of B: future perspectives

Exciting 2-photon Ramsey fringes on the BGC beam

A. Shelkovnikov et al., Phys. Rev. Lett. 100, 150801 (2008)

Buffer gas
cooling source

P

R~ SR /Novg

~ 500 mHz

———
d
j<—1
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up to 1000 s
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“2p° z

u=100 m/s
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WW

Ramsey fringes
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clock laser

D i
m-—&-»(s@

M

A
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Italian Quantum Backbone

KEY SPECIFICATIONS

- m Comb Spacing 250 MHz
m Accuracy 107 (t >100 8)

)
: ;
l s Turin (a) ol (b) =L fiber splitter = acousto-optic modulator
; L Aa c Torino| -/ Faraday mirror #¥ polarization '
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[$ “ E Jorino ”M‘ . cavity \
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T . s comb
; i Stability = 3-1014/7 12 Xy ‘0
Cs primary 1 , gl T !
standard ~ § © ) Pozzuoli* __"°°°|yr' ateya \
--------------- g ] } . H-maser
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| = : reflcior ™ Pozzuoli
l e detection E
.
pPLL THe nsation E
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A 1.5-micron laser (clock laser),
continuosly referenced to the primary Cs

Clock laser Dm(

the clock laser m Stabiity 1X10°%n 15, 1x 10° i 10005 fountain (or Yb lattice clock) via an OFC, is
stabilizes our local OFC m Operational Range from 500 nm to 2 um disseminated through a 800-km-long
Vol. 7, No. 8 / August 2020 / Optica 1031 I - I[qt&{‘]]rﬁ;?g FJ]SZS]BNOISG <100 mrad OptiCal fiber. Part of the laser radiation is

reflected back and used to cancel the
phase noise accumulated during the fiber
propagation

Common-clock very long baseline interferometry
using a coherent optical fiber link
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Spectroscopic
probe laser




Fifth-force Searches

Set new bounds on putative long-range (Angstrom scale) hadron-hadron

interactions (as postulated by Supersymmetry) below 10-1%q,
E.J. Salumbides et al., New J. Phys. 17, 033015 (2015)

Denoting by N, , the nucleon numbers for each atom in the molecule, the occurrence of spin-independent fifth forces with
coupling strength fcan be phenomenologically parameterized by a Yukawa-type potential with an effective range 4

B exp{—r/A} B By treating the extra potential as a perturbation, and considering the rovibrational
Vs(r)=hc—Ni{Ng——— =hc—N1N9Y(r,A) transition (v, J) € (v", J"), the contribution of a fifth force on the rovibrational
a r a transition energy is

(AV5,) NiNaf
he T T a [(‘PV',J'(")lY(r”l)quV’,J'(r)) _<IIJV",J"(")|Y("='1)IlPV",J”(r))] The wavefunctions are in principle solutions of
the complete Standard Model Hamiltonian

N1Nof . . . o . (including all interactions known to date)
= —— AY, = tiny shifts in transition frequencies

_ 2 2 Any difference between the
O = \[OER,, +OF

calc experimental value and the numerical
3 5 calculation (with Ataken as a
[ E parameter) for the considered transition

— <
v N{N> hc AYA energy can be used to set an upper limit




Fifth-force Searches: molecular hydrogen

THE JOURNAL OF CHEMICAL PHYSICS 144, 164306 (2016)

= The calculations for the . . QED tests (including
hvd l le h Schrédinger equation solved for the hydrogen molecule .
[ el with unprecedented accuracy proton radius and maSS)
been as accurate as for the Krzysztof Pachucki®® and Jacek Komasa®®) W|‘th H D+ in Pa ul tra pS
h drogen atom d ue to the lack 'Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
y *Faculry of Chemistry, Adam Mickiewicz Universiry, Umultowska 89b, 61-614 Poznan, Poland S Patra et al Science 369 1 238
q q 0 o )
of an analytic solution of the (Received 1 February 2016; accepted 17 April 2016; published online 28 April 2016) (2020)
Schrodinger equation . . .
- Th q f l. . f ED The hydrogen molecule can be used for determination of physical constants, including the pro- S. Allghanban et al" Nature PhYSICS
ere Is no formulation o Q ton charge radius, and for improved tests of the hypothetical long range force between hadrons, 19, 1263 (2023)
- which require a sufficiently accurate knowledge of the molecular levels. In this work, we perform
theory baS?d il & mUltI the first step toward a significant improvement in theoretical predictions of H> and solve the M. Germann et al" Phys. Rev. Res. 3’
electron Dirac equat|0n nonrelativistic Schrodinger equation to the unprecedented accuracy of 1072 We hope that it 1.022028 (2021)
will inspire a parallel progress in the spectroscopy of the molecular hydrogen. Published by AIP
Publishing. [hitp://dx.doi.org/10.1063/1.4948309]

Effective NRQED approach based on the Schrodinger equation:
= expansion of energy levels in powers of the fine structure constant
= the expansion coefficients are expressed as expectation values of effective Hamiltonians with the nonrelativistic wavefunction

E = Eng + (QZEREL + agEQED + Clin24EH0) + Envc + ...

4 ! 1

Leading-order relativistic Leading-order QED corrections: Nuclear effects: magnetic
corrections: mass-velocity, Darwin, self-energy, vacuum polarization, moment (HFS), charge
orbit-orbit, spin-spin, recoil terms radiative width, pair corrections distribution




Fifth-force Searches: Experiment

1. Perform sub-kHz-accuracy line-center frequency determinations for selected HD ro-vibrational transitions in the (2,0) and (1,0) band

2. Compare the experimental transition frequencies with
state-of-the-art (continuously improving) ab initio theoretical
predictions

M. Silkowski et al., Mol. Phys. 120, e2062471 (2022)

K. Pachucki et al., J. Chem. Phys. 144, 164306 (2016)
M. Puchalski, et al., Phys. Rev. Lett. 117, 263002 (2016)

HR mirrors for
NICE-OHMS/SCAR

Radiation % b Ty
shields 4, 4 4 mirror o
C\s’ "*) v ‘E -—-A —~ ’: L 0 0 - .
2;%% 330 % IBG;I: Low-NEP List of selected HD ro-vibrational transitions
e — C€| infi d
N phcl):‘ordzrteector (Hitran database)
5
N Laser Room-T Einstein A Sample

Vacuum M Band | Transition | wavelength | linestrength | coefficient | temperature
vessel olecule )

inlet (micron) (cm/molec) (Hz) (K)

Lamb-di AR ctrosc
amb-dip SCAR Spectroscopy R(0) 1.395 2 5E-25 1.58E-5 20
on R(1) 1.386 3.7E-25 2.15E-5 298
Buffer-gas-cooled HD samples R(2) 1.369 2.5E-25 2.58E-5 298
R(3) 1.358 1.0E-25 2.95E-5 298
ovy ~ v TQ(T) m R(0) 2.690 1.0E-24 1.67E-5 20



Upgrading the spectroscopic probe laser

Nonlinear Crystal
&
o,

g
N

Key Features

- 1.45 - 4.0 pm (2500 - 6900 cm)

- 300 GHz (10 cm) mode-hop-free
tuning range

- Narrow linewidth: 2 MHz (1-10% cm’)
- Hands-free motorized tuning
- Easy all-digital DLC pro control

- Watt class power

Both pump and signal frequencies
are phase-locked to the OFCS



Upgrading the spectroscopic probe laser

ORS
Wavelength 500-1600 nm (IBS coatings), 900—-1600 nm (XTAL coatings)

Stability (MADEV at 1°s, linear drift removed) <7 x 107" {with FS-XTAL option)
<1 x 107" (with FS-IBS option)
<2 X 107" (with ULE-IBS, standard system)

Linewidth <1Hz
Phase Noise (laser source dependent)

Nonlinear Crystal

ap AN
\a’i

YYy

ULE-IBS FS-XTAL

at 10Hz -7 dBc/Hz -13 dBc/Hz
at 100Hz  -47 dBc/Hz -47 dBc/Hz

A 4

N

ORS il at1000Hz -70dBe/Hz  -70 dBeMz X
o The Optical Reference System (ORS) delivers ultra-narrow

linewidth laser light with outstanding frequency stability. The

centerpiece is a high-finesse Fabry-Perot cavity (made from

ULE), operated in vacuum at the point of zero thermal expansion,

and actively decoupled from vibrations and acoustically isolated

Key Features

I ans - 1.45 - 4.0 pm (2500 - 6300 o)
power @ 1550 nm
A |‘ Th . - 300 GHz (10 cm) mode-hop-free
e e superior tuni
=9 comb is locked to an p . e ra_nge_
ﬂ optical reference @1550 nm spectral pu r|ty of - Narrow linewidth: 2 MHz (1-10% cm’)
the ORS is copied - Hands-free motorized tuning
to every comb line - | - Easy all-digital DLC pro control
- Watt class power
and eventually to Both d signal f _
. oth pump and signal frequencies
comb light around 1550 nm the OPO Idler _
are phase-locked to the OFCS



Second-generation BGC source: ultra-low-vibration mode

Vacuum chamber with improved mechanical
stability, housed on the optical bench (no longer
| onaperchrestingon the floor)

Remote-motor bellow system
The head of the cryocooleris
placed on a metal shelf,
suspended by means of a system
of steel tie rods, anchored to
load-bearing beams in the
laboratory's false ceiling -




Second-generation BGC source: other upgrades

The efficiency of the New internal shields with
collisional cooling optimized geometry, covered
process is maximized with activated charcoal
by introducing helium (which at cryogenic
through a coil wrapped temperatures acts as a
around the second vacuum pump with a speed
buffer tube of several thousand liters per

second)

T
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[ ] \
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W / |
J

. 3 Y -
"‘".“'."‘.'.

/

£ pppe
/
—

Cryogenic linear stage

Attocube ANPz102/RES/LT/HV
travel range: 5 mm

fine positioning resolution: sub-nm

w

Cryogenic nano-positioner for fine "74“1
alignments of the BGC molecular beam with
respect to the enhancement cavity axis



C14-SCAR
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THz ASOPS (asynchronous optical sampling)-spectrometer

Amplitude a.u.

Emitter
100 f5 NIk pul <500 fs The pulse
THz pulse due to transient
screening of bias filed by photo
Injected charge
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15
ik
05
3 Ay »
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Asynchronous Optical
Sampling Technique
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Laboratori Congiunti ASI-CNR

NQSTI nel settore delle Tecnologie : u : 1 E‘RIHS.it

National Quantum Science Quantistiche EUROPEAN RESEARCH INFRASTRUCTURE
piEnil FOR HERITAGE SCIENCE

and Technology Institute Progetto QASINO

Cold Molecules lab ) KH.
Maddaloni Pasquale LINRI
é. .,...4,|; \

Roberto Aiello
Maria Giulia Delli Santi (C-14 SCAR)
Valentina Di Sarno (THz ASOPS)
Coming soon: Luisa Boglioni, Hira Batool

Thank you!

To appreciate the beauty of a snowflake it is necessary to stand out in the cold (Aristotle)

www.ino.cnr.it
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