Searching for Dark Matter with Carbon Nanotubes: the ANDROMeDa Project

Francesco Pandolfi **INFN Rome**

The Low-Energy Frontier of Particle Physics LNF, 11.02.2025

Aligned Nanotube Detector for Research On MeV Darkmatter

85% of the Matter of the Universe Unaccounted For

Overwhelming evidence for large mass of non-baryonic matter *

Francesco Pandolfi

The Rise of the ACDM Model

In ACDM, dark matter is: *

- Massive
- Electrically neutral
- Not self-interacting ('cold')
- Gravitationally interacting with ordinary matter •
- Primordial **fluctuations** in DM density \rightarrow virial wells *
 - 'Seeds' for galaxies

On Earth: DM 'wind' from Cygnus constellation

Non-relativistic speed (v_{DM} ~ 10⁻³ c)

Francesco Pandolfi

The WIMP and Its 'Miracle'

• For correct relic abundance $\Omega_d \sim 0.12$ after 'freeze-out', one needs: $\langle \sigma v \rangle \sim 1$ pb

In **WIMP** paradigm dark matter is: *

- Massive (M ~ 100 GeV)
- Electrically neutral
- Not self-interacting ('cold')
- Gravitationally interacting with ordinary matter

Weakly interacting with ordinary matter

Francesco Pandolfi

ANDROMeDa Project, 11.02.25

Which is exactly what one gets for a 100 GeV particle with electroweak couplings

... Yet We Didn't Find the WIMP

Francesco Pandolfi

Problems with ACDM at Sub-Galactic Scale

- ACDM extremely successful in describing Universe at large scales *
 - From horizon (15000 Mpc) to inter-galaxy distance (1 Mpc)
- **Problems** arise when describing structures at **sub-galactic** scale (<1 Mpc) *
 - Cusp/core
 - Missing satellites
 - Too-Big-to-Fail

Francesco Pandolfi

Problems with ACDM at Sub-Galactic Scale

- ACDM extremely successful in describing Universe at large scales *
 - From horizon (15000 Mpc) to inter-galaxy distance (1 Mpc)
- **Problems** arise when describing structures at **sub-galactic** scale (<1 Mpc) *

- Missing satellites
- Too-Big-to-Fail

Francesco Pandolfi

Not covering these two, for comprehensive review see arXiv:1707.04256

The Cusp/Core Problem

Cold DM creates halos with high central density

 Density profile predicted to be 'cuspy': increases steadily at smaller radii (ρ ~ 1/r)

Fails to describe rotation curves at low r

 $V_{\text{circ}}(r) = \sqrt{V_{\text{halo}}(r)^2 + \Upsilon_* V_{\text{star}}(r)^2 + V_{\text{gas}}(r)^2}} DM_V density + rotile((ensity)/r)/r$ $r_{\text{[kpc]}}$

The SIMP Paradigm (in a Nutshell) Hochberg et al., PRL 113 (2014) 17130⁻

- Strongly Interacting Massive Particles (SIMP) *
 - Self-interacting DM through $3 \rightarrow 2$ process
- Self-interaction heats up DM → lowers density *
 - **Solves** CUSP/COre (and too-big-to-fail)
- SIMP predicts **sub-GeV** DM *
 - $m_{DM} \sim \alpha_{eff} (T^2 M_{PI})^{1/3}$ $(eg \alpha_{eff} = 1 \rightarrow m_{DM} = 100 \text{ MeV})$
 - a_{eff} constraints: not too **small** (wouldn't solve cusp/core) nor too large (wouldn't explain Bullet cluster)

Francesco Pandolfi

$3 \rightarrow 2$ scattering heats up DM

No more DM \rightarrow SM annihilation

For Light Dark Matter Better to Use Electron Recoils

Much weaker limits (10⁻⁶) *

- From ton-targets to gram-targets?
- m_{DM} < 100 MeV: sensitivity **drop** for ionization detectors (reconstruction thresholds)

Francesco Pandolfi

Solid State Targets: The Advantage of 2D Materials

- **Back of the envelope** calculation: $K_{DM} = 5-50 \text{ eV}$ (for $m_{DM} = 10-100 \text{ MeV}$)
 - Assuming v_{DM} ~ 300 km/s
- **Enough** to extract an electron from carbon
 - Φ_e ~ 4.7 eV, so K_e ~ 1-50 eV
 - Extremely **short** range in matter!
- 2D materials: electrons ejected **directly** into vacuum *
 - Graphene and carbon nanotubes

Francesco Pandolfi

ANDROMeDa Project, 11.02.25

Single-wall nanotube

Graphene

Growing Aligned Carbon Nanotubes in TITAN Lab

State-of-the-art nanotube facility in Rome Sapienza *

Thanks to ATTRACT funding

• Up to 400 µm in length, on different substrates

Aligned Nanotubes: a Highly Anisotropic Target

Francesco Pandolfi

ANDROMeDa Project, 11.02.25

Raman analysis after Ar+ bombardment

- Lateral penetration < 15 μm
- Longitudinal damage along full length (180 µm)
- Highly anisotropic density

Directional sensitivity by design

e-

DM

Nanotube Detector Concept: the 'Dark-PMT'

- 'Dark-photocathode' of aligned **nanotubes** *
 - Ejected e⁻ accelerated by electric field
 - Detected by solid state e⁻ counter

Francesco Pandolfi

ANDROMeDa Project, 11.02.25

Dark-PMT features:

- Portable, cheap, and easy to produce \bullet
- Unaffected by thermal noise ($\Phi_e = 4.7 \text{ eV}$)
- **Directional sensitivity** \bullet

Two Arrays of Dark-PMTs to Search for Dark Matter

Francesco Pandolfi

ANDROMeDa Project, 11.02.25

G. Cavoto, et al., PLB 776 (2018) 338

In principle sensitive to eV electrons!

Background Minimization Will Be Essential

Francesco Pandolfi

ANDROMeDa Project, 11.02.25

- Need < 1 BG event per year per Dark-PMT</p>
 - To extend current limits
 - With only 1g·yr !
- Projected Sensitivity (Exposure = 1 g·yr)
- **1 BG ev yr⁻¹ darkPMT⁻¹**
- 0.01 BG ev yr⁻¹ darkPMT⁻¹

R. Catena will give a seminar in Rome on 26/5

0 BG

(curves adapted from R.Catena, et al., arXiv:2303.15509)

The ANDROMeDa Project

Awarded PRIN2020 grant (1M€)

- 3-year project, started in May 2022
- 3 units: INFN (FP, P.I.)
 Sapienza (G. Cavoto)
 Roma Tre (A. Ruocco)

- Main objective: have a working dark-PMT protoype by end of project
 - Challenges on both sides of detector

Francesco Pandolfi

ADROMEDA

Aligned Nanotube Detector for Research On MeV Darkmatter

ANDROMeDa Project, 11.02.25

The ANDROMeDa Project

Awarded PRIN2020 grant (1M€)

- 3-year project, started in May 2022
- 3 units: INFN (FP, P.I.)
 Sapienza (G. Cavoto)
 Roma Tre (A. Ruocco)

- Main objective: have a working dark-PMT protoype by end of project
 - Challenges on both sides of detector

Francesco Pandolfi

Aligned Nanotube Detector for Research On MeV Darkmatter

Ideal nanotubes for DM target?

Best detector for keV electrons?

Requirements on Detecting keV Electrons

Francesco Pandolfi

ANDROMeDa Project, 11.02.25

- Electron energy = ΔVe (initial energy negligible)
 - ΔV ~ 5 keV
- DM signal: **single** electron with $E = \Delta Ve$
- Ionizing backgrounds: multiple electrons
- Electron detector requirements:
- High (>95%) efficiency
- Energy resolution: good enough to separate 1e⁻ vs 2e⁻ @ 5σ

APDs: Not Enough Resolution A. Apponi, et al., JINST 15 (2020) P11015

2023 Data Taking @ Milano Bicocca e-Gun (M. Biassoni)

Francesco Pandolfi

Chosen Technology: Silicon Drift Detectors

Francesco Pandolfi

IDROMeDa Project, 11.02.25

currently assembling in Milano... 21

Aiming for Ultimate Parallelism at the Nanoscale

ANDROMeDa Project, 11.02.25

Francesco Pandolfi

- Parallel at microscale, waviness at nanoscale
 - Can hinder electron transmission

- Two strategies to straighten nanotubes
 - Add electric field during growth
 - Optimize catalyst **seeds**

Plasma-Enhanced Growth Straightens Nanotubes

R. Yadav, et al., NIMA 1060 (2024) 169081

- September 2022: added RF to CVD chamber
 - 'Thermal' CVD: high temperature breaks C₂H₂
 - 'Plasma-Enhanced' CVD: RF electric field does the job
- Nanotubes grown with plasma: * significantly straighter
 - Straightness defined from image gradient (R. Yadav)

0.26	0.49	0.57	0.53	0.58	0.51	0.48
0.48	0.57	0.46	0.46	0.51	0.43	0.42
0.43	0.4	0.28	0.39	0.46	0.49	0.33
0.51	0.51	0.48	0.36	0.46	0.36	0.35
0.47	0.42	0.37	0.37	0.39	0.34	0.31
0.42	0.45	0.36	0.38	0.36	0.31	0.19

Straightness

		_					
0.28	0.22	0.27	0.51	0.5	0.36	0.28	0.5
0.63	0.58	0.59	0.67	0.54	0.71	0.64	0.76
0.75	0.71	0.77	0.74	0.77	0.77	0.76	0.79
0.76	0.75	0.74	0.76	0.73	0.8	0.78	0.7
0.69	0.75	0.73	0.69	0.61	0.79	0.79	0.7
	_						

Straightness

Results Confirmed by UV Photoemission

Shooting UV photons on nanotubes

Francesco Pandolfi

• $E_{\gamma} = 5 \text{ eV} > \phi_{cnt} = 4.7 \text{ eV}$

More electrons extracted from straighter tubes

New Evaporation Chamber (Finally) Operational

Evaporation

A nanolayer of iron deposited on substrate

Annealing at 720 °C

Nanoparticles are formed

CVD Synthesis

Nanoparticles function as catalyst seeds

Francesco Pandolfi

New evaporation chamber @ TITAN Lab

First successful evaporation on January 16th!

Francesco Pandolfi

cles for Nanotube Straightness

GREEAT Project Started in Roma Tre (P.I.: A. Apponi)

Francesco Pandolfi

Nanotubes as Cryogenic Electron Source

Phys. Rev. Applied 22 (2024) L041007

Field emission from nanotubes

- Quantum effect: **no heating** •
- Local E field amplified (tip effect)

Francesco Pandolfi

- Measured 100 eV e⁻ * with TES detector!
 - $\sigma_{e}(E) \sim 1 eV = \sigma_{v}(E)$

(SMART Lab, LOTUS...)

S. Tayyab, et al., Nanomaterials 14 (2024) 77

V. Ficca, et al., Adv. Func. Mat. 35 (2025) 2413308

Aligned Nanotube Detector for Research On MeV Darkmatter

Strong **in-department** synergies

Dragon Copper

Novel nanocomposite material Copper reinforced with nanotubes **International patent deposited**

Collaboration with Biologia antibacterial and antifungal properties of nanotubes

Nanomaterials 13 (2023) 1081

TECHNOLOGY INNOVATION THROUGH ADVANCED NANOSTRUCTURES

ISTITUTO NAZIONALE DI RICERCA METROLOGICA

Collaboration with Engineering nanotubes to reinforce basalt and quartz fibers

Comp. B 243 (2022) 110136 + submitted to Comp. Part B

Conclusions

ANDROMeDa: aiming to build light DM detector **Dark-PMT** *

- DM-electron recoil inside aligned carbon **nanotube** target
- Features: portable, no thermal noise, directional sensitivity
- Need nanotubes with unprecedented parallelism
- **TITAN** @ Segre: state-of-the-art nanostructure lab *
 - Synthesis of high-quality nanotubes
 - New evaporator chamber **operative**
 - Many synergies and collaborations

Francesco Pandolfi

31

ADVANCED NANOSTRUCTURES