NEW FRONTIERS IN SUB-MEV DARK MATTER SEARCHES

Angelo Esposito

Istituto Nazionale di Fisica Nucleare

"The low-energy frontier of particle physics", LNF Feb. 11th 2025

• Most of the matter that interacts gravitationally is dark

• Most of the matter that interacts gravitationally is dark

• One of the strongest evidences for physics beyond the Standard Model

• Most of the matter that interacts gravitationally is dark

- One of the strongest evidences for physics beyond the Standard Model

• Dark matter is a particle but too light for elastic recoil

- Dark matter is a particle but too light for elastic recoil
- Need new materials and/or observables

• For an elastic scattering

$$E_{\text{target}} \simeq \frac{m_{\chi}}{m_{\text{T}}} E_{\chi} \gtrsim E_{\text{threshold}}$$

• For an elastic scattering

$$E_{\text{target}} \simeq \frac{m_{\chi}}{m_{\text{T}}} E_{\chi} \gtrsim E_{\text{threshold}}$$

• For $m_{\chi} \lesssim 1$ MeV elastic scattering off nuclei or electrons is very inefficient

[CRESST - PRD 2019, 1904.00498]

• For an elastic scattering

$$E_{\text{target}} \simeq \frac{m_{\chi}}{m_{\text{T}}} E_{\chi} \gtrsim E_{\text{threshold}}$$

• For $m_{\chi} \lesssim 1$ MeV elastic scattering off nuclei or electrons is very inefficient

[CRESST - PRD 2019, 1904.00498]

To evade this we must look into inelastic processes

 one
 possibility are collective excitations

Condensed matter $a \ll 1/a_{\rm p}$	Atomic physics $a \sim 1/a_{\rm p}$	Nuclear physics $a \ll \Lambda_{\text{OCD}}$	
$q \ll 1/a_{\rm B}$	A I'aB	9 × 1 QCD	>
1() ⁶ 1	$0^8 m_{2}$	[eV]

• For sub-MeV dark matter one needs to delve into condensed matter

Condensed matter	Atomic physics	Nuclear physics
$q \ll 1/a_{\rm B}$	$q \sim 1/a_{\rm B}$	$q \ll \Lambda_{\rm QCD}$
10) ⁶ 1	$m_{\chi} [eV]$

 Must account for the complicated many-body physics (correlations, strong coupling, ...)

• For sub-MeV dark matter one needs to delve into condensed matter

	Condensed matter	Atomic physics	Nucl	ear physics	
	$q \ll 1/a_{\rm B}$	$q \sim 1/a_{\rm B}$	q ·	$\ll \Lambda_{\rm QCD}$	
-					
	10)6	10 ⁸	m_{j}	_r [eV]
Must a	account for the co	omplicated	• •	• •	
many-	body physics (cor	rrelations,	• •		
strong	coupling,)				

• For sub-MeV dark matter one needs to delve into condensed matter

Condensed matter	Atomic physics	Nuclear physics	
$q \ll 1/a_{\rm B}$	$q \sim 1/a_{\rm B}$	$q \ll \Lambda_{\rm QCD}$	
10) ⁶ 1	$0^8 m_{\gamma}$, [eV]

 Must account for the complicated many-body physics (correlations, strong coupling, ...)

• For sub-MeV dark matter one needs to delve into condensed matter

Condensed matter	Atomic physics	Nuclear physics	
$q \ll 1/a_{\rm B}$	$q \sim 1/a_{\rm B}$	$q \ll \Lambda_{\rm QCD}$	•
10	6 1	$0^8 m_{\gamma}$	[eV]

 Must account for the complicated many-body physics (correlations, strong coupling, ...)

• For sub-MeV dark matter one needs to delve into condensed matter

Condensed matter	Atomic physics	Nuclear physics	
$q \ll 1/a_{\rm B}$	$q \sim 1/a_{\rm B}$	$q \ll \Lambda_{\rm QCD}$	
		0	
10) ⁶ 1	$0^8 m_{10}$, [eV

 Must account for the complicated many-body physics (correlations, strong coupling, ...)

Need theoretical tools that allow to solve or bypass these problems

• All phases of matter spontaneously break spacetime and (maybe) internal symmetries

• All phases of matter spontaneously break spacetime and (maybe) internal symmetries

Goldstone's theorem

Spontaneous symm. breaking \longleftrightarrow existence of soft modes

• All phases of matter spontaneously break spacetime and (maybe) internal symmetries

Goldstone's theorem

Spontaneous symm. breaking \longleftrightarrow existence of soft modes

 At low energies the system can be described by an EFT for Goldstones, systematically organized in a derivative expansion

 $\mathscr{L}_{\mathrm{EFT}}[\pi,\partial] \sim \sum g_{n,m} \partial^n \pi^m$

n,m

• All phases of matter spontaneously break spacetime and (maybe) internal symmetries

Goldstone's theorem

Spontaneous symm. breaking \longleftrightarrow existence of soft modes

 At low energies the system can be described by an EFT for Goldstones, systematically organized in a derivative expansion

$$\mathscr{L}_{\mathrm{EFT}}[\pi,\partial] \sim \sum g_{n,m} \partial^n \pi^m$$

n,m

• All phases of matter spontaneously break spacetime and (maybe) internal symmetries

Goldstone's theorem

Spontaneous symm. breaking \longleftrightarrow existence of soft modes

 At low energies the system can be described by an EFT for Goldstones, systematically organized in a derivative expansion

Spin-independent interactions: superfluid ⁴He

[w/ Acanfora, Caputo, Geoffray, Piccinini, Polosa, Rossi, Sun]

SUPERFLUID⁴He

SUPERFLUID⁴He

• Superfluid ⁴He is an interesting target to probe dark matter with spin-independent interactions

SUPERFLUID⁴He

- Superfluid ⁴He is an interesting target to probe dark matter with spin-independent interactions
 - I. $E_{\text{ionization}} \simeq 25 \text{ eV} \rightarrow \text{low electronic background}$
- Superfluid ⁴He is an interesting target to probe dark matter with spin-independent interactions
 - I. $E_{\text{ionization}} \simeq 25 \text{ eV} \rightarrow \text{low electronic background}$
 - 2. High radiopurity

- Superfluid ⁴He is an interesting target to probe dark matter with spin-independent interactions
 - I. $E_{\text{ionization}} \simeq 25 \text{ eV} \rightarrow \text{low electronic background}$
 - 2. High radiopurity
 - 3. Multi-phonon processes allow to probe down to $m_{\gamma} \sim O(\text{keV})$

- Superfluid ⁴He is an interesting target to probe dark matter with spin-independent interactions
 - I. $E_{\text{ionization}} \simeq 25 \text{ eV} \rightarrow \text{low electronic background}$
 - 2. High radiopurity
 - 3. Multi-phonon processes allow to probe down to $m_{\gamma} \sim O(\text{keV})$
- <u>Idea</u>: look for events where the dark matter produces more than one phonon

[[]Guo, McKinsey - PRD 2013, 1302.0534; Schutz, Zurek - PRL 2016, 1604.08206; Knapen, Lin, Zurek - PRD 2017, 1611.06228; Acanfora, AE, Polosa - EPJC 2019, 1902.02361; Caputo, AE, Polosa - PRD 2019, 1907.10635; Baym et al. - PRD 2021, 2005.08824; Caputo, AE, Piccini, Polosa, Rossi - PRD 2021, 2012.01432; Matchev et al. - JHEP 2022, 2108.07275; You et al. - 2208.14474]

- Superfluid ⁴He is an interesting target to probe dark matter with spin-independent interactions
 - I. $E_{\text{ionization}} \simeq 25 \text{ eV} \rightarrow \text{low electronic background}$
 - 2. High radiopurity
 - 3. Multi-phonon processes allow to probe down to $m_{\gamma} \sim O(\text{keV})$
- <u>Idea</u>: look for events where the dark matter produces more than one phonon

[Guo, McKinsey - PRD 2013, 1302.0534; Schutz, Zurek - PRL 2016, 1604.08206; Knapen, Lin, Zurek - PRD 2017, 1611.06228; Acanfora, AE, Polosa - EPJC 2019, 1902.02361; Caputo, AE, Polosa - PRD 2019, 1907.10635; Baym et al. - PRD 2021, 2005.08824; Caputo, AE, Piccini, Polosa, Rossi - PRD 2021, 2012.01432; Matchev et al. - JHEP 2022, 2108.07275; You et al. - 2208.14474]

- Superfluid ⁴He is an interesting target to probe dark matter with spin-independent interactions
 - I. $E_{\text{ionization}} \simeq 25 \text{ eV} \rightarrow \text{low electronic background}$
 - 2. High radiopurity
 - 3. Multi-phonon processes allow to probe down to $m_{\gamma} \sim O(\text{keV})$
- <u>Idea</u>: look for events where the dark matter produces more than one phonon

```
[Guo, McKinsey - PRD 2013, 1302.0534; Schutz, Zurek - PRL 2016,
1604.08206; Knapen, Lin, Zurek - PRD 2017, 1611.06228; Acanfora,
AE, Polosa - EPJC 2019, 1902.02361; Caputo, AE, Polosa - PRD
2019, 1907.10635; Baym et al. - PRD 2021, 2005.08824; Caputo,
AE, Piccini, Polosa, Rossi - PRD 2021, 2012.01432; Matchev et
al. - JHEP 2022, 2108.07275; You et al. - 2208.14474]
```


- Superfluid ⁴He is an interesting target to probe dark matter with spin-independent interactions
 - I. $E_{\text{ionization}} \simeq 25 \text{ eV} \rightarrow \text{low electronic background}$
 - 2. High radiopurity
 - 3. Multi-phonon processes allow to probe down to $m_{\gamma} \sim O(\text{keV})$
- <u>Idea</u>: look for events where the dark matter produces more than one phonon

[[]Guo, McKinsey - PRD 2013, 1302.0534; Schutz, Zurek - PRL 2016, 1604.08206; Knapen, Lin, Zurek - PRD 2017, 1611.06228; Acanfora, AE, Polosa - EPJC 2019, 1902.02361; Caputo, AE, Polosa - PRD 2019, 1907.10635; Baym et al. - PRD 2021, 2005.08824; Caputo, AE, Piccini, Polosa, Rossi - PRD 2021, 2012.01432; Matchev et al. - JHEP 2022, 2108.07275; You et al. - 2208.14474]

• Intuitive example: gas of weakly repulsive bosons

- Intuitive example: gas of weakly repulsive bosons
- At T = 0 all bosons are in the $\mathbf{k} = 0$ state \rightarrow system described by a single collective wave function

- Intuitive example: gas of weakly repulsive bosons
- At T = 0 all bosons are in the $\mathbf{k} = 0$ state \rightarrow system described by a single collective wave function

$$\Psi(x) = \sqrt{n(x)} e^{i\psi(x)}$$

- Intuitive example: gas of weakly repulsive bosons
- At T = 0 all bosons are in the $\mathbf{k} = 0$ state \rightarrow system described by a single collective wave function

$$\Psi(x) = \sqrt{n(x)} e^{i\psi(x)}$$

• Repulsion generates density waves with $\omega = c_s q \rightarrow below$ a critical velocity, the superfluid is inviscid (no dissipation)

- Intuitive example: gas of weakly repulsive bosons
- At T = 0 all bosons are in the $\mathbf{k} = 0$ state \rightarrow system described by a single collective wave function

$$\Psi(x) = \sqrt{n(x)} e^{i\psi(x)}$$

• Repulsion generates density waves with $\omega = c_s q \rightarrow below$ a critical velocity, the superfluid is inviscid (no dissipation)

$$\rho(\omega) = \frac{dN}{d\omega} \propto q^2 \frac{dq}{d\omega} \xrightarrow{q \to 0} 0$$

- Intuitive example: gas of weakly repulsive bosons
- At T = 0 all bosons are in the $\mathbf{k} = 0$ state \rightarrow system described by a single collective wave function

$$\Psi(x) = \sqrt{n(x)} e^{i\psi(x)}$$

• Repulsion generates density waves with $\omega = c_s q \rightarrow below$ a critical velocity, the superfluid is inviscid (no dissipation)

$$\rho(\omega) = \frac{dN}{d\omega} \propto q^2 \frac{dq}{d\omega} \xrightarrow{q \to 0} 0$$

Not enough modes to lose energy/momentum into

⁴He is microscopically strongly coupled
 —> multi-phonon
 emission rate is hard to compute

⁴He is microscopically strongly coupled
 —> multi-phonon
 emission rate is hard to compute

standard way

⁴He is microscopically strongly coupled
 —> multi-phonon
 emission rate is hard to compute

standard way

strongly coupled atomic Hamiltonian

 ⁴He is microscopically strongly coupled emission rate is hard to compute

standard way

strongly coupled atomic Hamiltonian clever ansatz for the condensate w.f. multi-phonon

 ⁴He is microscopically strongly coupled emission rate is hard to compute

standard way

strongly coupled atomic Hamiltonian clever ansatz for the condensate w.f.

extrapolation of the structure factor

$$\frac{d\Gamma}{d\omega \, dq} = \frac{\rho_{\text{He}} \, \sigma_{\chi n} \, q}{2m_{\chi} \, m_{\text{He}} \, p_i} \, S(q, \omega)$$

multi-phonon

 ⁴He is microscopically strongly coupled emission rate is hard to compute <u>standard way</u>

strongly coupled atomic Hamiltonian clever ansatz for the condensate w.f.

extrapolation of the structure factor

$$\frac{d\Gamma}{d\omega \, dq} = \frac{\rho_{\text{He}} \, \sigma_{\chi n} \, q}{2m_{\chi} \, m_{\text{He}} \, p_i} \, \frac{S(q, \omega)}{S(q, \omega)}$$

→ multi-phonon

• Alternatively, the symmetry breaking pattern of a superfluid:

• Alternatively, the symmetry breaking pattern of a superfluid:

 $\mathbf{K}, H, \mathbf{P}, \mathbf{J}, N$

• Alternatively, the symmetry breaking pattern of a superfluid:

$$\mathbf{K}, \mathbf{H}, \mathbf{P}, \mathbf{J}, \mathbf{N} \longrightarrow \mathbf{P}, \mathbf{J}, \overline{H} = H - \mu N$$

• Alternatively, the symmetry breaking pattern of a superfluid:

$$\mathbf{K}, \mathbf{H}, \mathbf{P}, \mathbf{J}, \mathbf{N} \longrightarrow \mathbf{P}, \mathbf{J}, \overline{H} = H - \mu N$$

• Gapless phonon = Goldstone \rightarrow low energy EFT:

[see, e.g., Son - hep-th/0204199; Nicolis, Piazza - JHEP 2012, 1112.5174]

• Alternatively, the symmetry breaking pattern of a superfluid:

$$\mathbf{K}, \mathbf{H}, \mathbf{P}, \mathbf{J}, \mathbf{N} \longrightarrow \mathbf{P}, \mathbf{J}, \overline{H} = H - \mu N$$

• Gapless phonon = Goldstone \rightarrow low energy EFT:

[see, e.g., Son - hep-th/0204199; Nicolis, Piazza - JHEP 2012, 1112.5174]

$$\mathscr{L}_{\rm EFT} \sim \dot{\pi}^2 - c_s^2 (\nabla \pi)^2 + \lambda \dot{\pi} (\nabla \pi)^2 + \lambda' \dot{\pi}^3 + \dots$$

[see, e.g., Acanfora, AE, Polosa - EPJC 2019, 1902.02361]

• Alternatively, the symmetry breaking pattern of a superfluid:

$$\mathbf{K}, \mathbf{H}, \mathbf{P}, \mathbf{J}, \mathbf{M} \longrightarrow \mathbf{P}, \mathbf{J}, \overline{H} = H - \mu N$$

• Gapless phonon = Goldstone \rightarrow low energy EFT:

[see, e.g., Son - hep-th/0204199; Nicolis, Piazza - JHEP 2012, 1112.5174]

 $\mathscr{L}_{\rm EFT} \sim \dot{\pi}^2 - c_s^2 (\nabla \pi)^2 + \lambda \dot{\pi} (\nabla \pi)^2 + \lambda' \dot{\pi}^3 + \dots \qquad \text{are giv}$

[see, e.g., Acanfora, AE, Polosa - EPJC 2019, 1902.02361]

effective coefficients are given by the equation of state: $P \equiv P(\mu)$

• At low energies, dark matter couples to the number density field

 $\mathscr{L}_{\text{int}} \sim |\chi|^2 \operatorname{tr} G_{\mu\nu} G^{\mu\nu}$

• At low energies, dark matter couples to the number density field

• At low energies, dark matter couples to the number density field

• At low energies, dark matter couples to the number density field

• Obtain from the U(1) Noether current within the EFT

$$\mathscr{L}_{\text{int}} \propto |\chi|^2 J^0 \sim |\chi|^2 \left(g \dot{\pi} + g' \dot{\pi}^2 + g'' (\nabla \pi)^2 + \dots \right)$$

[see, e.g., Acanfora, AE, Polosa - EPJC 2019, 1902.02361]

• We can now use standard QFT methods to compute event rates

• We can now use standard QFT methods to compute event rates

• We can now use standard QFT methods to compute event rates

$$= G_{\chi} m_{\chi} \alpha \omega ,$$

$$= i G_{\chi} m_{\chi} (\beta_1 q_1 \cdot q_2 + \beta_2 \omega_1 \omega_2) ,$$

$$= i G_{\chi} m_{\chi} (\beta_1 q_1 \cdot q_2 + \beta_2 \omega_1 \omega_2) ,$$

$$= G_{\chi} m_{\chi} [\gamma_1 (\omega_1 q_2 \cdot q_3 + \omega_2 q_1 \cdot q_3 + \omega_3 q_1 \cdot q_2) + \gamma_2 \omega_1 \omega_2 \omega_3] .$$

[Acanfora, AE, Polosa - EPJC 2019, 1902.02361; Caputo, AE, Polosa - PRD 2019, 1907.10635]
IDEAL REACH

• We can now use standard QFT methods to compute event rates

$$= G_{\chi} m_{\chi} \alpha \omega ,$$

$$= i G_{\chi} m_{\chi} (\beta_1 q_1 \cdot q_2 + \beta_2 \omega_1 \omega_2) ,$$

$$= i G_{\chi} m_{\chi} (\beta_1 q_1 \cdot q_2 + \beta_2 \omega_1 \omega_2) ,$$

$$= G_{\chi} m_{\chi} [\gamma_1 (\omega_1 q_2 \cdot q_3 + \omega_2 q_1 \cdot q_3 + \omega_3 q_1 \cdot q_2) + \gamma_2 \omega_1 \omega_2 \omega_3] .$$

[Acanfora, AE, Polosa - EPJC 2019, 1902.02361; Caputo, AE, Polosa - PRD 2019, 1907.10635]

• EFT allows to also study more complicated signals

• EFT allows to also study more complicated signals

• EFT allows to also study more complicated signals

impossible with traditional methods, but very simple within EFT

• EFT allows to also study more complicated signals

4/31

• We compute the 4-body, non-Lorentz invariant phase space using Monte Carlo techniques again borrowed from particle physics

• We compute the 4-body, non-Lorentz invariant phase space using Monte Carlo techniques again borrowed from particle physics

$$d\Phi_4 \sim d^3 p_f \prod_{i=1}^3 d^3 q_i \,\delta\left(\frac{p_i^2}{2m_\chi} - \frac{p_f^2}{2m_\chi} - c_s \,q_1 - c_s \,q_2 - c_s \,q_3\right) \,\delta^{(3)}(\mathbf{p}_i - \mathbf{p}_f - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3)$$

 We compute the 4-body, non-Lorentz invariant phase space using Monte Carlo techniques again borrowed from particle physics

$$d\Phi_4 \sim d^3 p_f \prod_{i=1}^3 d^3 q_i \,\delta\left(\frac{p_i^2}{2m_\chi} - \frac{p_f^2}{2m_\chi} - c_s \,q_1 - c_s \,q_2 - c_s \,q_3\right) \,\delta^{(3)}(\mathbf{p}_i - \mathbf{p}_f - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3)$$

 We compute the 4-body, non-Lorentz invariant phase space using Monte Carlo techniques again borrowed from particle physics

$$d\Phi_4 \sim d^3 p_f \prod_{i=1}^3 d^3 q_i \,\delta\left(\frac{p_i^2}{2m_\chi} - \frac{p_f^2}{2m_\chi} - c_s q_1 - c_s q_2 - c_s q_3\right) \,\delta^{(3)}(\mathbf{p}_i - \mathbf{p}_f - \mathbf{q}_1 - \mathbf{q}_2 - \mathbf{q}_3)$$

|5/3|

Spin-dependent interactions: anti-ferromagnets

[w/ Catinari, Pavaskar]

• How about dark matter with spin-dependent interactions?

- How about dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How about dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How about dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How about dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How about dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

- How about dark matter with spin-dependent interactions?
- A possibility is to look for the interaction between dark matter and spin-ordered systems

 Ways to detect few magnons have been proposed (TES? SQUIDs? quantum sensors? cavities?)

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Lachance-Quirion et al. - Science Advances 2017; Lachance-Quirion et al. - Science 2020]

• At low energies dark matter couples to spin density field

- At low energies dark matter couples to spin density field
- Two benchmark models:

 $\begin{aligned} \mathscr{L}_{\mathrm{m.d.}} &\sim V_{\mu\nu} \, \bar{\chi} \sigma^{\mu\nu} \chi + V_{\mu} \, \bar{e} \gamma^{\mu} e \\ \mathscr{L}_{\mathrm{p.m.}} &\sim \phi \, \bar{\chi} \chi + \phi \, \bar{e} i \gamma^5 e \end{aligned}$

[e.g., Sigurdson et al. - PRD 2004, astro-ph/ 0406355; Chang, Weiner, Yavin - PRD 2010, 1007.4200]

[e.g., Banks, Fortin, Thomas - 1007.5515; Bagnasco, Dine, Thomas - PLB 1994, hep-ph/9310290]

- At low energies dark matter couples to spin density field
- Two benchmark models:

$$\mathcal{L}_{\text{m.d.}} \sim V_{\mu\nu} \,\bar{\chi} \sigma^{\mu\nu} \chi + V_{\mu} \,\bar{e} \gamma^{\mu} e$$
$$\mathcal{L}_{\text{p.m.}} \sim \phi \,\bar{\chi} \chi + \phi \,\bar{e} i \gamma^5 e$$

[e.g., Sigurdson et al. - PRD 2004, astro-ph/ 0406355; Chang, Weiner, Yavin - PRD 2010, 1007.4200]

- [e.g., Banks, Fortin, Thomas 1007.5515; Bagnasco, Dine, Thomas - PLB 1994, hep-ph/9310290]
- For a non-relativistic system, at low energies:

$$\begin{aligned} \mathscr{L}_{\mathrm{m.d.}} &\to \chi^{\dagger} \sigma^{i} \chi \left(\delta^{ij} - \nabla^{-2} \nabla^{i} \nabla^{j} \right) \, s_{i} \\ \mathscr{L}_{\mathrm{p.m.}} &\to \chi^{\dagger} \chi \nabla^{-2} \nabla_{i} s^{i} \end{aligned}$$

- At low energies dark matter couples to spin density field
- Two benchmark models:

 $\begin{aligned} \mathscr{L}_{\mathrm{m.d.}} &\sim V_{\mu\nu} \, \bar{\chi} \sigma^{\mu\nu} \chi + V_{\mu} \, \bar{e} \gamma^{\mu} e \\ \mathscr{L}_{\mathrm{p.m.}} &\sim \phi \, \bar{\chi} \chi + \phi \, \bar{e} i \gamma^5 e \end{aligned}$

[e.g., Sigurdson et al. - PRD 2004, astro-ph/ 0406355; Chang, Weiner, Yavin - PRD 2010, 1007.4200]

- [e.g., Banks, Fortin, Thomas 1007.5515; Bagnasco, Dine, Thomas - PLB 1994, hep-ph/9310290]
- For a non-relativistic system, at low energies:

• First proposed to use ferromagnets

• First proposed to use ferromagnets

• First proposed to use ferromagnets

• First proposed to use ferromagnets

• First proposed to use ferromagnets

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Mitridate et al. - PRD 2020, 2005.10256; Chigus, Moroi, Nakayama - PRD 2020, 2001.10666; Trickle, Zhang, Zurek - PRD 2022, 2009.13534]

Conservation of magnetization

only one magnon emitted

• First proposed to use ferromagnets

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744; Mitridate et al. - PRD 2020, 2005.10256; Chigus, Moroi, Nakayama - PRD 2020, 2001.10666; Trickle, Zhang, Zurek - PRD 2022, 2009.13534]

$$\omega_{\max} \simeq 4 \frac{m_{\theta}}{m_{\chi}} E_{\chi}$$
 with $m_{\theta} \sim 1 \text{ MeV}$

inefficient for $m_{\chi} \lesssim 1 \; {\rm MeV}$

Compute the magnon emission rate

- Compute the magnon emission rate
- Traditional approach: quantize the Heisenberg model

$$H = \frac{1}{2} \sum_{\ell,\ell'}^{N} \sum_{j,j'}^{n} J_{\ell\ell'jj'} \mathbf{S}_{\ell j} \cdot \mathbf{S}_{\ell'j'} \to \sum_{\nu=1}^{n} \sum_{\mathbf{q}\in 1\mathrm{BZ}} \omega_{\nu,\mathbf{q}} b_{\nu,\mathbf{q}}^{\dagger} b_{\nu,\mathbf{q}}$$

- Compute the magnon emission rate
- Traditional approach: quantize the Heisenberg model

$$H = \frac{1}{2} \sum_{\ell,\ell'}^{N} \sum_{j,j'}^{n} J_{\ell\ell'jj'} \mathbf{S}_{\ell j} \cdot \mathbf{S}_{\ell'j'} \to \sum_{\nu=1}^{n} \sum_{\mathbf{q}\in 1\mathrm{BZ}} \omega_{\nu,\mathbf{q}} b_{\nu,\mathbf{q}}^{\dagger} b_{\nu,\mathbf{q}}$$

FERROMAGNETS

- Compute the magnon emission rate
- Traditional approach: quantize the Heisenberg model

$$H = \frac{1}{2} \sum_{\ell,\ell'}^{N} \sum_{j,j'}^{n} J_{\ell\ell'jj'} \mathbf{S}_{\ell j} \cdot \mathbf{S}_{\ell'j'} \to \sum_{\nu=1}^{n} \sum_{\mathbf{q}\in 1\mathrm{BZ}} \omega_{\nu,\mathbf{q}} b_{\nu,\mathbf{q}}^{\dagger} b_{\nu,\mathbf{q}}$$

[Trickle, Zhang, Zurek - PRL 2020, 1905.13744]

• A better class of materials turns out to be *anti-ferromagnets*

• A better class of materials turns out to be *anti-ferromagnets*

• A better class of materials turns out to be *anti-ferromagnets*

• A better class of materials turns out to be *anti-ferromagnets*

For single-magnon emission:

$$\omega_{\max} \simeq 4 \frac{v_{\theta}}{v_{\chi}} E_{\chi}$$

• A better class of materials turns out to be *anti-ferromagnets*

• For single-magnon emission:

$$\omega_{\max} \simeq 4 \frac{v_{\theta}}{v_{\chi}} E_{\chi}$$

• Nickel-oxide has $v_{\theta} \sim 0.1 v_{\chi} \rightarrow \text{very efficient at absorbing}$ dark matter energy [AE, Pavaskar - PRD (2023), 2210.13516]

• Magnons in anti-ferromagnets have two polarizations, analogous to particle and anti-particle in a relativistic theory

- Magnons in anti-ferromagnets have two polarizations, analogous to particle and anti-particle in a relativistic theory
- This allows to emit magnon and anti-magnon pairs while preserving magnetization

- Magnons in anti-ferromagnets have two polarizations, analogous to particle and anti-particle in a relativistic theory
- This allows to emit magnon and anti-magnon pairs while preserving magnetization
- Multi-magnon emission process evade the kinematical constraints and get down to $m_{\chi} \sim O(\text{keV})$

• Anti-ferromagnets spontaneously break internal spin symmetry

• Anti-ferromagnets spontaneously break internal spin symmetry

Anti-ferromagnets spontaneously break internal spin symmetry

Anti-ferromagnets spontaneously break internal spin symmetry

Gapless magnon = Goldstone

Anti-ferromagnets spontaneously break internal spin symmetry

Gapless magnon = Goldstone

• At low energies/momenta magnons can be described by an EFT, invariant under the full symmetry group

• Very similar to the non-linear σ -model:

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$

• At lowest order in the derivative expansion, the most general invariant Lagrangian (density) is

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$

• At lowest order in the derivative expansion, the most general invariant Lagrangian (density) is

$$\mathscr{L} = c_1 \dot{\mathbf{n}}^2 - c_2 \left(\nabla_i \mathbf{n} \right)^2$$

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$

• At lowest order in the derivative expansion, the most general invariant Lagrangian (density) is

$$\mathcal{L} = c_1 \dot{\mathbf{n}}^2 - c_2 \left(\nabla_i \mathbf{n}\right)^2$$
$$= c_1 \left(\dot{\theta}^a\right)^2 - c_2 \left(\overrightarrow{\nabla}\theta^a\right)^2 + \dots$$

• Very similar to the non-linear σ -model:

$$\mathbf{n}(x) = e^{i\left[\theta^{1}(x)J_{1} + \theta^{2}(x)J_{2}\right]} \cdot \hat{\mathbf{z}} \xrightarrow{SO(3)} R \cdot \mathbf{n}(x)$$

• At lowest order in the derivative expansion, the most general invariant Lagrangian (density) is

[Pavaskar, Penco, Rothstein - SciPost Phys. (2022), 2112.13873; AE, Pavaskar - PRD (2023), 2210.13516]

• Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_{i} = c_{1} \left(\mathbf{n} \times \dot{\mathbf{n}} \right)_{i} = c_{1} \left[\delta_{ia} \dot{\theta}^{a} + \delta_{i3} \epsilon_{ab} \theta^{a} \dot{\theta}^{b} + \dots \right] \left[\mathbf{AE}, \mathbf{Pavaskar} - \mathbf{PRD} \right] \left[(2023), (2210.13516) \right]$$

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_{i} = c_{1} \left(\mathbf{n} \times \dot{\mathbf{n}} \right)_{i} = c_{1} \left[\delta_{ia} \dot{\theta}^{a} + \delta_{i3} \epsilon_{ab} \theta^{a} \dot{\theta}^{b} + \dots \right] \quad \begin{bmatrix} \mathbf{AE}, \text{ Pavaskar} - \text{PRD} \\ (2023), 2210.13516 \end{bmatrix}$$
one-magnon
emission

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_{i} = c_{1} \left(\mathbf{n} \times \dot{\mathbf{n}} \right)_{i} = c_{1} \left[\delta_{ia} \dot{\theta}^{a} + \delta_{i3} \epsilon_{ab} \theta^{a} \dot{\theta}^{b} + \dots \right]$$

$$(2023), 2210.13516]$$
one-magnon
emission
two-magnons
emission

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_{i} = c_{1} (\mathbf{n} \times \dot{\mathbf{n}})_{i} = c_{1} \begin{bmatrix} \delta_{ia} \dot{\theta}^{a} + \delta_{i3} \epsilon_{ab} \theta^{a} \dot{\theta}^{b} + \dots \end{bmatrix} \xrightarrow{[\mathbf{AE}, \text{ Pavaskar} - PRD}_{(2023), 2210.13516]}$$
one-magnon
emission
two-magnons
emission

• Structure completely dictated by symmetry \rightarrow just need c_1

- Recall that the dark matter interacts via spin density, $\mathbf{s}(x)$
- Easily computed as SO(3) Noether current in the EFT:

$$s_{i} = c_{1} (\mathbf{n} \times \dot{\mathbf{n}})_{i} = c_{1} \begin{bmatrix} \delta_{ia} \dot{\theta}^{a} + \delta_{i3} \epsilon_{ab} \theta^{a} \dot{\theta}^{b} + \dots \end{bmatrix}$$

$$(AE, Pavaskar - PRD (2023), 2210.13516]$$
one-magnon
emission
two-magnons
emission

- Structure completely dictated by symmetry \rightarrow just need c_1
- This allows to bypass difficulties in the standard treatment (failure of the Holsten-Primakoff approach) [Dyson - Phys. Rev. 1956]

• Just like before, use standard QFT methods to compute event rates

[AE, Pavaskar - PRD (2023), 2210.13516]

• Just like before, use standard QFT methods to compute event rates

[AE, Pavaskar - PRD (2023), 2210.13516]

a, λ_1 \downarrow $s \rightarrow s'$	$= -\frac{g_{\chi}g_e\sqrt{c_1}}{m_e}\omega \times \begin{cases} \frac{4}{\Lambda_{\chi}}P_{ia}(\boldsymbol{q})\sigma^i\\ q^a/q^2 \end{cases}$	m.d. p.m. '
$a, \lambda_1 b, \lambda_2$	$= \frac{g_{\chi}g_e}{m_e}(\omega_1 - \omega_2)\epsilon_{ab} \times \begin{cases} \frac{4}{\Lambda_{\chi}}P_{iz}(\boldsymbol{q})\\ q^z/q^2 \end{cases}$	σ^i m.d. p.m.

• Just like before, use standard QFT methods to compute event rates

[AE, Pavaskar - PRD (2023), 2210.13516]

IDEAL REACH

• Just like before, use standard QFT methods to compute event rates

[AE, Pavaskar - PRD (2023), 2210.13516]

• The very same setup can be used to look for QCD axion dark matter, coupling to electrons [Catinari, AE, Pavaskar - 2411.11971]

- The very same setup can be used to look for QCD axion dark matter, coupling to electrons [Catinari, AE, Pavaskar 2411.11971]
- The axion can be absorbed by the antiferromagnet:

- The very same setup can be used to look for QCD axion dark matter, coupling to electrons [Catinari, AE, Pavaskar 2411.11971]
- The axion can be absorbed by the antiferromagnet:

$$\mathscr{L} = \frac{g_{aee}}{2m_e} \partial_\mu a \, \bar{e} \gamma^\mu \gamma^5 e \to \frac{g_{aee}}{m_e} \, \overline{\nabla} \, a \cdot \vec{s}$$

- The very same setup can be used to look for QCD axion dark matter, coupling to electrons [Catinari, AE, Pavaskar 2411.11971]
- The axion can be absorbed by the antiferromagnet:

$$\mathscr{L} = \frac{g_{aee}}{2m_e} \partial_\mu a \, \bar{e} \gamma^\mu \gamma^5 e \to \frac{g_{aee}}{m_e} \, \overline{\nabla} \, a \cdot \vec{s}$$

• To study this case we extended the EFT to include more details of the structure of NiO:

- To study this case we extended the EFT to include more details of the structure of NiO:
 - A. intrinsic magnetic anisotropy

- To study this case we extended the EFT to include more details of the structure of NiO:
 - A. intrinsic magnetic anisotropy
 - B. external magnetic field

- To study this case we extended the EFT to include more details of the structure of NiO:
 - A. intrinsic magnetic anisotropy
 - B. external magnetic field
- The EFT is slightly more complicated, but much richer:

- To study this case we extended the EFT to include more details of the structure of NiO:
 - A. intrinsic magnetic anisotropy
 - B. external magnetic field
- The EFT is slightly more complicated, but much richer:

$$\mathscr{L} = c_1 \left[\left(\dot{\mathbf{n}} + \mu \mathbf{B} \times \mathbf{n} \right)^2 - v_{\theta}^2 \left(\nabla_i \mathbf{n} \right)^2 + \lambda_z n_z^2 - \lambda_x n_x^2 \right]$$

[Catinari, AE, Pavaskar - 2411.09761]

• Nickel-oxide is very promising also for axion searches:

• Nickel-oxide is very promising also for axion searches:

[Catinari, AE, Pavaskar - 2411.09761]

• Nickel-oxide is very promising also for axion searches:

• The next step for these proposals is to try and turn them into concrete detectors

- The next step for these proposals is to try and turn them into concrete detectors

- The next step for these proposals is to try and turn them into concrete detectors
- The superfluid helium idea is more advanced, with some projects already in the R&D phase (HeRALD, DELight)

 see next talk!
- For anti-ferromagnets there is a plethora of open questions:
 - ▶ is any other good material out there? [Marocco, Wheater 2501.18120]
 - what is the actual observable? How do we see magnons? (SQUIDs? cavities?)

• The search for sub-MeV dark matter requires new ideas

- The search for sub-MeV dark matter requires new ideas
- One must delve in the condensed matter world

- The search for sub-MeV dark matter requires new ideas
- One must delve in the condensed matter world
- Condensed matter phenomena can be an asset... but we must find a way of efficiently incorporating it in the particle physics language

- The search for sub-MeV dark matter requires new ideas
- One must delve in the condensed matter world
- Condensed matter phenomena can be an asset... but we must find a way of efficiently incorporating it in the particle physics language
- A lot of work left to do! Especially, how do we see magnons? Find actual observables.

- The search for sub-MeV dark matter requires new ideas
- One must delve in the condensed matter world
- Condensed matter phenomena can be an asset... but we must find a way of efficiently incorporating it in the particle physics language
- A lot of work left to do! Especially, how do we see magnons? Find actual observables.

Thank you for the attention!