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QUANTUM THEORY

Entanglement, superposition…

GENERAL RELATIVITY

Spacetime is the stage Spacetime is the actor

Image credits: Perimeter Institute

Relation between gravity and matter

Matter tells spacetime how to curve; 
spacetime tells matter how to move.

All experiments are compatible with these theories.
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WEAK-FIELD GRAVITY 
QUANTUM PARTICLES

This talk!

• Same conceptual questions as in QG 

• Concrete physical situations
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GRAVITY SOURCE: 90 mg
SUPERPOSED MASS: 10−5g

QUANTUM SUPERPOSITION: 0.5 m
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NONCLASSICAL SPACETIME FROM A QUANTUM SOURCE
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DO WE REQUIRE A QUANTUM DESCRIPTION OF GRAVITY?
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“… it seems to me that we are in trouble if we believe in 
quantum mechanics but do not quantize gravitational theory” 

R. Feynman, Chapel Hill Conference (1957)

“If you believe in quantum mechanics up to any level then you have to 
believe in gravitational quantization in order to describe this experiment.”

Test particle



SIDE REMARK: WHAT PROVES THAT ELECTROMAGNETISM IS QUANTUM?

6

1905: photoelectric effect (Einstein) 

1923: photoelectric effect does not require quantum (Millikan) 

1923: Compton effect 

1960s: semiclassical theory of  radiation (Jaynes)

CORRELATION 
OF INTENSITIES

g(2)(τ) = ⟨I(t)I(t + τ)⟩
⟨I(t)⟩2

τ = 0 g(2)(0) = ⟨I2(t)⟩
⟨I(t)⟩2 ≥ 1

For a single photon source

g(2)(0) = 0 ≱ 1
Signature of  nonclassicality

Flaminia Giacomini - ETH Zurich
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σ d
NEWTON INTERACTION

ĤI = ̂VN = − G
mAmB

| ̂xA − ̂xB |

Many people contributed! E.g. Anastopoulos, Aspelmeyer, Barker, Belenchia, Bengyat, Bhatar, Blencowe, Bose, 
Brukner, Carney, Castro-Ruiz, Chen, Christodoulou, Cooper, Di Biagio, Galley, Geraci, Hackermüller, Howl, Hu, 

Huggett, Iyer, Kent, Kim, Krisnanda, Lami, Linneman, Liu, Mahesh, Marletto, Marshman, Martín-Martínez, 
Mazumdar, Milburn, Morley, Müller, Mummery, Naik, Pal, Paterek, Paternostro, Pedernales, Perche, Pitalúa-García, 

Plenio, Qvarfort, Rovelli, Schneider, Schut, Selby, Serafini, Sillanpää, Tam, Taylor, Toros, Ulbricht, Vedral, Wald, Yant…
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QUESTION/OBJECTION: 
You only used the Newton potential 

to generate entanglement!
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QUANTIZED RADIATION 
VACUUM FLUCTUATIONS

TAKE-HOME MESSAGE

If  instead we want to keep a classical 
description of  gravity, we need to 

drastically modify our basic principles.

See also Danielson, 
Satishchandran, Wald PRD (2022)
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NEW RESULT: MORE GENERAL EFFECT THAN NEWTON POTENTIAL IN TABLE-TOP EXPERIMENTS

Chen, F.G., 2402.10288 (2024)
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Chen, Giacomini, Rovelli Quantum (2023)
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̂x → ĥij; ̂p → ̂πij
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METHODOLOGY - GRAVITY AS A (PERTURBATIVE) QUANTUM FIELD



15Flaminia Giacomini - ETH Zurich

Chen, F.G., 2402.10288 (2024)

linearized quantum gravity 
 gμν = ημν + hμν

hμν → ĥμν
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∂j ̂πij(x) |Ψ⟩G+S = 0 GAUGE

METHODOLOGY - GRAVITY AS A (PERTURBATIVE) QUANTUM FIELD

A B
G

GROUND STATE: coherent state 
displaced by the eigenvalue solution

h

π

h0
i

π0
i

- Localised source: Newton potential 
- Delocalised source: general function
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Constraint changes the gravitational energy

Ĉ = ∂i∂iĥT(x) + ̂TA
00(x) + ̂TB

00(x)

Δϕ = − G
c4ℏ ∫ d3xd3y

EA( ⃗x)EB( ⃗y)
| ⃗x − ⃗y |

Entangling phase:

depend on the 
matter distribution

THE QUANTUM STATE OF GRAVITY OF A GENERAL QUANTUM SOURCE
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1. Newton potential 

2. Schrödinger-Newton equation 

3. Classical-quantum coupling (Semiclassical gravity)
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[ĤG , ĤI] |Ψ⟩SGP ≠ 0

t

t0
x

S
P

Δϕ ∼ Gt
c4ℏ t2[α f1(Tij

P)+α2 f2(Tij
P)]

Correction terms to relative phase
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gravity is a quantum field
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cannot be explained with GR + QT as separate theories.

We can do better!

Do not depend on graviton emission.

Crucial to plan a new generation of  experiments testing 

quantum aspects of  gravity in the broad sense.

OPEN QUESTIONS: concrete implementation and estimates
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Then the quantum state of  the Coulomb/Newton field is the ground state   

of  the Hamiltonian with the charge/mass in the quantum state 

|h0
i ⟩G

|Φi⟩

|Ψ⟩G+M = ∑
i

αi |Φi, h0
i ⟩MG

WHAT IS THE QUANTUM STATE OF GRAVITY ASSOCIATED TO A QUANTUM SOURCE?

Chen, Giacomini, Rovelli Quantum (2023)
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THE QUANTUM STATE OF GRAVITY OF A GENERAL QUANTUM SOURCE

|ψ⟩ = ∫ dμ(α) ψ(α) |α⟩

⋯

The first naive attempt…

⟨Δx⟩α ≪ Exp . resol .
⟨Δp⟩α ≪ Exp . resol .

…still the Newton potential!

⟨αx, hα |αx+ϵ, hα⟩ = 0

The shift by the classical solution makes 
the states perfectly distinguishable

ϵ

⟨αx |αx+ϵ⟩ ≠ 0

̂T00(x) |E⟩ = E( ⃗x) |E⟩ E( ⃗x) ≠ mc2δ( ⃗x − ⃗xi)

|ψ⟩ = ∫ dμ(E) ψ(E) |E⟩

⟨ψ, hψ |ϕ, hϕ⟩ = ⟨ψ |ϕ⟩


