

Andrea Vinante

CNR - Istituto di Fotonica e Nanotecnologie Trento & FBK & INFN-TIFPA

Fundamental physics with levitated micromagnets

INFN-LNF Workshop on The Low Energy Frontiera of Physics. Frascati 10-12/2/2025

Outline

- Levitated ferromagnets
 Motivations & Experimental setup
- Magnetometry Beyond the (quantum) energy resolution limit Search for ultralight dark matter in the mHz-kHz
- Ultrafast spinning
 Experimental results
 Prospects (two-mass experiments)
- Macroscopic quantum physics & quantum gravity

Basic scheme and motivations

- Hard (permanent) micromagnet
- Type I superconductor \Rightarrow Meissner effect
- Magnetic detection (SQUID)

ŀ

- Low Temperature T
- Vacuum
- Frequency tunabilility

Mechanical modes (translation & rotations) with very low dissipation = ultrahigh Q

- Low thermal force/torque noise (good for <u>sensing</u>)
- $S_F \propto \frac{T}{\tau} = \frac{\omega T}{Q}$
- Low environmental decoherence (good for <u>macroscopic quantum physics</u>/ delocalized states / quantum gravity...)

Why levitate ferromagnets?

Some advantages compared to nonmagnetic particles

- Easy to levitate and passive: compatible with low temperature
- High coupling to external magnetic fields
 Magnetometry
 Axion dark matter
- High coupling to superconducting circuits SQUID linear detection Flux-tunable resonators & qubits (delocalized quantum states)
- Unique features: gyroscopic effects
- Internal degrees of freedom as extraresources (magnons)

Experimental setup ($P=10^{-5} - 10^{0}$ mbar, T=4.2 K)

Nearly spherical shape

Mode identification

Modelling: image method (z and β)

PHYSICAL REVIEW APPLIED 13, 064027 (2020)

Editors' Suggestion

Ultralow Mechanical Damping with Meissner-Levitated Ferromagnetic Microparticles

A. Vinante⁽¹⁾,^{1,2,*} P. Falferi,² G. Gasbarri⁽¹⁾, ¹ A. Setter,¹ C. Timberlake⁽¹⁾, ¹ and H. Ulbricht^{1,†} ¹School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom ²Istituto di Fotonica e Nanotecnologie – CNR and Fondazione Bruno Kessler, I-38123 Povo, Trento, Italy

$$U = \frac{\mu_0 \mu^2}{64\pi z^3} \left(1 + \sin^2\beta\right) + mgz$$
$$z_0 = \left(\frac{3\mu_0 \mu^2}{64\pi mg}\right)^{\frac{1}{4}}$$
$$\beta_0 = 0,$$
$$\omega_z = \sqrt{\frac{4g}{z_0}}$$
$$\omega_\beta = \sqrt{\frac{5z_0g}{3R^2}}$$

Mechanical damping - Q factor

RINGDOWN

Measurement for librational β-mode and translational zmode

 τ > 3 hours

Damping vs Pressure

Epstein, Phys Rev. 23, 710 (1924)

SLOPE AGREES WITH MODEL WITHIN 10%

Magnetometry: librational regime

Magnetometry beyond the Energy Resolution Limit

 M_{V} Mitchell and A_{V} Alver A_{V}

ERL IS NOT A FUNDAMENTAL LIMIT ! CAN BE BEATEN by HIGHLY CORRELATED SPIN SYSTEMS

Torque Magnetometry in levitated magnet

Magnetic Field Torque

$$S_{\tau,\text{thermal}} = 4k_{\text{B}}TI\frac{\omega_{\alpha}}{Q_{\alpha}}$$

CALCULATED FOR OUR SETUP

$$S_{B,\text{thermal}} = \frac{S_{\tau,\text{thermal}}}{\mu^2} = \frac{12k_{\text{B}}T\rho f_{\alpha}}{5M^2rQ_{\alpha}} \ll S_{B,\text{ERL}}$$

Minimum detectable B in the experiment

- Apply a weak sinusoidal signal around resonance
- Synchronous detection of the output signal (lock-in)

Magnetic field noise: 20 fT/Hz^{1/2} Measured Energy resolution: E_R =(0.064±0.010) \hbar

Magnetometry well beyond the Energy Resolution Limit

F. Ahrens, W. Ji, D. Budker, C. Timberlake, H. Ulbricht, A. Vinante, arXiv 2401:03774

<u>Damping can be reduced by at least factor > 10² at lower pressure (measured!)</u>

Projected Energy Resolution $< 10^{-3} h$

C.F. Gauss, Intensitas vis magnetica et terrestris ad mensuram absolutam revocata, Göttingen,1833

Magnetometry: ferromagnetic gyroscope

Ferromagnetic spin-gyroscope

Derek Jackson Kimball et al, PRL 16, 190801 (2016)

For sufficiently small magnetic field a ferromagnetic needle behaves as an atomic spin magnetometer

 $\Omega = \gamma B$

Macroscopic Larmor precession! (spins transfer precessional motion to the lattice)

Predicted to beat quantum limits on magnetometry (by orders of mag) ! Naïve explanation: <u>atom-like dynamics it is a system of N highly correlated spins</u>

Hard to observe:

$$\gamma B = \Omega \ll \omega_I = \frac{S}{I} = \frac{N\hbar/2}{I}$$

 $\omega_I/2\pi \approx 200 \ \mu\text{Hz} \rightarrow B \approx 5 \ \text{fT}$ (R = 1 mm sphere FM) $\omega_I/2\pi \approx 2 \ \text{Hz} \rightarrow B \approx 0.5 \ \text{nT}$ (R = 10 μm sphere FM)

Classical gyroscope

Spinning top under effect of gravity torque

Gyroscopic (atomic-like)

 $S \gg L = I\Omega$

Librational (compass-like)

S < L

Condition to observe gyroscopic behaviour:

$$\Omega \ll \omega_I = \frac{S}{I}$$

Gyromagnetic effects under librational confinement

$$\begin{split} \dot{J} &= T \\ \dot{S} &= \Omega \times S \\ \ddot{\kappa} &= \Omega \times S \\ \ddot{\alpha} &+ \omega_{\alpha}^{2} \alpha + \omega_{I} \dot{\beta} &= 0 \\ \ddot{\beta} &+ \omega_{\beta}^{2} \beta - \omega_{I} \dot{\alpha} &= 0 \end{split}$$

Neglecting dissipation and γ motion:

Quasi- β mode

$$\beta = \beta_0 \sin(\omega_\beta t)$$

$$\alpha = \alpha_0 \cos(\omega_\beta t)$$

$$\alpha_0 = \beta_0 \frac{\omega_\beta \omega_I}{\omega_\beta^2 - \omega_\alpha^2}$$

Quasi- α mode

$$\alpha = \alpha_0 \sin(\omega_{\alpha} t)$$
$$\beta = \beta_0 \cos(\omega_{\alpha} t)$$

$$\beta_0 = \alpha_0 \frac{\omega_\alpha \omega_I}{\omega_\beta^2 - \omega_\alpha^2}$$

Elliptical motion on (α,β) plane

How to detect? Two-channel setup

Effect is small in our setup but in principle detectable

CHANNEL 1 (α)

Example of data (magnet radius ~24 µm)

quasi-β MODE excited

Crosscorrelation ch1 – ch 2

 $\delta = -0.038 \text{ rad} \neq 0$

SIGNATURE OF ELLIPTICAL MOTION

Preliminary results

radius <i>R</i> (µm)	$B_S = \mu_0 M (\mathrm{T})$	$\omega_I/2\pi$ (Hz)	g
31.2	0.75	0.33±0.04	1.13 ±0.14
23.6	0.85	0.624±0.018	1.18 ±0.05
18.9	0.72	0.89±0.06	1.10±0.08
18.9*	0.72	0.86±0.03	1.14±0.05

- Magnetic moment and size derived from resonance frequencies: $\omega_z, \omega_\beta \Rightarrow \mu, m (M, R)$
- If moment of inertia I is known (and isotropic), a measurement of ω_I is an absolute measurement of the intrinsic angular momentum

 $S = I\omega_I$

• If magnetic moment $\mu = MV$ is known, we can infer the gyromagnetic factor: $g = \frac{\mu/\mu_B}{S/\hbar}$ Magnetometry: applications to fundamental physics

Search for ultralight dark matter

Ultralight dark matter often appears as an effective magnetic field:

1) <u>Axion – electron spin</u>

Quasimonocromatic signal

$$B_{ae} \sim g_{ae} \cdot 4 \times 10^{-8} \text{ T.} \quad t_{\text{coh}} \sim c^2 / f_a v_{\text{DM}}^2$$

2) Dark Photon (close to inner wall of conductive box with size L)

$$B_{A'} \sim 7 \times 10^{-21} \text{ T}\left(\frac{\varepsilon}{10^{-8}}\right) \left(\frac{f_{A'}}{30 \text{ Hz}}\right) \left(\frac{L}{10 \text{ cm}}\right)$$

Concrete proposal

Two channel (pickup coil + SQUID) Two librational modes

PHYSICAL REVIEW D 110, 115029 (2024)

Ultralight dark matter detection with levitated ferromagnets

Saarik Kalia^(b),^{1,*} Dmitry Budker^(b),^{2,3,4} Derek F. Jackson Kimball^(b),⁵ Wei Ji^(b),^{2,3} Zhen Liu^(b),¹ Alexander O. Sushkov^(b),^{6,7,8} Chris Timberlake^(b),⁹ Hendrik Ulbricht^(b),⁹ Andrea Vinante^(b),^{10,11} and Tao Wang^(b)

Parameter	Existing	Future	Freefall
Ferromagnet radius R Ferromagnet magnetization M Ferromagnet density ρ	20 µm	2 mm $7 \times 10^5 \text{ A/m}$ 7400 kg/m^3	2 cm
Temperature <i>T</i> Dissipation rate γ Azimuthal trapping $V_{\phi\phi}$	4 K 10 ⁻² Hz 10 ⁻¹⁴ J	50 mK 2×10^{-6} Hz $10^{-3}V_{\theta\theta}$	300 K 10^{-10} Hz 7×10^{-9} J
Energy resolution $\kappa_{\theta} = \kappa_{\phi}$	1000ħ	ħ	ħ

Magnetic field resolution

Projected upper limits (integration time 1 yr, SNR=3)

Exotic spin-spin interactions / fifth force

Predicted by several "beyond standard model" proposals (e.g. axion-like particles)

$$\mathcal{V}_{pp}(\mathcal{R}) = \frac{(g_p^e)^2}{4\pi\hbar c} \frac{\hbar^3}{4m_e^2 c} \left[S_1 \cdot S_2 \left(\frac{m_b c}{\hbar \mathcal{R}^2} + \frac{1}{\mathcal{R}^3} + \frac{4\pi}{3} \delta^3(\mathcal{R}) \right) - \left(S_1 \cdot \hat{\mathcal{R}} \right) \left(S_2 \cdot \hat{\mathcal{R}} \right) \left(\frac{m_b^2 c^2}{\hbar^2 \mathcal{R}} + \frac{3m_b c}{\hbar \mathcal{R}^2} + \frac{3}{\mathcal{R}^3} \right) \right] e^{-m_b c \mathcal{R}/\hbar}$$

- Spin-spin pseudomagnetic interaction + Yukawa cutoff
- Not shielded by the superconductor layer (unlike the true magnetic one)

Predicted bounds for:

- Sensing magnetic sphere, radius 0.2 mm
- Actuator sphere, radius 20 mm
- Distance 24 mm

A. Vinante et al, PRL 127, 070801 (2021)

Testing GR dragging effects with a ferromagnet

TEST of GR (Lense-Thirring) using quantum spin angular momentum (Quantum + Gravity !)

PHYSICAL REVIEW D 103, 044056 (2021)

Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope

Pavel Fadeev⁰,^{1,*} Tao Wang⁰,² Y. B. Band⁰,³ Dmitry Budker⁰,^{1,4} Peter W. Graham⁰,⁵ Alexander O. Sushkov⁰,⁶ and Derek F. Jackson Kimball⁰,^{7,†}

Ferromagnetic gyroscope

Precession of local inertial frame
For electron spin, rotational motion is equivalent to a magnetic field

B=Ω/γ ~10⁻²⁵ T !!

Spinning a levitated ferromagnet

Measurement/feedback synchronous driving

- Net torque dependent on ϕ
- Limited by SQUID bandwidth (~ 10 MHz)
- Low heat dissipation (works well at cryogenic T !)

Ultrafast spinning of a levitated magnet

Maximum spinning limit: Material breaking

$$f_{max} \propto \frac{1}{R}$$

Spindown

Spindown

Consistent with gas collision damping (preliminary)

Rotational Q factor $\sim 10^{11}$

$$Q = \frac{Stored\ energy}{\omega * Power\ dissipation} \Big)$$

(spinning-top) precession

(spinning-top) precession

PRELIMINARY

Consistent with the stabilizing torque from superconductor image field (quasi-equivalent to gravity torque in spinning-top)

- Cryogenic pressure sensors, gyroscopes, gravimeters ...
- Magnetism and materials at ultrastrong stress!
 (@2 MHz acceleration at surface ~10⁹ g !)
- Sources/actuators for two-mass experiments
- Towards rotational quantum friction / photon emission from rotation ? MC Braidotti, A Vinante, G Gasbarri, D Faccio, H Ulbricht, PRL 14, 125 (2020)
- Towards detecting non-inertial quantum effects (rotational Unruh) ? K Lochan, H Ulbricht, A Vinante, SK Goyal, PRL 125, 241301 (2020)

Double trap for two-mass experiments

- Exotic spin-spin interactions beyond standard model (5th force)
- Gravity: needs a rotor with quadrupole moment (no sphere)

towards tests of macroscopic quantum mechanics?

Levitodynamics: Levitation and control of microscopic objects in vacuum

C. Gonzalez-Ballestero^{1,2}, M. Aspelmeyer^{3,4}, L. Novotny^{5,6}, R. Quidant^{6,7}, O. Romero-Isart^{1,2}*

Science 374, 6564 (2021)

Gravitationally induced entanglement

S. Bose et al, PRL 2017 Marletto, Vedral, PRL 2017

Positive result would imply gravity is quantum interaction

Cat states with a levitated magnet

Massive quantum superpositions using magneto-mechanics

Sarath Raman Nair,^{1,2,*} Shilu Tian,^{3,†} Gavin K. Brennen,^{1,2} Sougato Bose,⁴ and Jason Twamley^{3,‡}

High magnetic moment

Large magnetomechanical coupling

Looks great for creating large massive superpositions in short time

Problem: decoherence and noise

PROS (of magnets):

- at low T, blackbody & gas negligible (unlike optical lev)
- Large mass range

CONS:

- Losses in magnet and superconductor
- Coupling to spins/defects on surfaces
- Vibrational noise

Repeatibility: one needs to repeat N times the experiment (preparation, expansion and measurement) with same initial conditions!

First step: create a pure state (ground state cooling)

Already achieved in optical levitation! (Aspelmeyer et al, Novotny et al, Marin et al ...)

Yet to be achieved in magnetic levitation Frequency 1000 x lower (100s Hz instead of 100s kHz) Larger vibrational noise

In principle achievable with f = 0.5-1 kHz, T=0.1 K, Q=10⁷ quantum limited SQUID / microwave SQUID with large coupling

Towards a chip trap experiment

Advantages

- Higher coupling to SQUID
- Scalability
- Smaller size
- Coupling to microwave SQUID / JPA

Chip fabricated (R. Folman, BGU Israel), recently delivered

Noninterferometric testing collapse models

CSL parameter space

(plot from Matteo Carlesso)

- Merge unitary + collapse dynamics
- Decoherence + diffusion
- Just need measure classical noise

Simulated for:

<mark>2-sphere dumbbell</mark>, R=0.5 μm Librational mode

Thermal noise T=10 mK f=100 Hz Q= 10^{12}

Conclusion – Take home

Levitated ferromagnets are an interesting experimental platform Very good magnetometers + spinning magnets Ultralight dark matter (axions) Exotic spin-mediated interactions (fifth force) Gravity at small masses/short distance

Prospects towards macroscopic quantum physics (gravity and quantum ...)

Acknowledgments

Trento group Paolo Falferi Renato Mezzena Felix Ahrens (former postdoc) Andrea Marchese (postdoc)

Local Collaborators F. Mantegazzini

- N. Crescini
- I. Carusotto
- G. Rastelli

Ext Collaborators

- H. Ulbricht et al T. Oosterkamp et al
- D. Budker et al
- R. Folman et al
- T. Wang et al
- G.Carugno et al
- C. Gatti et al

