DELight: The Direct Search Experiment for Light Dark Matter

Eleanor Fascione on behalf of the DELight Collaboration INFN-LNF Workshop on The Low Energy Frontier of Particle Physics, 2025/02/11

The Current SI-DM Landscape and Push to Low Mass

E. Fascione, INFN-LNF, 2025/02/11

Various experimental efforts to reach sensitivity to ~GeV/c² scale WIMPs

Heavy noble experiments constrain high-mass WIMP parameter space and push towards neutrino fog

- 1. J.I.Collar, Phys. Rev. D 98, 023005 (2018)
- 2. Arnaud et al., Astroparticle Physics 97, p.54--62 (2018)
- 3. Qiuhong Wang et al. (PandaX-II Collaboration) 2020 Chinese Phys. C 44 125001
- 4. Aalbers et al., Phys. Rev. Lett. 131, 041002 (2023)
- 5. Aprile et al., Phys. Rev. Lett. 131, 041003 (2023)
- 6. Aprile et al. Phys. Rev. Lett. 126, 091301 (2021)
- 7. Aprile et al., Phys. Rev. Lett. 123, 241803 (2019)
- 8. A. Aguilar-Arevalo et al., Phys. Rev. Lett. 125, 241803 (2020)
- 9. P. Agnes et al. (DarkSide), Phys. Rev. Lett. 130, 101001 (2023)
- 10. Abdelhameed, A. Physical Review D 100.10 (2019)

The DELight Collaboration

E. Fascione, INFN-LNF, 2025/02/11

universität freiburg

Superfluid Helium-4 Target

- Light nucleus ideal for LDM searches
- ➡ No intrinsic long-lived backgrounds
- Contaminants freeze-out
- ➡ Inexpensive
- Scalable

Multiple signals: ER/NR discrimination

Signals in Superfluid He-4

Signals in Superfluid He-4

Signals in Superfluid He-4

Quasiparticle Dispersion Relation in Superfluid He-4

energy [meV]

Collective long lived excitations in superfluid He

DELight Detector - Interactions in Superfluid Helium-4

- Prompt signal from UV and IR photons
- Triplet excimer
 - ➡ Ballistic O(m/s) speed

DELight Detector - Interactions in Superfluid Helium-4

DELight Detector - Film Burner

- Must keep sensors free of He film to maintain amplification factor
- → Implement a film burner

Magnetic MicroCalorimeters (MMCs)

 $\delta M \propto \delta T$

E. Fascione, INFN-LNF, 2025/02/11

MMC Properties

S.Kempf et. al, *J Low Temp Phys* **193**, 365–379 (2018) E. Fascione, INFN-LNF, 2025/02/11

R&D - MMC Energy Resolution

New MMCs achieved best resolution to date

$\Rightarrow \Delta E_{FWHM} = 1.25 \text{ eV} \text{ at } 5.9 \text{keV}$

➡Optimal filter analysis of ⁵⁵Fe calibration peaks

 \rightarrow Amplitude fit to K_a data, calibration parameters validated by reconstructing K_B

Appl. Phys. Lett. 124, 032601 (2024)

Matthäus Krantz, Francesco Toschi, Benedikt Maier, Greta Heine, Christian Enss, Sebastian Kempf

Phys. Rev. D 109, 043035 (2024)

Francesco Toschi, Benedikt Maier, Greta Heine, Torben Ferber, Sebastian Kempf, Markus Klute, and Belina von Krosigk

E. Fascione, INFN-LNF, 2025/02/11

DE(ight

Possible DELight MMC Design

Large area MMC for full surface coverage - silicon or sapphire wafer

Potentially sub-eV resolution

Pickup coil

3-inch wafer absorber ~300µm thick

E. Fascione, INFN-LNF, 2025/02/11

Paramagnetic sensor

Phonon collector

SQUID

Understanding Detector Response

- \rightarrow We have a target volume (superfluid He) instrumented with ~60 sensors (MMCs)... what now?
 - Understand the partitioning of energy depositions into the different signal channels (UV/IR/triplet/quasiparticle)
 - \rightarrow Understand what happens to these quanta \rightarrow depends on detector geometry, MMC layout, etc.

Signal Formation in Superfluid Helium

Developed a Monte Carlo-based approach to estimate signal partitioning

Signal partitioning in superfluid 4He: a Monte Carlo approach, paper accepted by PRD, arXiv:2410.13684

Simulating Signals in Superfluid Helium

- Implemented phonon physics in Geant4 including quantum evaporation
- Produce detector geometry-dependent maps of quasiparticle/light/triplet collection efficiency and timing information
 - Depends on position of event within target volume

Waveform Simulation

E. Fascione, INFN-LNF, 2025/02/11

100

Event Reconstruction

helix: a strax-based framework for data processing (strax: streaming analysis) for xenon experiments)

Optimal filter (OF) energy reconstruction

Energy and position reconstruction through machine learning

E. Fascione, INFN-LNF, 2025/02/11

Helix Toy Data

R&D - Backgrounds and Simulations

E. Fascione, INFN-LNF, 2025/02/11

Vue-des-Alpes Underground Lab

GeMSE

Low background HPGe crystal gamma spectrometer @ VdA

Material selection campaign for experiment components

DELight Demonstrator

E. Fascione, INFN-LNF, 2025/02/11

➡ MMC testing, athermal and thermal

To Conclude: The DELight Forecast

Thank you

