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using cold and slow molecules
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Experiments such as neutrinoless double beta decay, EDMs, Dark Matter searches 
involve particle, hadronic, nuclear, molecular physics

Collaboration between nuclear, AMO, condensed matter theorists and experimentalists

Crucial role of theory
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General recipe: look for correlation with E-field reversal



eEDM experiments using molecules

ACME - beam of ThO molecules 
John Doyle, David DeMille, 

Gerald Gabrielse

Imperial College London - beam of 
YbF molecules 

Mike Tarbutt, Ben Sauer, Ed Hinds

JILA - trapped HfF+ ions 
Eric Cornell, Jun Ye 

Others are being set up:

Slow and cold BaF  
The Netherlands  
since 2018  
(NL-eEDM)

Ba

F
e-

Electric Dipole Measurements using molecules within a matrix



Choice of molecule Experimental approach

Statistical sensitivity for eEDM

statistical error

state sensitivity

molecular sensitivity

(effective E-field)

total # 

detected particles

coherent interaction time

of spin precession

In addition to this, 
control of systematic 

effects is crucial!



Creates a quantum superposition,

creating coherent excitation of all 

molecules

laser pulse 1:

Frequency set by external reference,

tuned to molecular resonance

Laser

Resonance in 
molecules

Measures state of the molecules 
through interference

laser pulse 2:

Time T

Coherent interaction time
Key technique: Ramsey spin interferometer

T

Ramsey π/2 pulses
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Main challenge:  
how to maintain N while increasing  

Strongly connected to choice of molecule!

τ

Towards longer coherent interaction times
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slow beam

τ =10-30 ms
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beam source
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Cryogenic beam
Laser cooling



Key ingredients



Key ingredients of our approach



Phase 1: Fast beam
Supersonic beam (600 m/s) 
Controlled field environment 
Explore molecular structure 
Spin interferometer measurement 

16

Understand systematics



Interference data using fast molecular beam
to demonstrate control over systematic effects

Create molecular beam Quantum interference Readout by fluorescence Compare to theory that includes the 
full interaction of the molecule with 
light, electric and magnetic fields


(optical Bloch equations)

Beautiful quantum interference!


Contains all relevant experimental parameters

Crucial for reduction of systematic effects


(A.Boeschoten et al, NL-eEDM collaboration,  
PRA 110 L010801 (2024)

NL-eEDM

Molecular beam 
20 Hz

Pulsed laserlight



Experiment and theory
Optical Bloch equations



Current status
Phase 1: Fast beam

• Construction completed 


• source, lasers, magnetic shielding, DAQ, interference fringes


• Routinely taking data - and recently moved to new lab….


• Analysing for eEDM limit (expect at ~YbF level)



Key ingredients of our approach



Phase 2: Slow beam
Cryogenic beam (150 m/s) 

Hexapole focussing 
Transverse laser cooling

21

Increase statistics



Cryogenic beam 
- Evaporating metal target

- Neon carrier gas + SF6

- Velocity 150-200 m/s


Maarten Mooij, Rick Bethlem @ VU Amsterdam

Goal: 

Make the most intense source of 

slow molecules

1 in Groningen (SrF, BaF, production)

1 in A’dam (BaF, optimisation)

1 in Groningen (polyatomic molecules)



Optimising the molecular beam source
Mooij et al, NJP 26 053009 (2024) and J. Phys. B 58 015303 (2025) 



Example: beam cell length



Beam divergence
Hexapole and laser cooling



Beam divergence
Hexapole and laser cooling



BaF in electric fields
Hexapole (static fields) can focus a beam of neutral molecules
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BaF in electric fields
Hexapole (static fields) can focus a beam of neutral molecules



Hexapole focussing
Anno Touwen et al, NJP 26 073054 (2024)

simulation experiment



A few words on laser cooling
‘molecule X can be lasercooled’

J. Chem. Phys. 151, 034302 (2019)



Transitions for laser cooling
In the presence of hyperfine structure

0,08%



x-cooling

y-cooling
2D laser cooling 
large capture velocity in combination 
with hexapole

promising results

ongoing work



Current status
Phase 2: 150 m/s beam

• Cryogenic beams optimised, ~1011 molecules/sr/shot in eEDM state


• Hexapole implemented, gain factor ~5


• Laser cooling setup completed


• Currently optimising 2D transverse cooling


• Combine with interaction zone this year
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Challenge: extend this technique to heavier species



Traveling-wave decelerator: decelerate or completely stop molecules



b)

Traveling-wave decelerator: decelerate or completely stop molecules



b)

Main aims: 

- Capture as many molecules as possible from molecular beam 
- Maintain N during deceleration

Traveling-wave decelerator: decelerate or completely stop molecules



Traveling-wave decelerator



Molecular beam source Decelerator 
4.5 m

Fluorescence detection

Traveling-wave decelerator



Molecular beam source Decelerator 
4.5 m

Fluorescence detection

Traveling-wave decelerator

Challenges for heavy diatomic molecules: 

- Heavy -> long decelerator 
- Rotational structure -> limited Stark shift



Modular traveling-wave 
decelerator



Traveling-wave decelerator



A slow beam of molecules
SrF: First combination of deceleration and cryogenic source

Aggarwal at al, PRL 127 173201 (2021)
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Future directions
• Radioactive molecules


• Hold great promise due to extra enhancements


• How to get molecules into precision environment? 

• Polyatomic systems


• Complexity brings advantages


• Can laser cooling still be done? 

• Trapped samples


• Even longer interaction times


• What about the systematics?



Phase 3: Trapped molecules
Outlook: even longer interaction times

Bause et al,


Prospects for measuring the electron's electric 
dipole moment with polyatomic molecules in 
an optical lattice,


arXiv:2411.00441 (2024)



Towards an eEDM 
measurement

in an optical lattice

First BaOH molecules produced!



Summary

Spin interference demonstrated 

and understood Intense and bright slow beam Deceleration demonstrated
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