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QUANTUM THEORY GENERAL RELATIVITY

Entanglement, superposition... Relation between gravity and matter

Matter tells spacetime how to curve;
spacetime tells matter how to mouve.

Spacetime is the stage Spacetime is the actor

All experiments are compatible with these theories.
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WHERE SHALL WE LOOK FOR QUANTUM EFFECTS IN GRAVITY?

QUANTUM GRAVITY

£p~ 107" m

HIGH ENERGIES:
STRONG GRAVITATIONAL
AND QUANTUM EFFECTS

LOW ENERGIES:
WEAK-FIELD GRAVITY
QUANTUM PARTICLES

e Same conceptual questions as in QG

e Concrete physical situations
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NONCLASSICAL SPACETIME FROM A QUANTUM SOURCE

Article | Published: 10 March 2021 GRAVITY SOURCE: 90 meg
Measurement of gravitational coupling between

millimetre-sized masses

Tobias Westphal &, Hans Hepach, Jeremias Pfaff & Markus Aspelmeyer &

Nature 591, 225-228 (2021) | Cite this article
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published: 23 Decermber 200 QUANTUM SUPERPOSITION: 0.5 m
Quantum superposition at the half-metre scale

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan &
M. A. Kasevich

Nature 528, 530-533 (2015) | Cite this article




DO WE REQUIRE A QUANTUM DESCRIPTION OF GRAVITY?

“... 1t seems to me that we are in trouble if we believe in
quantum mechanics but do not quantize gravitational theory”

R. Feynman, Chapel Hill Conference (1957) The Role of Gravitation
in Physics

Report from the 1957 Chapel Hill Conference
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DO WE REQUIRE A QUANTUM DESCRIPTION OF GRAVITY?

“... 1t seems to me that we are in trouble if we believe in
quantum mechanics but do not quantize gravitational theory”

R. Feynman, Chapel Hill Conference (1957) The Role of Gravitation
in Physics
Report from the 1957 Chapel Hill Conference

COLlntcr l . Cécile M. DeWntt and Dean Rickles (ods.)

b fcrconncctions

Beam o / Ball @
e Y

( ounter / Test particle

“If you believe in quantum mechanics up to any level then you have to
believe in gravitational quantization in order to describe this experiment.”
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SIDE REMARK: WHAT PROVES THAT ELECTROMAGNETISM IS QUANTUM?

1905: photoelectr’ic effect (Einstein) PHYSICAL REVIEW D VOLUME 9, NUMBER 4 15 FEBRUARY 1974
. . o Experimental distinction between the quantum and classical field-theoretic
1923: photoelectric effect does not require quantum (Millikan) predictions for the photoelectric effect*
John F. Clauser
1 923: Compton effeCt Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 30 October 1973)

1960s: semiclassical theory of radiation (Jaynes)

Beam splitters
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GRAVITATIONALLY INDUCED ENTANGLEMENT
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. Bose et al. PRL (2017)
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GRAVITATIONALLY INDUCED ENTANGLEMENT

Bose et al. PRL (2017)
Marletto, Vedral PRL (2017)

I ’/ Y 'r ENTANGLED STATE ~ ) €“i|x),|x + d)p

ANEWTON INTERACTION [l Nonclassical S
: : : ; A"""B

channel V -G

]—-————-l d (LOCC theorem) | X4 — Xp]

0"@/.’

‘,’/ PRODUCT STATE  ~ (|x)4 + [x2)4) ® (|x; + d)g + [ x; + d)p)

X

Many people contributed! E.g. Anastopoulos, Aspelmeyer, Barker, Belenchia, Bengyat, Bhatar, Blencowe, Bose,
Brukner, Carney, Castro-Ruiz, Chen, Christodoulou, Cooper, Di Biagio, Galley, Geraci, Hackermiiller, Howl, Hu,
Huggett, Iyer, Kent, Kim, Krisnanda, Lami, Linneman, Liu, Mahesh, Marletto, Marshman, Martin-Martinez,
Mazumdar, Milburn, Morley, Miiller, Mummery, Naik, Pal, Paterek, Paternostro, Pedernales, Perche, Pitaliia-Garcia,
Plenio, Quarfort, Rovelli, Schneider, Schut, Selby, Serafini, Sillanpaa, Tam, Taylor, Toros, Ulbricht, Vedral, Wald, Yant...

LOCC: Bennett et al. PRA (1995)

Flaminia Giacomini - ETH Zurich 7



GRAVITATIONALLY INDUCED ENTANGLEMENT

. Bose et al. PRL (2017)
Marletto, Vedral PRL (2017)

Nonclassical
channel

(LOCC theorem)




GRAVITATIONALLY INDUCED ENTANGLEMENT

Bose et al. PRL (2017) ENTANGLEMENT RATE
Marletto, Vedral PRL (2017)

Nonclassical
channel

(LOCC theorem)




GRAVITATIONALLY INDUCED ENTANGLEMENT

Bose et al. PRL (2017) ENTANGLEMENT RATE
Marletto, Vedral PRL (2017)

Nonclassical
channel

(LOCC theorem)




GRAVITATIONALLY INDUCED ENTANGLEMENT

‘ Bose et al. PRL (2017) ENTANGLEMENT RATE
Marletto, Vedral PRL (2017)

Nonclassical
; ; , 5 channel ~ 10-3
— d (LOCC theorem) =~ J
Y ; | d ~ 100 um
’,ﬂ A’/ © /‘7' A’/ PRODUCT STATE 6~ 1 nm
=11 ~0.1s
QUESTION/OBJECTION:

You only used the Newton potential
to generate entanglement!

Flaminia Giacomini - ETH Zurich



NEWTON POTENTIAL AS QUANTUM INFORMATION CARRIER
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and Mari, De Palma, Giovannetti (2016) 2019 First prize Essay of the Gravity Research Foundation
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NEWTON POTENTIAL AS QUANTUM INFORMATION CARRIER

Belenchia, Wald, Giacomini, Castro-Ruiz, Brukner, Aspelmeyer, PRD (2018)
2019 First prize Essay of the Gravity Research Foundation

QUANTIZED RADIATION:

limits observation of
Quantum properties of the gravitational field l- interference

TAKE-HOME MESSAGE

VACUUM FLUCTUATIONS:

limits “which-path information”
(i.e. measure of entanglement)

QUANTIZED RADIATION
VACUUM FLUCTUATIONS

are essential to obtain a consistent
description of the experiment

ARGUMENT:
Newtonian potential has a
quantum information content

NEWTON INTERACTION

If instead we want to keep a classical
description of gravity, we need to
drastically modify our basic principles.

See also Danielson,
Satishchandran, Wald PRD (2022)
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1. Classical GR + QM does not generate entanglement

THEORY-INDEPENDENT NO-GO THEOREM
GENERAL + QUANTUM Galley, F.G., Selby Quantum (2022) /
RELATIVITY

MECHANICS

2. Newton interaction + no faster-than-light principle J

—> vacuum fluctuations and gravitational radiation
In a quantum state

Belenchia, Wald, F.G., Castro-Ruiz, Brukner, Aspelmeyer, PRD (2018)

EXPERIMENT

NEWTON
POTENTIAL

QUANTUM Newton potential is compatible with the
MECHANICS weak-field, non relativistic limit of GR

NEW RESULT: MORE GENERAL EFFECT THAN NEWTON POTENTIAL IN TABLE-TOP EXPERIMENTS

Chen, F.G., 2402.10288 (2024) J
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THE INTUITIVE IDEA: GENERAL QUANTUM STATES OF THE SOURCE

SUPERPOSITION OF LOCALISED GAUSSIANS GENERAL QUANTUM STATE

P

X

Delocalisation can be
measured

x
I 2

Not a classical source!

Arbitrary localisation
inxand p

Effectively a classical source

Flaminia Giacomini - ETH Zurich

13



METHODOLOGY: ANALOGY WITH THE HARMONIC OSCILLATOR

Chen, Giacomini, Rovelli Quantum (2023)
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Particular solution of classical EoM
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Chen, Giacomini, Rovelli Quantum (2023)

—>
- F ; NO FORCE

QUANTUM HARMONIC CONSTANT EXTERNAL FORCE
OSCILLATOR GROUND STATE:

coherent state

A7) 2

H = E | X% — myx
2m 2
Particular solution of classical EoM
x — L
YT )2
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: . . WITH FORCE
Particular solution of classical EoM
Y = e GROUND STATE: coherent state
Y 2 displaced due to the classical force

Change of coordinates X' = X — X,
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METHODOLOGY - GRAVITY AS A (PERTURBATIVE) QUANTUM FIELD

Chen, F.G., 2402.10288 (2024)

ﬁG(ilija 7%,-]-) | ‘P>G+S = Ey(x) | ‘P)G ¢ Free gravity Hamiltonian

(ground state)

linearized quantum gravity
8w = My + My

. h —h
Scalar constraint: Gauss law 2% 227

[0,0°hT(x) + Tyo()] | ¥) s = O

Vector constraint:
transversality condition

GROUND STATE: coherent state
displaced by the eigenvalue solution

- Localised source: Newton potential
- Delocalised source: general function
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THE QUANTUM STATE OF GRAVITY OF A GENERAL QUANTUM SOURCE

Chen, Giacomini, 2402.10288 (2024)

A

i A 1 - >\ rAr - - -
5 oo == |, T + T

... zero in the temporal gauge (W% = 0)!

Constraint changes the gravitational energy

C = 0,0'hT(x) + Th\(x) + T (x)




THE QUANTUM STATE OF GRAVITY OF A GENERAL QUANTUM SOURCE

Interaction S N N S
Hamiltonian Hy = N Jd Xhy, OLT,"(X) + T (X)]

... zero in the temporal gauge (W% = 0)!

Constraint changes the gravitational energy

C = 90,0'hT(x) + T4, (x) + T5.(x)

Entangling phase:
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THE QUANTUM STATE OF GRAVITY OF A GENERAL QUANTUM SOURCE

Chen, Giacomini, 2402.10288 (2024)

Interaction S N N S
Hamiltonian Hy = 9 Jd Xhy, OLT,"(X) + T (X)]

... zero in the temporal gauge (W% = 0)!

Constraint changes the gravitational energy

C = 90,0'hT(x) + T4, (x) + T5.(x)

Entangling phase:

> > depend on the
Ap=—2 IdBdeyw matter distribution
cth X =5
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COMPARISON TO CLASSICAL GRAVITY

Chen, Giacomini, 2402.10288 (2024)
Ag =

- G J d3x a’3y EAGC))EB@)
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COMPARISON TO CLASSICAL GRAVITY

Chen, Giacomini, 2402.10288 (2024)

A ¢ _ G J' d3x d3 EA(J_C))EB@)

T y - -
c*h | X =]
LIMITTO THE NEWTON POTENTIAL

Quantum state: coherent Classical mass density
semiclassical state

ly) = |a(x;, p;)) E“(X) = chzé()_c’ — X;)

G mum
Ap=—————
no|xy— x|




COMPARISON TO CLASSICAL GRAVITY

Chen, Giacomini, 2402.10288 (2024)

G E,(X)ER(y
c*h X =]

LIMIT TO THE NEWTON POTENTIAL

Quantum state: coherent Classical mass density
semiclassical state

ly) = |a(x;, p;)) E“(X) = mzczé()_é — X;)

G mum
Ap=—————
no|xy— x|

CANNOT BE REPRODUCED WITH:

1. Newton potential
2. Schrodinger-Newton equation
3. Classical-quantum coupling (Semiclassical gravity)




QUANTUM COMMUTATOR OF THE GRAVITATIONAL FIELD

Chen, Giacomini, 2402.10288 (2024)

Sﬂ“" ~~~~~ Total Hamiltonian
';' Hmt=HS+HP+HG+HI




QUANTUM COMMUTATOR OF THE GRAVITATIONAL FIELD

Chen, Giacomini, 2402.10288 (2024)

S ﬂ”" ~~~~~ Total Hamiltonian
. ';' Ht0t=HS+HP+HG+HI
ﬂ”" Commutator of gravity operators
{ : T 2N Akl/=r e kol — -/
0 ' [hl-j(x), a7 (x)] = lhaé(iéj)é(x — X')




QUANTUM COMMUTATOR OF THE GRAVITATIONAL FIELD

Chen, Giacomini, 2402.10288 (2024)

]\ ~~~~~ Total Hamiltonian

: E H,,, = Hg+ Hp+ Hg+ H
/\ Commutator of gravity operators

o " [1X), #()] = ihad6)6(x — X)

[ﬁG’ﬁI] ‘lP>SGP 7& 0
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QUANTUM COMMUTATOR OF THE GRAVITATIONAL FIELD

Chen, Giacomini, 2402.10288 (2024)

]\ ~~~~~ Total Hamiltonian

: E H,,, = Hg+ Hp+ Hg+ H
/\ Commutator of gravity operators

o " [1X), #()] = ihad6)6(x — X)

[ﬁG’ﬁI] ‘lP>SGP 7& 0

Correction terms to relative phase

o fi(TH+a" f(T))

A Gt
cHh
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QUANTUM COMMUTATOR OF THE GRAVITATIONAL FIELD

Chen, Giacomini, 2402.10288 (2024)

Z.A
Total Hamiltonian
Htot:HS+HP+HG+HI
Commutator of gravity operators
f TN Akl kel o= -
0 [hl-j(x), a7 (x)] = lhaé( i(Sj)é(x — X')

[ﬁG’ﬁI] ‘lP>SGP 7& 0

Correction terms to relative phase
o fi(TD+a f(T))]
x 1 AE}%

A Gt
cth
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QUANTUM COMMUTATOR OF THE GRAVITATIONAL FIELD

Chen, Giacomini, 2402.10288 (2024)

Z.A
Total Hamiltonian
Htot:HS+HP+HG+HI
Commutator of gravity operators
f TN Akl kel o= -
0 [hl-j(x), a7 (x)] = lhaé( i(Sj)é(x — X')

[ﬁG’ﬁI] ‘lP>SGP 7& 0

Correction terms to relative phase

Gt 2 I 2 I
Ag ~ C4ht [afl(Tp)‘l'a f2(Tp)] Stronger indication that

gravity is a quantum field
x t* AE }2)
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Two effects beyond the Newton potential, but same order in the coupling,
when we consider a static quantum source of gravity in a delocalized state:
1. Dynamical phase cannot be reproduced with the Newton potential nor a known classical model of gravity;
2. Quantum commutator of gravitational field operators appears as a correction in the phase. This would be a

test of the role of gravity as a quantum mediator.
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SUMMARY

Gravitationally-induced entanglement via Newton potential

cannot be explained with GR + QT as separate theories.
We can do better!

Two effects beyond the Newton potential, but same order in the coupling,
when we consider a static quantum source of gravity in a delocalized state:
1. Dynamical phase cannot be reproduced with the Newton potential nor a known classical model of gravity;
2. Quantum commutator of gravitational field operators appears as a correction in the phase. This would be a

test of the role of gravity as a quantum mediator.

Do not depend on graviton emission.

Crucial to plan a new generation of experiments testing

quantum aspects of gravity in the broad sense.

OPEN QUESTIONS: concrete implementation and estimates
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WHAT IS THE QUANTUM STATE OF GRAVITY ASSOCIATED TO A QUANTUM SOURCE?

Chen, Giacomini, Rovelli Quantum (2023)

Then the quantum state of the Coulomb/Newton field is the ground state | hl.O)G
of the Hamiltonian with the charge/mass in the quantum state | ®.)

Electromagnetism Linearized Gravity
Temporal gauge Ag=0 hoy, =0 o 0
Canonical variables |{A;(Z), E;(Z")} {hi;(Z), 7*(z")} | lP>G+M - Z %1 P hi >MG
No. of constraints |1 4
Similar constraints |Gauss law in A basis Vector constraint in h basis
(without matter) ;5 Af(:&“) V[A] =0 0; 5}15(5) Wlhi;] =0

Similar constraints |Gauss law in E basis with charge|Scalar constraints

(with matter) V-E=Ap=p AT = —p

Vacuum state (Gaussian of transverse mode Gaussian of transverse
mode with zero trace

The d.o.f activated|Longitudinal mode Ay, Trace of transverse mode
with a static source hr
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THE QUANTUM STATE OF GRAVITY OF A GENERAL QUANTUM SOURCE

Chen, Giacomini, 2402.10288 (2024)

The first naive attempt...

<(l ‘ x+€> 7& O

<ax’ x+€’ a> T Ox

The shift by the classical solution makes
the states perfectly distinguishable

[y) = Jdﬂ(a) y(a)|a)

[ y) = [dﬂ(E) w(E) | E)

(Ax), < Exp.resol.
(Ap), < Exp.resol. TyoX)|E) = E®X)|E)  ERX) # mc?6(x — X,)

...still the Newton potential! (v, hl,/‘ b, h¢> = (| €b>/
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