Probing the electron's EDM using cold and slow molecules

Steven Hoekstra, University of Groningen and Nikhef, The Netherlands

The electric dipole moment of the electron Probing (or eliminating) new physics

eEDM violates P, T and CP symmetry (provided CPT holds)

The electric dipole moment of the electron Probing (or eliminating) new physics

(provided CPT holds)

The electric dipole moment of the electron Probing (or eliminating) new physics

(provided CPT holds)

Crucial role of theory

Experiments such as neutrinoless double beta decay, EDMs, Dark Matter searches involve particle, hadronic, nuclear, molecular physics

Collaboration between nuclear, AMO, condensed matter theorists and experimentalists

How to measure a dipole moment?

precession!

However, electron also has magnetic dipole moment (and charge!)

How to measure a dipole moment?

precession!

However, electron also has magnetic dipole moment (and charge!)

Solution: use electron embedded in a polar molecule!

> Enhances E Shields B

How to measure a dipole moment?

B

However, electron also has magnetic dipole moment (and charge!)

precession!

General recipe: look for correlation with E-field reversal

Solution: use electron embedded in a polar molecule!

> **Enhances E** Shields B

eEDM experiments using molecules

ACME - beam of ThO molecules John Doyle, David DeMille, Gerald Gabrielse

Others are being set up:

Slow and cold BaF The Netherlands since 2018 (NL-eEDM)

Imperial College London - beam of YbF molecules Mike Tarbutt, Ben Sauer, Ed Hinds

JILA - trapped HfF+ ions Eric Cornell, Jun Ye

- York University
- Michigan State University
- University of Toronto

Electric Dipole Measurements using molecules within a matrix

Statistical sensitivity for eEDM ħ statistical error total # state sensitivity detected particles molecular sensitivity coherent interaction time (effective E-field) of spin precession Choice of molecule Experimental approach

In addition to this, control of systematic effects is crucial!

Coherent interaction time Key technique: Ramsey spin interferometer

laser pulse 1:

laser pulse 2:

Creates a quantum superposition, creating coherent excitation of all molecules

Measures state of the molecules through interference

fast beam

 $\tau \sim 1-2 \text{ ms}$ L ~ 0.5 m

 $\tau \sim 1-2 \, \text{ms}$ L ~ 0.5 m

v ~ 250-500 m/s

slow beam

- *τ* ~ 15 ms
- L ~ 0.5 m
- v ~ 30 m/s

 $\tau \sim 1-2 \text{ ms}$ L ~ 0.5 m

v ~ 250-500 m/s

slow beam

 $\tau \sim 15 \text{ ms}$

L ~ 0.5 m

v ~ 30 m/s

 $\tau \sim 100 \text{ ms}$ L ~ 0.5 m

trap

 $\tau \sim 1-10$ s L ~ 0.5 mm

molecules trapped in laser focus

slow vertical beam

 $\tau \sim 1-2 \text{ ms}$ L ~ 0.5 m

v ~ 250-500 m/s

Main challenge: how to maintain N while increasing au

Strongly connected to choice of molecule!

slow beam

 $\tau \sim 15 \text{ ms}$ L ~ 0.5 m

v ~ 30 m/s

fountain

 $\tau \sim 100 \text{ ms}$ L ~ 0.5 m

 $\backslash \circ \backslash$

trap

 $\tau \sim 1-10$ s L ~ 0.5 mm

molecules trapped in laser focus

slow vertical beam

Statistical sensitivity for eEDM ħ $2|\langle sz \rangle|vv$ statistical error

state sensitivity

molecular sensitivity (effective E-field)

Choice of molecule

total # detected particles

coherent interaction time of spin precession

Experimental approach

Community input to the European Strategy on particle physics: Searches for Permanent Electric Dipole Moments

edited by M. Athanasakis-Kaklamanakis, M. Au, R. Berger, S. Degenkolb, J. De Vries, S. Hoekstra, A. Keshavarzi, D. Ries, P. Schmidt-Wellenburg, and M. Tarbutt,

Method	$ E_{\text{eff}} $	T	N	Status	90% CL	Ref
	(GV/cm)	(ms)	(approx.)		$(10^{-29} \ e \ cm)$	
Beam	14.5	0.64	10^{11}	Complete	105	[60]
\mathbf{Beam}	78	1.1	4×10^{10}	Complete	9.4	61
Beam	78	1.1	10^{13}	Complete	1.1	4
Ion trap	23	700	$3 imes 10^6$	Complete	13	62
Ion trap	23	3000	10^{8}	Complete	0.41	5
Beam	78	5	$8 imes 10^{14}$	Commissioning		63
Ion trap	36	20000	10^{7}	Commissioning		64
$\mu { m K}~{ m beam}$	18	20	10^{13}	Commissioning		65
Lattice	18	3000	10^{10}	Construction		65
Slow beam	5	15	10^{13}	Commissioning		66
Lattice	5	1000	10^{10}	Construction		67
Lattice	2.2	1000	10^{10}	Construction		68
Matrix	6	100	10^{20}	Construction		69
Matrix	6	100	10^{20}	Construction		70

The NL-eEDM team

Particle physics theory

Quantum chemistry

Jordy de Vries Heleen Mulder **Rob Timmermans**

Anastasia Borschevsky

Lukas Pastecka Agustin Aucar Yuly Chamorro **Eiffion Prinsen**

Steven Hoekstra Lorenz Willmann Rick Bethlem Steve Jones Wim Ubachs **Roman Bause** Lucas van Sloten Jelmer Levenga

Experiments

Joost van Hofslot Maarten Mooij Ginny Marshall Anno Touwen Bart Schellenberg **Ties Fikkers** Nithesh Balasubramanian

phased approach

Key ingredients

Key ingredients of our approach

Phase 1: Fast beam

Supersonic beam (600 m/s) Controlled field environment Explore molecular structure Spin interferometer measurement

Understand systematics

Interference data using fast molecular beam to demonstrate control over systematic effects

Experiment and theory Optical Bloch equations

Current status Phase 1: Fast beam

- Construction completed
 - source, lasers, magnetic shielding, DAQ, interference fringes
- Routinely taking data and recently moved to new lab....
- Analysing for eEDM limit (expect at ~YbF level)

Key ingredients of our approach

Increase statistics

Phase 2: Slow beam

Cryogenic beam (150 m/s) Hexapole focussing Transverse laser cooling

Cryogenic beam

- Evaporating metal target
- Neon carrier gas + SF₆
- Velocity 150-200 m/s

Goal: Make the most intense source of slow molecules

1 in Groningen (SrF, BaF, production) 1 in A'dam (BaF, optimisation) 1 in Groningen (polyatomic molecules)

Maarten Mooij, Rick Bethlem @ VU Amsterdam

Optimising the molecular beam source Mooij et al, NJP 26 053009 (2024) and J. Phys. B 58 015303 (2025)

Example: beam cell length

Figure 7. (a) Mean velocity as a function of time, (b) time-of-flight and (c) velocity distribution for three different cell lengths. The velocity in the tail of the molecular pulse is seen to decrease significantly, while the intensity is comparable.

Beam divergence Hexapole and laser cooling

Beam divergence Hexapole and laser cooling

BaF in electric fields Hexapole (static fields) can focus a beam of neutral molecules

BaF in electric fields Hexapole (static fields) can focus a beam of neutral molecules

BaF in electric fields Hexapole (static fields) can focus a beam of neutral molecules

Hexapole focussing Anno Touwen et al, NJP **26** 073054 (2024)

A few words on laser cooling 'molecule X can be lasercooled'

FIG. 5: The most important energy levels for laser-cooling and the calculated relative decay fractions for CaF, SrF, and BaF.

Transitions for laser cooling In the presence of hyperfine structure

2D laser cooling large capture velocity in combination with hexapole

promising results ongoing work

x-cooling

Current status Phase 2: 150 m/s beam

- Cryogenic beams optimised, ~10¹¹ molecules/sr/shot in eEDM state
- Hexapole implemented, gain factor ~5
- Laser cooling setup completed
- Currently optimising 2D transverse cooling
- Combine with interaction zone this year

Even slower: use Stark shift to decelerate

Η

$\neq 75 \text{ GHz} = \text{OH } @ 60 \text{ m/s}$

 10×10^{6}

Even slower: use Stark shift to decelerate

Deceleration, trapping, collision studies, lifetime measurements Demonstrated for light molecules: OH, CO, NH₃, NH Science 313 5793 (2006), PRL 98 133001 (2007), PRL 110 133003 (2013)

75 GHz = OH @ 60 m/s

Even slower: use Stark shift to decelerate

Deceleration, trapping, collision studies, lifetime measurements Demonstrated for light molecules: OH, CO, NH₃, NH Science 313 5793 (2006), PRL 98 133001 (2007), PRL 110 133003 (2013)

Challenge: extend this technique to heavier species

Traveling-wave decelerator: decelerate or completely stop molecules

Traveling-wave decelerator: decelerate or completely stop molecules

Traveling-wave decelerator: decelerate or completely stop molecules

Main aims:

- Capture as many molecules as possible from molecular beam

Molecular beam source

Fluorescence detection

Molecular beam source

Fluorescence detection

Modular traveling-wave decelerator

A slow beam of molecules SrF: First combination of deceleration and cryogenic source Aggarwal at al, PRL **127** 173201 (2021)

Future directions

- Radioactive molecules
 - Hold great promise due to extra enhancements
 - How to get molecules into precision environment?
- Polyatomic systems
 - Complexity brings advantages
 - Can laser cooling still be done?
- Trapped samples
 - Even longer interaction times
 - What about the systematics?

Outlook: even longer interaction times Phase 3: Trapped molecules

Bause et al,

Prospects for measuring the electron's electric dipole moment with polyatomic molecules in an optical lattice,

arXiv:2411.00441 (2024)

Towards an eEDM measurement in an optical lattice

Summary

Spin interference demonstrated and understood

(part of) the team

universityof groningen van swinderen institute for particle physics and gravity

