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Preface: Installing Software
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Operating system: Linux or MacOS

Supported and tested operating systems:

* Linux (currently tested on Ubuntu, but others like Debian, Fedora etc. should work just fine)

Note on Windows — while it is not forbidden in the tutorial — it is neither tested nor fully supported, so it will be at your
own risk. If you have a windows machine, it is adviced to install Linux either as a second operating system or in a virtual
environment (e.g. through VirtualBox). Please contact me in advance if you have a Windows machine and never worked

with Linux before.




Software prerequisite: Miniconda is (almost) all you need! -

. ™ python
Install Miniconda: O

miniCONDA

* Follow the instructionsin: https://www.anaconda.com/docs/getting-started/miniconda/install#macos-
linux—-1nstallation

» Use Terminal installer (not graphical one): it allows to easily install/replace and experiment with Miniconda - everything will be placed
in your home directory instead of the system one, so you will avoid potential conflicts with already pre-installed python versions etc.

« For example, in linux (basically same in MacOs but using curl instead of wget):

“m__n

- You will have to agree license agreement etc ( press “q" to exit license agreement in the terminal ) ).

- When it prompts “Choose an initialization options:” choose YES. If you are worried, you can make a backup of your profile
initialization scripts (~/.bashrc or ~/.zshrc depending on the shell you use), but in principle all what conda does is adding
one paragraph to the setup script — you can easily remove if you want to delete conda

(or ~/.zshrc — depending on which shell you are using)


https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

Setup ML software: Tensorflow

Throughout the tutorial we will use both Tensorflow and Pytorch frameworks. We will install those in a two separate
“environments” of conda and you will be able to easily switch between the two. You will appreciate the convenience and
power of Conda — it allows you to install ML software (hopefully) quickly, (hopefully) gracefully, and without experiencing

library conflicts etc. (unless something goes really wrong - but we are here to help you in this case ...). In the first part of the
tutorial we will work with Tensorflow since (arguably) it is more simple/intuitive to use.

* |nstall Tensorflow

1. Add conda-forge channel to look for software:| conda config --add channels conda-forge
2. Create new environment that we will call “tf”: conda create -n tf tensorflow
3. Activate the “tf” environment: conda activate tf

Comment on activation (step 3): this has to be done in each new shell. If you want it to active the environment
automatically at the start of a new shell, you can add the above command to your ~/.bashrc [or ~/.zshrc]

Note on the tensorflow versions: sometimes one needs to experiment with versions, for example | have experienced

problems with latest tensorflow versions, so | downgraded to 2.16 on Ubuntu (2.15 on MacOS):
conda create —n tf tensorflow=2.16




Test Tensorflow #1 ...

* Activate the Tensorflow environment in conda (see previous page for mode details):
conda activate tf

» See if Tensorflow libs are there and working:

python

>>> 1mport tensorflow as ttf
>>> print (tf. version )
Z2.10.XX

### NOTE USE Tensorflow version 2.15 or higher!
### If nothing crashes so far — things seem to work so far..

### First import of tensorflow on some systems (e.g. MacOS) may take

### a while - be patient (it will cache and work faster afterwards)



Test Tensorflow #2...

 Let's run a mock-up model training:
python

>>> import tensorflow as tf
>>> import numpy as np

>>> x = np.random.rand (1000,10) # random sample of 1000 sets of numbers

>>> vy = np.random.rand (1000,) # random sample of 1000 set ‘labels'

>>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) # trivial nonsense model

>>> 1 = tf.keras.losses.SparseCategoricalCrossentropy (from logits=True) # we will learn about 1t later
>>> m.compile (loss=1, metrics=['accuracy']) # compile the model

>>> m.fit (x,y,epochs=5) # train the model

* You should see something like:

Epoch 1/5
32/32 [==============================]| - (s 206us/step - loss: 1.5475 - accuracy: 0.0000e+00
Epoch 2/5
32/32 [==============================]| - (s 158us/step - loss: 1.2575 - accuracy: 0.0000e+00
Epoch 3/5
32/32 [==============================]| - (s 136us/step - loss: 1.0151 - accuracy: 0.0000e+00
Epoch 4/5
32/32 [==============================] - (s 129%us/step - loss: 0.8074 - accuracy: 0.0000e+00
Epoch 5/5
32/32 [==============================]| - (s 144us/step - loss: 0.6322 - accuracy: 0.0000e+00



If things go wrong ...

» Encountered runtime error on Ubuntu (perhaps other Linux distributives )

libdevice not found at ./libdevice.l0.bc —th f ca) bl |
[[{{node StatefulPartitionedCall}}]] [Op: inference multi step on i1terator 579] (hese are rew typ/Ca prO ems

encountered myself ... Unfortunately there
N | might be more, but normally with the slight
» Encountered on MacOs (apple silicon): help of google, chatgpt, stackoverflow and

a little prayer — things will work ,-)

Assertion failed: (f == nullptr || dynamic cast<To>(f) != nullptr), function down cast, file
external/local tsl/tsl/platform/default/casts.h, line 58.

Possible solutions:
1. Re-install another tenosorflow version (you may have to experiment with a few different versions):

conda remove -n tf --all # delete existing tf environment from conda
conda create -n tf tensorflow=2.16 # install a specific tensorflow version (e.g. 2.16 ubuntu, or 2.15 for MacOs)

2. Mask out your GPU*:

export CUDA VISIBLE DEVICES=""

* If you you have an Nvidia GPU and the the solution 1 (re-installing different tensorflow versions) do not help, try forcing tensorflow NOT to
use the GPU (it is OK for the sake of this tutorial; in the future you may tweak your software setup to fully profit of your nice GPU hardware)



Choose your weapon (text editor)

* [tis perfectly fine to use your favorite python editor throughout the tutorial:

vim, emacs, nano, eclipse+pydev,

* |f you don't have one, for sake of simplicity and convenience — it is suggested to install jupyter:

# open a separate terminal window where you will run the editor
conda activate tf

conda 1install jupyter

» Create a directory for the code and run the editor there:

mkdir mycode

cd mycode
tab.

Jupyter notebook



Using jupyter as text editor

« Jupyter will run a python text editor in your browser, there you can create new (click right mouse button)

— Jupyter

File View Settings Help

B Files @ Running

Select items to perform actions on them. Y +New *Upload C

-/

Name Modified File Size

[*] Paste 8V
= New File

" New Notebook

New Folder



Using jupyter as text editor

e Let'scall ourfillemycode.py — double click on it and you will enter the editor

— Jupyter

File View Settings Help

@ Files @ Running

Open Download Rename Duplicate RYEVERGHIER) Y +New *®Upload C
./

Name v Modified File Size

2 I mycode.py now 0B



Using jupyter as text editor

o Etvoilal

: Jupyter mycode.py Last Checkpoint: 1 minute ago

File Edit View Settings Help

1 import tensorflow as tf
2 print (f]"Tensorflow version: {tf.__version__}")

 Keep a separate terminal window to run your code (essentially you have two terminal windows, in one of those
you run the editor — jupyter, in the other one — the code itself):

>>> python mycode.py
>>> Tensorflow version 2.16.1



Part I: Our first Neural Network
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Adapted from: https://www.tensorflow.org/tutorials/quickstart/beginner
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Our first dataset: MNIST

First we get some data that we want to train our NN ... Create a new file: first nn.py

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x train, y train), (X test, y test) = mnist.load data()

x train, x test = x train / 255.0, x test / 255.0

Let’s have a look inside the data...

python -1 first nn.py

>>> x trailn.shape

(60000, 28, 28) # - 60000 images of digits 28x28 pixel each
>>> y trailn.shape

(60000,) >>> # — 60000 labels corresponding to a number (from 0 to 9)

Reference: https://www.tensorflow.org/tutorials/quickstart/beginner




Our first dataset: MNIST

MNIST dataset (Modified National Institute of Standards and Technology database):

* A database of handwritten digits in the format of 28 x 28 pixel b/w images (pixel intensity
encoded in 1 byte, from 0 to 255)
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(a) MNIST sample belonging to the digit 7’. (b) 100 samples from the MNIST training set.

Our goal — develop a NN that can classify a hand-written image telling wether it correspondsto 0, 1, ... or 9

Reference: doi.org/10.3390/app9153169



https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology

Our first dataset: MNIST

 Let's get a habit of doing visualization/debugging of our data — we will need marplotlib library:

conda install matplotlib

» Add visualization codetoour first nn.py andrunit:

import matplotlib.pyplot as plt

plt.
plt.
plt.
plt.

imshow (data train[0], 1interpolation='none', cmap='gray')
show ()
imshow (data train[l], interpolation='none', cmap='gray')

show ()
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On the Neural Networks (NN) in Tensorflow & Keras...

Tensorflow is normally used with Keras wrapper API (comes as a part of tensorflow installation) which allows
to create and manipulate Neural Networks in intuitive way, composed of “layers” stacked one after another

tf.keras.layers.Dense(4,...)

— & AR

</
tf.keras.layers.Input(3,..) — "’e M \‘)(

Sev
A .Q“\.Q" tf.keras.layers.Dense (1,..)
LA o

INPUT
LAYER




Constructing our first model (NN) in Tensorflow

Add NN modeltoour first nn.py:

model = tf.keras.models.Sequential (]
tf.keras.layers.Flatten(input shape=(28, 28)), # First we convert input image into a flat array of numbers
tf.keras.layers.Dense(128, activation='relu'), # Next, we add a layer of 128 neurons
tf.keras.layers.Dropout(0.2), # Dropout randomly removes 20% neurons from the above layer
tf.keras.layers.Dense(10) # Final layer will correspond to 10 probabilities

1)

Input 1mage converted into a flat array

128 neurons (activation function Relu)

dropout - randomly removes 20% (0.2) of neurons from the above layer during training

10 outputs — will be converted into probabilities of an image representing 0,1,2,...,09



Let’s inspect our model (NN)

Remember neuron structure & parameters:

Bias

>>> python -1 first nn.py
>>> model.summary ()

Activation Output

Inputs

Model: "sequential"”

Caver (typ0) output Shape

flatten (Flatten) ( , 784) 0 .
dense (Dense) ( , 128) 100,480//~\\\\~//.
dropout (Dropout) ( , 128) 0

dense_1 (Dense) ( , 10) 1,290//~\\\\_//?

Total params: 101,770 (397.54 KB)
Trainable params: 101,770 (397.54 KB)
Non-trainable params: 0 (0.00 B)



Sigmoid / Logistic




Why do we need activation functions?

* Primary reason for activation functions is to introduce a non-linearity in the model, otherwise the output will be a

simple linear combination of inputs!
e Activations are also required in classification tasks in order to convert continue outputs into contained [0,1]

probabilities

ReLU (Rectified Linear Unit) Sigmoid Softmax

10 1 = RelU(x)

And there are more (leaky ReLU, tanh etc.)



Example of NN without activation function
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Example of NN without activation function

Epoch Learning rate Activation Regularization Regularization rate Problem type

000,725 0.03 v Linear None v 0

v Classification -

OUTPUT

Test loss 0.490
Training loss 0.461
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—~. adding non-linear function of inputs as additional inputs does not help ...



Activation function (RelLU) added

Epoch Learning rate Activation

001 ,647 0.03 v RelLU None

Regularization
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Regularization rate Problem type

0 v Classification v

OUTPUT

Test loss 0.085
Training loss 0.025
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Now getting back to our code...



What does our model do?

Try yourself:

python -i first nn.py
>>> predictions = model(x train[:1]) .numpy() # let’s process a first training image with our model
>>> print (predictions)

[[ 0.371285260 -0.10725151 0.18021962 0.10059367 0.20349179 0.00092683
-0.45577508 -0.23256837 0.02991931 -0.14916359]]

# ... these do not look like probabilities
# To interpret model output as probabilities we process the output with Softmax function:

Output Softmax

layer activation function Probabilities

1.3 0.02]

>.1 e 0.90

2.2 |—) | 0.05
K e

o j=1 0.01

il 0.02

>>> predictions = tf.nn.softmax (predictions) .numpy ()
>>> print (predictions)

[[0.11647741, 0.05115878, 0.09075072, 0.15573394, 0.10448843,
0.07079597, 0.05859897, 0.12428293, 0.145359067, 0.08235319]]

# ... now 1t looks 1like probabilities, but they are clearly wrong, because we need to train our model first!



Adding loss function and compiling the model

Addto first nn.py:

loss fn = tf.keras.losses.SparseCategoricalCrossentropy (from logits=True)
# Note that from logits=True informs the loss function that the model output 1s not reduced
# to probabilities [0 to 1], hence the loss will apply softmax function to the model output

# example of loss calculation
predictions = model (x train[:1]) .numpy () # comment me out later
print ('loss=',loss fn(y train[:1], predictions) .numpy()) # comment me out later

model.compile (optimizer='adam',
loss=loss fn,

metrics=['accuracy']) # accuracy = N correct guesses / N total



Note on the loss function

Categorial cross-entropy: Space Categorial cross-entropy:

C
Loss = — Zl Yi log(yz') Loss = — log(@c)

=
C' - number of classes (10 in our case) C — correct class index (from 0 to 9 in our case)
Yi —true label for class i (either 1 or 0) f]c — predicted label for class ¢

1; — predicted label for class i (in the 0 to 1 range)

Try yourself: Try yourself:

>>> from tensorflow import keras >>> from tensorflow import keras

>>> import numpy as np >>> import numpy as np

>>> y true = np.array([1l, 2]) >>> vy true = np.array([[0,1,0], [0,0,171)

>>> y pred = np.array([[0.05, 0.95, 0], [0.1, 0.8, 0.1]7) >>> y pred = np.array([[0.05, 0.95, 0], [0.1, 0.8, 0.1]1])
>>> scce = keras.losses.SparseCategoricalCrossentropy() >>> cce = keras.losses.CategoricalCrossentropy()

>>> print (scce(y true, y pred)) >>> print (cce(y true, y pred))

The two examples correspond to identical cases, the only difference is in the format of the true labels!



Training and testing the model

Add training partto the first nn.py andrunit:

history = model.fit(x train, y train, epochs=)5)

.. you will get something like:  =pocr 1/5

1875/1875 [==============================]| - 1s 339%us/step - loss: 0.3030 - accuracy: 0.9123
Epoch 2/5
1875/1875 [==============================]| - 1s 333us/step - loss: 0.1431 - accuracy: 0.9577
Epoch 3/5
1875/1875 [==============================] - 1s 464us/step - loss: 0.1061 - accuracy: 0.9679
Epoch 4/5
1875/1875 [==============================]| - 1s 327us/step - loss: 0.0880 - accuracy: 0.9728
Epoch 5/5
1875/1875 [==============================]| - 1s 338us/step - loss: 0.0750 - accuracy: 0.9768

Add testing part:

.. yOU WI|| get Something ||ke 313/313 - 0s - loss: 0.0760 - accuracy: 0.9762

That's it - we trained our first NN model!



import tensorflow as tf
#import matplotlib.pyplot as plt

# get the dataset
mnist = tf.keras.datasets.mnist

(x_train, y train), (x test, y test) = mnist.load data()
x train, x test = x train / 255.0, x test / 255.0

# example of input data

#plt.imshow(x train[0], interpolation='none', cmap='gray')

#plt.show ()

#plt.imshow(x train[l], interpolation='none', cmap='gray')

#plt.show ()

# create the model

model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten (input shape= (28, 28))
tf.keras.layers.Dense (128, activation='relu')
tf.keras.layers.Dropout (0.2),
tf.keras.layers.Dense (10)

1)
# example of how model process the intput data
#predictions = model (x train[:1]) .numpy ()

fprint (predictions)

# define the loss function

comment me
comment me
comment me
comment me

H o o

’

’

= =

out
out
out
out

loss fn = tf.keras.losses.SparseCategoricalCrossentropy (from logits=True)

# example of loss calculation
#predictions = model (x train[:1]) .numpy ()

#print ('loss=',loss fn(y train[:1], predictions) .numpy())

# compile the model

model.compile (optimizer="adam',
loss=loss fn,
metrics=['accuracy']) # accuracy

# train the model
history = model.fit(x train, y train, epochs=5)

# test the model
model.evaluate (x _test, y test, verbose=2)

# comment me out later
# comment me out later
# comment me out later

= N correct guesses / N total

later
later
later
later

First we convert 1nput 1mage 1nto a flat array of numbers
Next, we add a layer of 128 neurons

Dropout randomly removes 20% neurons from the above layer
Final layer will correspond to 10 probabilities

first nn.py



Recap (remove non-essential commented parts

import tensorflow as tf

# get the dataset

mnist = tf.keras.datasets.mnist

(x train, y train), (X test, y test) = mnist.load data()
x train, x test = x train / 255.0, x test / 255.0

# create the model

model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten (input shape= (28, 28)), First we convert input i1mage i1into a flat array of numbers

#
tf.keras.layers.Dense (128, activation='relu'), # Next, we add a layer of 128 neurons
tf.keras.layers.Dropout (0.2), # Dropout randomly removes 20% neurons from the above layer
tf.keras.layers.Dense (10) # Final layer will correspond to 10 probabilities

1)

# define the loss function
loss fn = tf.keras.losses.SparseCategoricalCrossentropy (from logits=True)

# compile the model

model .compile (optimizer="adam',
loss=loss fn,
metrics=['"'accuracy'])

# train the model
history = model.fit(x train, y train, epochs=5)

# test the model
model.evaluate (x test, y test, verbose=2)



Recap (remove non-essential commented parts

import tensorflow as tf

# get the dataset
mnist = tf.keras.datasets.mnist

This is the core part of tensorlfow (or any other ML
framework) — when the model is built, tensorflow

(x_train, y_train), (x_test, y_test) = mnist.load_dataf() becomes aware of its trainable parameters (wights

x train, x test = x train / 255.0, x test / 255.0

and bias values of every neuron in every layer)

# create the model

model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten (input shape=(28, 28)), #
tf.keras.layers.Dense (128, activation='relu'),
tf.keras.layers.Dropout (0.2), #
tf.keras.layers.Dense (10) it

1)

First we convert input image 1into a flat array of numbers
Next, we add a layer of 128 neurons

Dropout randomly removes 20% neurons from the above layer
Final layer will correspond to 10 probabilities

# define the loss function

loss fn = tf.keras.losses.SparseCategoricalCrossentropy (from logits=True)

# compile the model

model .compile (optimizer="adam',
loss=loss fn,
metrics=['"'accuracy'])

# train the model
history = model.fit(x train, y train, epochs=5)

# test the model
model.evaluate (x test, y test, verbose=2)




Recap (remove non-essential commented parts

import tensorflow as tf

# get the dataset This is the core part of tensorlfow (or any other ML

mnist = tf.keras.datasets.mnist framework) — when the model is built, tensorflow
(x_train, y train), (x_test, y test) = mnist.load data() becomes aware of its trainable parameters (wights
x_train, x_test = x train / 255.0, x_test / 255.0 and bias values of every neuron in every layers)

# create the model

model = tf.keras.models.Sequential (]
tf.keras.layers.Flatten (input shape= (28, 28)), First we convert input i1mage i1into a flat array of numbers

W
tf.keras.layers.Dense (128, activation='relu'), # Next, we add a layer of 128 neurons
tf.keras.layers.Dropout (0.2), # Dropout randomly removes 20% neurons from the above layer
i

tf.keras.layers.Dense (10) Final layer will correspond to 10 probabilities

1)

# define the loss function
loss fn = tf.keras.losses.SparseCategoricalCrossentropy (from logits=True)

# Compile the model . . . . . . e L n
model . compile (optimizer="'adam’, The partial derivatives w.r.t. trainable parameters are computed during the execution of “fit

loss=loss fn, given the input data. The parameters are updated in every “epoch” following the gradient
metrics=['accuracy']) descent method (e.g. “adam” is one of the most common types of gradient descent algorithms)

# train the model
history = model.fit(x train, y train, epochs=5)

# test the model
model.evaluate (x test, y test, verbose=2)



Fun part: let's run some predictions!

First, remember that our model produces a set of 10 numbers as the input, however they are not constrained to [0,1] range since the
constraining part (Softmax activation) was included in the loss function, but not in the model itself.

Hence, we need to convert our 10 number into 10 probabilities, in first nn.py add:

probability model = tf.keras.Sequential ([
model,

tf.keras.layers.Softmax ()

1)

Now let’s run the predictions:

python -1 first nn.py
>>> 1mport numpy as np # we need numpy for some array manipulations
>>> 1mport matplotlib.pyplot as plt

>>> plt.imshow(x test[1l7], 1interpolation='none')

>>> plt.show/()

>>> model guss = probability model (x test[17:18])

>>> print ("The guessed number 1s:", np.argmax (model guss))

pick some random image from the data
let’s first look at that image ourselves
run the prediction

??? Did 1t guess?

= S S

Try with the other images and see for yourself how good (or maybe not) our model is? :-)
Don't close the console with the first nn.py yet! (See next slide...)



Visualizing the training process

Don't close your console with first nn.py Yet, let's examine the history object:
>>> print (history.history)

{'"loss': [0.292483574968108945, 0.1410820633172989, 0.10512221604585648, 0.08767301589250565,
0.07357344770391983], 'accuracy': [0.914900004863739, 0.9583333134651184, 0.9677833318710327,
0.9729100620930237, 0.9773499965667725] }

Now let's do some plots:

>>> plt.plot (history.history['loss'])

1.0

>>> plt.plot (history.history['accuracy'])
>>> plt.legend(['loss', 'accuracy']) 08

>>> plt.show ()

0.6 -
— loss

—— aCcuracy

0.4

0.0 0.5 1.0 LS 2.0 2.5 3.0 3.5 4.0




Let's complicate things a bit ...

Inyour first nn.py modify the £it function to the following and re-run the code:

history = model.fit(x train, y train, epochs=50, wvalidation split=0.1)

Now let’s inspect the history object again and plot the numbers there:

>>> print (history.history.keys())

dict keys(['loss', 'accuracy', 'val loss', 'val accuracy'])

>>> plt.plot (history.history['loss'])
>>> plt.plot (history.history['val loss'])
>>> plt.plot(history.history['accuracy'])

>>> plt.plot (history.history['val accuracy'])
>>> plt.legend(['loss', 'val loss', 'accuracy', 'val accuracy'])

>>> plt.show ()



Let's complicate things a bit (adding validation)...

Inyour first nn.py modify the £it function to the following and re-run the code:

history = model.fit(x train, y train, epochs=50, wvalidation split=0.1)

Now let’s inspect the history object again and plot the numbers there:

>>> print (history.history.keys())

1.0

dict keys(['loss', 'accuracy', 'val loss', 'val accuracy']) /
0.8 -

>>> plt.plot (history.history['loss']) o | —==

: . - —— val_loss
>>> plt.plot (history.history['val loss']) —— accuracy
>>> plt.plot (history.history|['accuracy']) S| ? =
>>> plt.plot (history.history['val accuracy']) o \\\ °
>>> plt.legend(['loss','val loss', 'accuracy', 'val accuracy']) \\“Q;::K#WVJ,N,EJ i
>>> plt.show () R

30

40 50

Try to experiment a bit, consider modifying model “horizontally” or “vertically” (adding/removing layers, number of neurons etc.).

Can we arrive with a better (more accurate model) that, at the same time, does not overfit? ...




Put our code in order

For convenience of further work, let's re-structure our code a bit;

cp first nn.py run fit.py

In run fit.py:

from model nn import model

# <-- add this in the beginning

fmodel = tf.keras.models.Sequential([...]) # <-- remove or comment out this part

Createanempty init .py along with the following model nn.py:

tf.keras
tf.keras
tf.keras
tf.keras

1)

model = tf.
. layers
.layers
.layers
.layers

import tensorflow as tf

keras.models.Sequential (|

.Flatten (1nput shape= (28, 28)),
.Dense (128, activation='relu'),
.Dropout (0.2),

.Dense (10)

We didn’t do anything new, we just re-
structured the code for easier manipulation
with difference models. If you run

run fit.py you will getthe same result

as with first nn.py



Another way of defining Tensorlfow (TF) model

Let’s rewrite our NN model in slightly different format (it will get useful for us later ...). Create model nn new.py:

import tensorflow as tf

input = tf.keras.Input (shape=(28 , 28))

layer = tf.keras.layers.Flatten () (1nput )

layer = tf.keras.layers.Dense (128, activation='relu') (layer)
layer = tf.keras.layers.Dropout(0.2) (layer)

layer = tf.keras.layers.Dense(10) (layer)

model = tf.keras.Model (1nputs=input ,outputs=layer)

* Inthe run fit.py file:replace model nn with model nn newandrunthe run fit.py again...

= \While nothing really changed in what the code does, the new format/definition of the model will come in hand while
working with CNNs, in particular for understanding the dimensionality of tensors etc.



Part Il: Convolutional Neural Networks




What are Convolutional Neural Networks?

o 1 2 3 4 5 o6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

111 Convolution is essentially a filter that slides through the
EEEEE image producing one output value per each position

0o ~J o U b w DD P O

In the example of 5x5 convolution filter, at every position
the output value will be:

O

[E-
(&)

. 4 4

, SN K(m,n)-Ii+m,j+n) +b

- m=0 n=0

, O(i, 5) — output value at filter position (i,/)) — in this example from 0 to 23
Z K(m,n) — the convolutional kernel value at row m and column n (from 0 to 4)
i I(i+m,j + n) —the corresponding pixel value being convolved

. b — bias term




What are Convolutional Neural Networks? 12

With the 5x5 filter, the output will be another picture of dimension 24 x 24. Now imagine you have two such
filters, so that the two output images will be produced:

youtube.com/watch?v=JboZfxUjLSk




What are Convolutional Neural Networks?

With the 5x5 filter, the output will be another picture of dimension 24 x 24. Now imagine you have two such
filters, so that the two output images will be produced:

28 x 28 x 1

\ 24X 24x 2 20X 20 X ...

1 o e e o
——II ﬁ@’:

» We apply convolutional layers one after another allowing the model to learn some deep features in the data

* The 2D dimensionality necessarily decreases layer after layer

 The 3 dimension equals the number of Conv filters at every step (usually is set to increase layer after layer, but not necessarily)
* Normally after the last layer will will end up with 1x1xN images, i.e. N numbers which we can then process with the usual NN




CNN with our MNIST example

Let’s get back our number classification example: copy model nn new.pyto model cnn.py and let's do some changes there:

import tensorflow as tf

#input = tf.keras.Input (shape=(28,28))
lnput = tf.keras.Input (shape=(28,28,1))# <-- third dimension specify number of channels 1In the Image
# <-- for example, b/w has only 1 channel, colored has 3 (RGB)

#layer = tf.keras.layers.Flatten() (1nput ) # <-- we don’t need to flatten at this point...

# convolutional part

layer = tf.keras.layers.Conv2D (32, (4,4),strides=(4,4), activation='relu') (1nput )
layer = tf.keras.layers.Conv2D (64, (/,7),strides=(1,1), activation='relu') (layer)
layer = tf.keras.layers.Flatten() (layer)

# usual NN part remains the same

layer = tf.keras.layers.Dense (128, activation='relu') (layer)
layer = tf.keras.layers.Dropout(0.2) (layer)
layer = tf.keras.layers.Dense(10) (layer)

model = tf.keras.Model (1nputs=input ,outputs=layer)



CNN with our MNIST example

Let’s get back our number classification example: copy model nn new.py rewrite model cnn.py and let's do some changes:

import tensorflow as tf

#input = tf.keras.Input (shape=(28,28))
lnput = tf.keras.Input (shape=(28,28,1))# <-- third dimension specify number of channels 1In the Image
# <-- for example, b/w has only 1 channel, colored has 3 (RGB)

#layer = tf.keras.layers.Flatten() (input ) # <-- we don’t‘veed to flatten at this point...

o
# convolutional part x/////

layer = tf.keras.layers.Conv2D (32, (4,4),strides=(4,4), activation='relu') (1nput )
_> print ('Conv layer 1 shape:', layer.shape)
layer = tf.keras.layers.Conv2D(64,(7,7),strides=(1,1), activation='relu') (layer)

—> print ('Conv layer 2 shape:', layer.shape)
layer = tf.keras.layers.Flatten() (layer)

Let’s add some print statements to look
inside our model. In this way it is very easy to

# usual NN part remains the same experiment with layers, for example if you are

layer = tf.keras.layers.Dense (128, activation='relu') (layer)

layer = tf.keras.layers.Dropout (0.2) (layer) not sure what the Iayer does etc..
layer = tf.keras.layers.Dense(10) (layer)

model = tf.keras.Model (1nputs=input ,outputs=layer)

python model cnn.py

Check the output for yourself and let's see if we understand it ...



CNN with our MNIST example

Open run fit.py andreplace the NN with the CNN; re-run the training:

#from model nn new import model # comment out the NN
from model cnn Import model # import CNN instead

python run fit.py

Epoch 1/50

1688/1688 [==============================] - ls 789%us/step - loss: 0.2831 - accuracy: 0.9139 - val loss: 0.1069 - val accuracy: 0.9710
Epoch 2/50
1688/1688 [==============================] - ls 765us/step - loss: 0.1134 - accuracy: 0.9660 - val loss: 0.0829 - val accuracy: 0.9768
Epoch 3/50
1688/1688 [==============================] - ls 76lus/step - loss: 0.0798 - accuracy: 0.9753 - val loss: 0.0782 - val accuracy: 0.9765
Epoch 4/50
1688/1688 [==============================] - ls 762us/step - loss: 0.0624 - accuracy: 0.9807 - val loss: 0.0663 - val accuracy: 0.9817
1.0 -
7,,_==:
Comped to NN model, the CNN model appears to 05 -
have similar performance (check the loss and
accuracy metrics of both models).. i s
. . . — accuracy
However, keep in mind that we deal with very 0.4 - — val_accuracy
small images (28 x 28) — things will be different 2
if we consider e.g. Megapixel scale pictures... i \ R g L
| o

0 10 20 30 40 50



Inspect our first CNN model

python -i model cnn.py
>>> model.summary ()

Model: "functional”

Caver (typ0) output Shape

input_layer (InputLayer) ( , 28, 28, 1) 0
conv2d (Conv2D) ( y 7, 7, 32) ? 544 ?
conv2d_1 (Conv2D) (None, 1, 1, 64) 100,416 | ?
flatten (Flatten) ( , 64) 0
dense (Dense) ( , 128) 8,320 ?
dropout (Dropout) ( , 128) 0
dense_1 (Dense) ( , 10) 1,290 ?

Total params: 110,570 (431.91 KB)
Trainable params: 110,570 (431.91 KB)

Non-trainable params: 0 (0.00 B) Do the math yourself, do you arrive to the same numbers?



On the power of CNNs...

Consider 4K image classification(~10 megapixels):

Take a simple NN (not CNN) model architecture from the MNIST example (with ~100 neurons in the first layer) —
how many trainable parameters do you get? Compare it with the number of trainable parameters we had in our NN and

CNN models (~100'000). The number of parameters in NN model looks big, right? (Comparable to GPT-2!)

* CNNs, on the other hand, allow to extract features from the images of arbitrary size and resolution. The complexity of
CNN model is defined only by the filter dimension, their number, and amount of layers — all these can be set to whatever
number depending on how complex is the model that you want to build (how much trainable date you have etc.)
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CNN example with the DAMPE
cosmic ray detector



DAMPE example

Predicting cosmic ray (or gamma ray) particle direction from a signal (shower) in DAMPE calorimeter:

“Heart” of the DAMPE detector - the BGO imaging calorimeter




DAMPE example

Predicting cosmic ray (or gamma ray) particle direction from a signal (shower) in DAMPE calorimeter:

DAMPE detects particle spatial information and energy deposition in two orthogonal projections (XZ and YZ)

DAMPE XZ E=1.416 TeV DAMPE YZ E=1.416 TeV
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DAMPE example: classical approach (no Al)

Predicting cosmic ray (or gamma ray) particle direction from a signal (shower) in DAMPE calorimeter:

DAMPE detects particle spatial information and energy deposition in two orthogonal projections (XZ and YZ)

DAMPE XZ E=1.416 TeV DAMPE YZ E=1.416 TeV
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In a classical approach, the particle trajectory in the calorimeter is estimated by performing a linear
regression fit of the line through the points in calorimeter, where the contribution of every point in the
fit is weighted by the energy deposition in this point




DAMPE example: CNN

» We will use CNN instead of the classical linear regression - to predict particle direction
* We will train it on a sample of ~140°000 simulated particle showers in DAMPE

Input: 14 x 22

N B

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

128 filters

64 filters

32 filters

0.2

0.1

5x13

(full image)

EBGO Total

EBGO bar max

100 filters

==
\\k"&\\

\

T I 7=
I;’/-/ /
Aot
1z
NNT
7
-
R I e A e
‘ ’ e o 0

\\\‘\ s

Sy el 2y
S o SR S
Sy 3

o e ot
T

'o

.‘\
e/l = = =

S\

/)

()

¢
S
%

,\

‘o

D

\

£
4

D

!

D@D
A D

&
12K

MC Data
Model Model

N



DAMPE example: getting the data

* Download and setup the training DAMPE data and the corresponding software:

git clone https://gitlab.cern.ch/andrii/mlregressioncalo.git
cd mlregressioncalo

glt switch tutorial
source ./setup.sh

# do it in every new console (cd [path-/mlregressioncalo]; source ./setup.sh)

* Inspect the content of DAMPE package & data

python

>>> from dampe 1mport get dampe data, plot dampe event
>>> data = get dampe data()
>>> data.keys ()

dict keys(['caloimages', 'truthdata', 'standardrecdata'])

DAMPE images on which  Array of 4 numbers representing
we will train our network  the truth particle direction (two

in XZ projection, two in YZ)

The same 4 numbers but obtained with the standard linear

regression algorithm — we will not use it for training, but will keep
it for reference when comparing with the CNN predictions

Do yourself — check the dimensions of the data arrays: data [ ‘caloimages'] .shape elc.


https://gitlab.cern.ch/andrii/mlregressioncalo.git

DAMPE example: visually examining the data

» Let's inspect some of the data events:

>>> plot dampe event (datal'caloimages'][10],data['truthdata'][10])

0 (@) e N o

10

12

0.0 2.9 5.0 7.5 10.0 12.5 15.0 17.5 20.0



DAMPE example: visually examining the data

» Let's inspect some of the data events:

>>> plot dampe event (data['calolmages'][10],data['truthdata'][10],data['standardrecdata'] [10])

|

Let's add a prediction with the
standard (linear regression)
algorithm

0.0 2.9 5.0 7.5 10.0 12.5 15.0 17.5 20.0

You can experiment with the different events in the dataset, for example in the event 19 one can see a
very distinct difference between the truth and reconstructed particle direction.



DAMPE CNN training ...

 Let’s get back to our CNN training code from the MNIST example, we will use it as a base:

cp run fit.py run fit dampe.py
cp model cnn.py model cnn dampe.py

* In run fit dampe.py change:

#from model cnn import model # before
from model cnn dampe I1mport model # now
from dampe import get dampe data #

from pickle import dump #

# get the dataset before
#fmnist = tf.keras.datasets.mnist

#(x train, y train), (x test, y test) = mnist.load data()
#x train, x test = x train / 255.0, x test / 255.0

data = get dampe data ()

x, y = data['caloimages'], data['truthdata'] #

H= H= FH H FHF

#loss fn = tf.keras.losses.SparseCategoricalCrossentropy (from logits=True) # before
loss fn = tf.keras.losses.MeanAbsoluteError () # now
model.compile (optimizer="'adam',loss=1loss fn, metrics=['mean squared error']) #metrics=|[‘accuracy']) #

history = model.fit (x, y, validation split=0.1) # training part remains the same
# After the fitting part letTs Save the model and history for further analysis

model.save welghts ('model cnn dampe.welghts.h5"')
dump (history.history, open('history cnn dampe.p', 'wb'))
# comment out the rest of the code afterwards (plt.plot(history.history ... etc.)

Note that we reduce number of epochs since training DAMPE models is more time consuming ...



DAMPE CNN model ...

» Now we need to modify the model itself, keeping the changes minimal. In the model cnn dampe.py do the following:

#input = tf.keras.Input (shape=(28,28,1)) # before \

input = tf.keras.Input (shape=(14,22,1)) # now Test/print the layer

layer = tf.keras.layers.ZeroPadding2D(((1,1), (1,1))) (input ) Shapes/dimensions at
«—

4 convolutional part different steps, let's see if

#layer = tf.keras.layers.Conv2D (32, (4,4),strides=(4,4), activation="relu") (input )# before /We understand it ...

layer = tf.keras.layers.Conv2D (32, (4,4),strides=(4,4), activation="relu") (layer) # now

#tlayer = tf.keras.layers.Convz2D(64, (7,7),strides=(1,1), activation="relu") (layer) # before

layer = tf.keras.layers.Conv2D (64, (6,4),strides=(1,1), activation="relu") (layer) # now

layer = tf.keras.layers.Flatten() (layer) # same as before (not changed)

# NN part

layer = tf.keras.layers.Dense (128, activation="relu") (layer) # same as before (not changed)

#tlayer = tf.keras.layers.Dropout (0.2) (layer) # comment out the dropout part

#layver = tf.keras.layers.Dense (10) (layer) # before

layer = tf.keras.layers.Dense(4) (layer) # now (instead of 10 neurons, now we have 4)

# this remains the same as before ...
model = tf.keras.Model (inputs=input ,outputs=layer)

* We are ready to run the DAMPE model training:

python run fit dampe.py

Epoch 1/50
3993/3993 [==============================] - 3s 684us/step - loss: mean squared error: 11470.5166 - val loss:
34.0831 - val mean squared error: 2725.1121

Note the loss value at the first iteration (we will
compare it later with the loss of the other model)



DAMPE CNN model from the paper

* Let's try a deeper model (from the paper), cp model cnn.py model cnn dampe paper.py and modify it:

#input = tf.keras.Input (shape=(28,28,1)) # before
input = tf.keras.Input (shape=(14,22,1)) # now

# convolutional part

#layer = tf.keras.layers.Conv2D (32, (4,4),strides=(4,4), activation='relu') (input ) # before

#tlayer = tf.keras.layers.Conv2D (64, (7,7),strides=(1,1), activation=‘relu’) (layer) #

layer = tf.keras.layers.Conv2D (128, (4,4), activation="relu") (1nput ) # now

layer = tf.keras.layers.Conv2D (64, (4,4), activation="relu") (layer) 1

layer = tf.keras. layers.ConvZD(32,(4,4), activation="relu") (layer) i

# ... what is the ouput shape after this layer? (see for yourself with print.) #

layer = tf.keras.layers.Conv2D (100, (5,13), activation="relu") (layer) i

# ... why is there (5,13) filter size used at this point? What is the output shape-?

layer = tf.keras.layers.Flatten () (layer)

# NN part

flayer = tf.keras.layers.Dense (128, activation=‘relu’) (layer) # before

#tlayer = tf.keras.layers.Dropout (0.2) (layer) #

#layver = tf.keras.layers.Dense (10) (layer) ¥ .
layer = tf.keras.layers.Dense (50, activation="relu") (layer) # now MOdeI fme.
layer = tf.keras.layers.Dense (4, activation="linear") (layer) Astropardile Physics 146 (2023) 102795

Contents lists available at ScienceDirect

# this remains the same as before
model = tf.keras.Model (inputs=input ,outputs=layer)

Astroparticle Physics

[ SEVIER journal homepage: www.elsevier.com/locate/astropartphys

A deep learning method for the trajectory reconstruction of cosmic rays with
the DAMPE mission

Andrii Tykhonov ", Andrii Kotenko ?, Paul Coppin ?, Maksym Deliyergiyev ?, David Droz?,
Jennifer Maria Frieden , Chiara Perrina”, Enzo Putti-Garcia ?, Arshia Ruina ?,
Mikhail Stolpovskiy , Xin Wu?®

2 Department of Nuclear and Particle Physics, University of Geneva, CH-1211, Switzerland
b Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland



DAMPE CNN model from the paper

* Inrun fit dampe.py modify the CNN model import and run the script again:

#from model cnn dampe import model # before
from model cnn dampe paper import model # now

# save model under different name

#model.save welghts ('model cnn dampe.weights.hb5')

#dump (history.history, open('history cnn dampe.p', 'wb'))
model.save welghts ('model cnn dampe paper.weights.hd5")

dump (history.history, open('history cnn dampe paper.p', 'wb'))

python run fit dampe.py

Epoch 1/50
3993/3993 [==============================] - 44s llms/step - loss: mean squared error: 2802.2505 - val loss: 10.1922 -
val mean squared error: 229.4982

Note that the loss value after the first iteration is considerably lower that
with the first (simple) CNN model that we tried... Also, training takes
considerably longer due to a more complex (dense) CNN model!

It will take 1-2 hours on conventional hardware to train this model... We can't wait that long, hence you can find this saved model and
training history inside the dampe package downloaded earlier, see the saved models folder



Comparing the two CNN models

python

from pickle import load
import matplotlib.pyplot as plt

historyl = load (open('history cnn dampe.p','rb')) You can find both models and their training history
history2 = load(open('history cnn dampe paper.p','rb')) < inside saved model folder of the DAMPE package.
D1t plot (historyl['loss']) Copy the content of saved model folder to the
plt.plot (historyl['val loss']) folder where you run your examples.
plt.plot (history2['loss'])

[

plt.plot (history2['val loss'])

plt.legend(['loss (model simple)', 'val loss (model simple)', 'loss (model paper)', 'val loss (model paper)'])
plt.show ()
—— loss (model simple)
70 A ——— val_loss (model simple)
—— loss (model paper)
60 - —— val_loss (model paper)
50 1 Simple CNN model
“0- (same as for MNIST example)
4 /
&\\Q\

- / Model from the DAMPE paper
10 L\\Aﬁk P < / (deeper, more neurons per layer)
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Fun part: inference/prediction with the DAMPE CNN

* Let's compare performance of classical DAMPE algorithm and the CNN one. Create test dampe images.py andrun it:

# This 1s test dampe images.py file for DAMPE CNN testing

from dampe 1mport get dampe data, plot dampe event
import tensorflow as tf
from model cnn dampe import model

Linear regression
data = get dampe data()

# plot the results with the standard algorithm (linear regression)
standardprediction = data['standardrecdata'] [10]
plot dampe event (datal'caloimages'][10],data['truthdata'][10], standardprediction) <

# plot the results with CNN

model.compile() 0.0 2.5 5.0 75 10.0 125 150 17.5 20.0
model.load weights ('model cnn dampe paper.weights.h5")

prediction = model (data['caloimages'] [10:11])

prediction = prediction[0] # prediction 1s done 1in batches. We have a "batch" of 1 event

plot dampe event (datal'caloimages'][10],data['truthdata'][10], prediction) <

# caclcualte yourself accucay of standard approach VS CNN
import numpy as np

n = 1000
print ("Standard algorithm mean absolute error:",

np.sum(np.abs (data['truthdata'] [:n]-data['standardrecdata'][:n])) / (4*n))
prediction = model (data['caloilmages'][:n])

print ("CNN mean absolute error:",
np.sum(np.abs (data['truthdata'] [:n]-prediction)) / (4*n)) 00 25 50 75 100 125 150 17.5 20.0



Recap of the DAMPE CNN model (training script)

run fit dampe.py:

import tensorflow as tf

import matplotlib.pyplot as plt

from model cnn dampe paper 1mport model
from dampe 1mport get dampe data

from pickle 1mport dump

data = get dampe data ()
X, y = data['caloimages'], datal['truthdata']

loss fn = tf.keras.losses.MeanAbsoluteError ()
model.complle (optimizer="'adam', loss=loss fn,
metrics=["'mean squared error'])

history = model.fit(x, y, epochs=5, validation split=0.1)

model.save weights('./model cnn dampe paper.weights.hb"')
dump (history.history, open('history cnn dampe paper.p', 'wb'))



Recap of the DAMPE CNN model (model definition)

model cnn dampe paper.py:

import tensorflow as tf
input = tf.keras.Input (shape=(14,22,1))

# convolutional part

layer = tf.keras.layers.Conv2D (128, (4,4), activation="relu") (1nput )
layer = tf.keras.layers.Conv2D (64 (4,4), activation="relu") (layer)
layer = tf.keras.layers.Conv2D (32 (4,4), activation="relu") (layer)
layer = tf.keras.layers.Conv2D (100, (5,13), activation="relu") (layer)
layer = tf.keras.layers.Flatten()(layer)

# fullyv-connected part

layer = tf.keras.layers.Dense (50, activation="relu") (layer)

layer = tf.keras.layers.Dense (4, activation="linear") (layer)

model tf.keras.Model (1nputs=input ,outputs=layer)



Exercise (20 mins)

* Develop your own NN (not CNN) model for DAMPE (similar to MNIST example discussed earlier)
= Experiment with architecture (number of layers, neurons, etc...)
= The goal is to try to obtain a simple NN model comparable in performance with the CNN
For simplicity, as a metrics of "performance” just use the value of loss (the lower the better)

No need to run the entire model training and visualization, just run a training with 2-3 iterations at most and see if your
NN model converges as fast (with the similar or lower loss values) as the CNN model (usually it is already seen from the
first few iterations how good the model is...)

* Modify the original CNN according to your intuition and try to beat the original DAMPE CNN!



Before we move on: let's repeat
the DAMPE exercise while learning
a bit of PyTorch

(We will need PyTorch for the
following part of the course)

PyTorch



Install PyTorch

To avoid possible conflicts between the two frameworks, we will install PyTorch in a separate conda
environment

 |Install PyTorch
1. Create new environment that we will call "“tr": conda create -n tr pytorch matplotlib
2. Activate the “tf” environment: conda activate tr

* Test PyTorch
python
>>> import torch as tr

>>> print (tr. version )



Test PyTorch NN training

* Run the following code snippet in python (let's call it test pytorch minimal.py):

import torch as tr
1mport numpy as np

x = tr.tensor (np.random.rand(1000,10),dtype=tr.floated) +# random sample of 1000 sets of numbers

y = tr.tensor (np.random.rand(1000,),dtype=tr.1into64) # random sample of 1000 set ‘labels'
model = tr.nn.Sequential( tr.nn.Linear(10,10,dtype=tr.floate4d))

criterion = tr.nn.CrossEntropylLoss ()

optimizer = tr.optim.Adam(model.parameters())

# one training step

y pred = model (x)

loss = criterion(y pred,y)
loss.backward ()
optimizer.step()

print ("Loss:",loss.item())

* |f everything is installed correctly, you should see the log of the training:

LLoss: 1.930114470175824



PyTorch DAMPE example - training script

Let’s rewrite our DAMPE CNN code in PyTorch:
cp run fit dampe.py run fit dampe torch.py,
edit run fit dampe torch.py:

#import tensorflow as tf

import torch as tr

#from model cnn dampe paper 1mport model

from model cnn dampe paper torch import model

#... after you obtained the dampe data in the usual way, convert it to torch tensors
X, y = tr.tensor (x,dtype=tr.float3?2), tr.tensor(y,dtype=tr.float3?2)

#... we need to convert data format from [N,H,W,C] (Tensorflow) to [N,W,H,C] (Pytorch)
X = X.squeeze (3) .unsqueeze (1)

#... you can check later by inserting print(x.shape) statement before and after...
#loss fn = tf.keras.losses.MeanAbsoluteError ()

fmodel.compile (optimizer="adam', loss=loss fn, metrics=['mean squared error'])
criterion = tr.nn.LlLoss () # mean absolute error loss

optimizer = tr.optim.Adam(model.parameters())

# continued on the next page



PyTorch DAMPE example - training script

..editrun fit dampe torch.py continued:
instead of this

#history = model.fit(x, y, epochs=5, validation split=0.1) <
model.train() # set model in the training mode
history = {'loss':[],"loss val':[]}
n total, n split, n batch = x.shape[0], 1nt(x.shapelO] * 0.9), 32
for 1 in range(5): # loop over training epochs
loss train, loss val, n batches train, n batches val = 0, 0, 0, 0O
for j 1n range(0, n split, n batch): # loop over batches in tralining sub-sample
print (f"Processed: {j*100./n split:3.1£f}%",end="\r") # status bar
optimilizer.zero grad()
y pred = model (x[J:J+n batch])
loss = criterion(y pred,yl[J:J+n batch])

loss.backward () we have
optimizer.step ()
loss traint+=loss.item() that...
n batches train+=1
model.valid () # set model in validation mode
for j 1n range(n split, n total, n batch): # loop over batches in validation sub-sample

print (f"Processed wvalid: {(j-n split)*100./(n total-n split):3.1f}",end="\r") # status bar
y pred = model (x[J:J+n batch])

loss = criterion(y pred,y[J:J+n batch])

loss val+=loss.item()

n batches val+=1

loss train, loss val = loss train / n batches train, loss val / n batches val

print ("loss:",loss train, "loss val:",loss val)

history['loss'], history['loss val'] = history['loss']+[loss train], history['loss val']J+[loss val]
#model.save weights ('./model cnn dampe paper.weights.h5")
#dump (history.history, open('history cnn dampe smallmodel.p', 'wb'))
tr.save (model.state dict (), './model cnn dampe paper torch.pth') # Jjust to show how saving model in torch works

dump (history.history, open('history cnn dampe paper torch.p', 'wb')) # the same, Jjust changed the file name



PyTorch DAMPE example - model definition

Let's rewrite the model in PyTorch,

cp model cnn dampe paper.py model cnn dampe paper torch.py,

editmodel cnn dampe paper torch.py:

#import tensorflow as tf # before
import torch as tr # now
1mport numpy as np

#input = tf.keras.Input (shape=(14,22,1))

# convolutional part

#layer = tf.keras.layers.Conv2D (128, (4,4), activation="relu") (input )
#layer = tf.keras.layers.Conv2D (64 (4,4), activation="relu") (layer)
flayer = tf.keras.layers.Conv2D (32 (4,4), activation="relu") (layer)
#layer = tf.keras.layers.Conv2D (100, (5,13), activation="relu") (layer)
#laver = tf.keras.layers.Flatten()(layer)

# usual NN part remains the same

#flayer = tf.keras.layers.Dense (50, activation="relu") (layer)
#layer = tf.keras.lavyers.Dense (4, activation="linear") (layer)
#model = tf.keras.Model (inputs=input ,outputs=layer)

# continued on the next page...

Import torch instead of
tensorflow

Just comment it out but do
not delete yet (convenient to
keep for a reference while we
code the torch model ...)



PyTorch DAMPE example - model definition

...editmodel cnn dampe paper torch.py continued:

class DampeCNN (tr.nn.Module) :
def  1nit (self):

super (). 1nit ()

self.conv layerl = tr.nn.Conv2d (1, 128, (4,4 ))

self.conv layer?Z = tr.nn.Conv2d (128, 064, (4,4 ))

self.conv layer3 = tr.nn.Conv2d (64, 32, (4,4 ))

self.conv layerd = tr.nn.Conv2d (32, 100, (5,13))

self.flatten layer = tr.nn.Flatten()

self.dense layerl = tr.nn.Linear (100,50)

iigfiieiayeﬁ _ Eiiig;;iff (50, 4) For simple models (including this one) we could in principle use
def forward(self, x): a SlmpllfIEd syntax with tr.nn. Sequential (See our 2nd

x = self.conv_ layerl (x) PyTorch installation test), but the low-level definition shown

x = self.relu(x) here offers more flexibility (for example in Transformer models

X = self.conv layer?Z(x) . .

x = self.relu(x) that we will consider later)

x = self.conv layer3(x)

X = self.relu(x)

x = self.conv layeri (x)

X = self.relu(x)

#print (x.shape)
#raise SystemExit
x = self.flatten layer (X)

x = self.dense layerl (x)
X = self.relu(x)
x = self.dense layerZ(x)

return X

model = DampeCNN ()



PyTorch DAMPE example - test

Let's test a bit our model. Similar to PyTorch case, we can feed it some random data and print the layer shape on the way.
First, let's add a print statements to the model forward method inmodel cnn dampe paper torch.py:

class DampeCNN (tr.nn.Module) :

def forward(self, x):

x = self.conv layerl (x) ]
print ("Dimensions after layer 1:", x.shape) < Enter a print statement
¥ etc

Now let's run it the model a random data:

python -1 model cnn dampe paper torch.py
>>> data=tr.tensor (np.zeros ((100,1,14,22)),dtype=tr.float32)
>>> tmp = model (data)

Dimensions after layer 1: torch.Size([100, 128, 11, 19]) < RGSUlt Ofaprint Statement



PyTorch DAMPE example - test

Now finally as we have all pieces in place, we can run the training of the DAMPE CNN model in PyTorch:

python run fit dampe torch.py

Processed valid: 99.9 elapsed:164.9s
loss: 78.060382124119583 loss val: 21.724795972978747
Processed valid: 99.9 elapsed:165.9s
loss: 16.86408121580472 loss val: 12.455400391741916

We will not run this training, just make sure that it works in principle ... Later you can run that CNN model in PyTorch and
compare the performances with Tensorflow: execution time, convergence, final accuracy (loss) of the model ...

Now let's briefly re-cap our PyTroch CNN example ...



Recap (PyTorch DAMPE example

run fit dampe torch.py

import torch as tr

import matplotlib.pyplot as plt

from model cnn dampe torch import model
from dampe import get dampe data

from pickle import dump

import time

data = get dampe data()

X, y = data['caloimages'], data['truthdata']

X, y = tr.tensor (x,dtype=tr.float3?2), tr.tensor(y,dtype=tr.float32)
X = xX.squeeze (dim=3) .unsqueeze (dim=1)

criterion = tr.nn.LlLoss ()
optimizer = tr.optim.Adam (model.parameters())

# training loop

history = {'loss':[],'loss val':[]}

n total, n split, n batch = x.shape[0], int(x.shapel[O] * 0.9), 32

for 1 in range(5): # loop over training epochs
loss train, loss val, n batches train, n batches val, timestamp = 0, 0, 0, 0, time.time ()
model.train () # set model in training mode
for j in range (0, n split, n batch): # loop over batches in training sub-sample

print (f"Processed: {j*100./n split:3.1f}% elapsed:{time.time()-timestamp:4.1f}s",end="\r")
optimizer.zero grad()
y pred = model (x[Jj:J+n batch])
loss = criterion(y pred,y[J:J+n batch])
loss.backward ()
optimizer.step ()
loss train+=loss.item()
n batches train+=1
model.eval () # set model in validation mode
for j in range(n split, n total, n batch): # loop over batches in validation sub-sample
print (f"Processed valid: {(j-n split)*100./(n total-n split):3.1f} elapsed:{time.time()-timestamp:4.1f}s",end="\r")
y pred = model (x[Jj:J+n batch])
loss = criterion(y pred,y[J:J+n batch])
loss val+=loss.item()
n batches val+=1

loss train, loss val = loss train / n batches train, loss val / n batches wval
print ("\nloss:",loss train, "loss val:",loss val)
history['loss'], history['loss val'] = history['loss'] + [loss train], history['loss val'] + [loss val]

# save model and training history
tr.save (model.state dict (), './model cnn dampe paper torch.pth'")
dump (history, open('history cnn dampe paper torch.p','wb')) # remains the same - we just changed the name of the file



Recap (PyTorch DAMPE example

model cnn dampe paper torch.py

import torch as tr
class DampeCNN (tr.nn.Module) :
def  init (self):

super ().  1nit ()

self.conv layerl = tr.nn.Conv2d (1, 128, (4,4 ))
self.conv layer?Z = tr.nn.Conv2d (128, 64, (4,4 ))
self.conv layer3 = tr.nn.Conv2d (64, 32, (4,4 1))
self.conv layerd = tr.nn.Conv2d (32, 100, (5,13))

self.flatten layer tr.nn.Flatten ()

self.dense layerl = tr.nn.Linear(100,50)
self.dense layer?2 = tr.nn.Linear (50, 4)
self.relu = tr.nn.RelU/()
def forward(self, x):
x = self.conv layerl (x)
X = self.relu(x)
x = self.conv layer?2 (x)
X = self.relu(x)
x = self.conv layer3(x)
X = self.relu(x)
x = self.conv layerd (x)
X = self.relu(x)
x = self.flatten layer (x)
x = self.dense layerl (x)
X = self.relu(x)
x = self.dense layer?Z(x)

return X
model = DampeCNN ()



Exercise (10 mins)

* Implement your previously developed DAMPE NN (not CNN) in PyTorch
= Goal: make sure you understand the layer implementation in PyTorch (where and how to look for documentation)
= You will create your own PyTorch model class similar to the CNN example

= No need to run the full training, just make sure that the training works and you are able to run ~ 1 training epoch

From the previous example, you should already know the name of layers in PyTorch. For more information/references, see
PyTorch documentation

* For example, the Flatten layer in PyTorch: https://docs.pytorch.org/docs/stable/generated/torch.nn.Flatten.html



https://docs.pytorch.org/docs/stable/generated/torch.nn.Flatten.html

Part lll: Transformers




Transformers

Before starting preparing this tutorial, | promised
myself not to make too obvious flat jokes connected
to the comic books characters ...




Transformers

Before starting preparing this tutorial, | promised
myself not to make too obvious flat jokes connected

{o the comic books characters ... Now seriously... According to Stephen Wolfram:

What Is ChatGPT Doing ...
and Why Does It Work?

February 14, 2023

ﬁ It’s Just Adding One Word at a Time

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

On Large Language Models (LLMs)

From Wolfram's article:

learn 4.5%
predict 3.5%
The best thing about Al is its ability to = Make 3.2%
understand 3.1%
do 2.9%

And the remarkable thing is that when ChatGPT does something like write an essay what it’s
essentially doing is just asking over and over again “given the text so far, what should the next
word be?”—and each time adding a word. (More precisely, as I'll explain, it’s adding a “token”,

which could be just a part of a word, which is why it can sometimes “make up new words™.)

Adding from myself: in some sense, LLMs can be considered ~ autocompletion on steroids



On Large Language Models (LLMs) & Transformers

Computer Science > Computation and Language https://arxiv.org/abs/1706.03762

[Submitted on 12 Jun 2017 (v1), last revised 2 Aug 2023 (this version, v7)]

Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, lllia
Polosukhin

It turned to be that the so-called "Transformer™-like architectures, originally suggested in

Multi-Head Attention the "Attention is All You Need" paper, are currently the best ones for LLM implementation
EE (including GPT, Gemini, DeepSeek)
Concat
) it While the first GPT models were predicting
‘ Ak Ué h tokens based on the preceding sequence of
~ L Alj text of ~1-2 pages at most, GPT-4 turbo has a —
e {(Cnsar (et maximum sequence length (based on which it »
r does "autocompletion”) of the size of ~
v K Q Orwell's "1984" (or "The Hobbit", if you like)

|

GEORGE ORWELL



https://arxiv.org/abs/1706.03762

What is a token?

LLMs are prediction tokens one-by-one
* A word is token ? - in most cases YES
* |s token a word? - NOT necessarily
= A token can be a part of a word
= |t can be a single digit, i.e. "1", "2", etc, combination of digits "12", "567", etc.
= (One single letter is a token, frequent combination of letters/syllables are tokens (that's how LLMs can invent new words)
= Fvent frequent combination of words, or entire sentences can be tokens, depending on the implementation
= Fnd of sequence (e.g. what tells GPT to stop further generation of reply in the chat) is a token (in fact an important one!)

textembedding-gecko

The 72 tokens

This tool allows you to visualize the token s of a text prompt or
token ization models of the various Google Cloud Ver tex Al Pa LM -
are also count e d , and hover ing over them will indicate their interr

code of this application is available on Gi t hub .



What is a token?

Neural Networks deal with numbers. How do we represent tokens as numbers? Say, GPT-4 uses ~100'000 token dictionary
* Obviously, we assign every token a number from 0 to 100°000
* We can also represent those in vectors of 100'000 digits, all of which are 0 except for one:

0,0,0, ..., 1, ..., 0, 0,0 en 1 (el
100000 vectors '0,1,0, ..., 0, ..., O, 0,0] Token 2 ("world")

o etc.

(0,0,0, ..., O, ..., O, O,1]

Token 100'000 ("bye")

100000 numbers

Now what LLM does when prediction a next token, it essentially yields a so-called logit vector of 100000 numbers each
representing a probability for a certain token to be the next one in a sequence:

(0.01, 0., 0.8, ..., 0.02, ..., 0, 0,1] # Numbers sum up to 1

100'000 numbers



Tokens & Embedding vectors

Embedding vectors (or Embeddings) - key concept in LLMs!

* |n previous illustration of token vectors - how do we encode similarity of tokens in that kind of vectors in that n-dimensional
space (n is the dictionary size - 100'000 in previous example) - The answer is - we don't do that!

* Instead, we convert token into embedding vector in lower dimension space through linear transformation:

Embedding transformation is a look-up table of Ng;c: - Nempea parameters (trainable):

[1.5,-06.3,10.1,0.1 ..

. ]

(dimension Ngict~100'000)

Not sum up to 1, not even

/ positive-only numbers!

. ]

(dimension Nempea~10'000)

llwarmll

"machine learning"

lllustration of embedding vectors corresponding to the tokens
"warm", "hot’, and "machine learning". The "warm" and "hot"
embeddings will likely occur very aligned in the embedding space



Tokens & Embedding vectors

eagle
Projection of typical Embedding
aeer space in 2D (credit: Stephen
camel
i Wolfram)
bear  COW
chicken
elephant cranberry
bird blueberry grape
dog fish strawaspbyerry
chimpanzee cat
cheetah i ) .
_— You can think of embedding
- .o space as a way of mapping
g . .
A — language into a multi-
dimensional cartesian space,
aligator mango where close-by-semantical-
crocoaiie .
panarfPa_ meaning words/phrases/
o apple syllables/etc. will normally
heo vocads ribes appear as nearby vectors
blackberry turnip




Data flow in Langauge Models

Tokens-to-
embeddings

Embeddings-to-token
probabilities

[1.5,-6.3,10.1,0.1 ..

. ]

(Lnput tokens)

(1nput embedding vectors)

Neural Network (Transformer)

[1.5,-6.3,10.1,0.1 ..

i3

. ]

(output/predicted embedding vector)

Sumuptol

(output token probabilities logit vector Ngict~100'000)




Tokens & Embedding vectors: try yourself

Before we go to Transformer implementation, let's first experiment with tokens & embeddings

Why this is important: if we want to transform the use "Transformers” into physics applications we shall first get a clear
idea of the "Transformers" original intended use (which is in fact language processing)

conda ?Ctivate tr Don't worry - we will implement tranformers ourself, we just need this package for
conda install transformers ' token generation (we can/will do it ourself, but better to use the pre-cooked one)
python

>>>

>>> from transformers import AutoTokenilzer
>>> tokenilzer = AutoTokenizer.from pretrained("gpt2")

>>> 1nput tokens = tokenizer ("I am GPT", return tensors="pt").input 1ds

>>> output tokens = tokenizer ("Sono GPT", return tensors="pt").lnput 1ds

>>> print (1nput tokens)
tensor ([ [ 40, /1o, 402, 11571]1])  We will consider a vastly oversimplified example of

>>> print (output tokens) <. |anguage translation when one token encoding an English
tensor ([ [ 50, 29941, 402, 11571717) word is sought/trained to connect to exactly one other

>>> print (tokenizer.vocab size) token that encodes the corresponding Italian word
50257

* In this example, both English and Italian phrases are
represented by 4 tokens, each token as a number is from
Don't close the python session yet, we continue on the next slide ... 1'10 50256, .0 ’.S reserved for gmp ty token (masked in
model predictions - as you will see further...)
* As can be seen the word "GPT" is represented presented
by 2 tokens (402 and 11571)




Tokens & Embedding vectors: try yourself

... continued from the previous slide

>>2>

>>> 1mport torch as tr

We choose embedding
dimension to be 512 - as in the

>>> embedding layer = tr.nn.Embedding(tokenizer.vocab size, 512) ) original "Attention is all you
>>> 1nput embeddings = embedding layer (1nput tokens) need" paper (GPT-1 had 768)
>>>

>>> print (1nput embeddings)

tensor ([ [ |

1.1413, -0.
-0.0045, -1.
- 0.2227, 2.
0.0736, -1.

0440, -0.0919,
8470, 2.2914,
0014, -0.1832,
0592, -0.2594,

gréd_fn=<EmbeddingBackwardO>)

>>2>

>>> print (input embeddings.shape)
torch.Size([1, 4, 512]

)

VA BN

Batch size (number of token
sequence in a batch)*

Token sequence
length

Embedding vector
dimension

.5301, -0.1368, -1.3453],
.6478, 2.7773, 1.2885],
.9270, -0.4772, -0.94247,
.0837, -0.9624, 0.1389]111,

— = PO

Question: why do we need a dedicated PyTorch Embedding layer and why
Linear is not OK for this job?

Answer: this is all about data format, .1 near would fit the purpose if each
toked would be presented in the format of [0,0,0, ...1, 0,0]
sparse vectors (of dimension vocab si ze) which is clearly not practical ...

* Tensor operations are supposed to be done in batches (e.g. batches of token sequences) for efficient parallel execution on the hardware (e.g. GPU). In our case we have only one sequence of
four tokens, which explains the first dimension



A trivial Language Model: training

Create anewfile fit languate model eng it.py andrunit:

import torch as tr
from transformers import AutoTokenizer

# tokenize data

tokenizer = AutoTokenilzer.from pretrained("gpt2l")
x = tokenizer ("I am GPT", return tensors="pt").lnput ids
y = tokenizer ("Sono GPT", return tensors="pt").lnput 1ids

# define the model, loss and optimizer for training
model = tr.nn.Sequential (
tr.nn.Embedding (tokenizer.vocab size, 512),
tr.nn.Linear (512, tokenizer.vocab size))
criterion = tr.nn.CrosskEntropylLoss (ignore index=0)
optimizer = tr.optim.Adam(model.parameters())

# fit the model
model.train() # training mode on
for 1 1n range (30) :
y pred = model (x)
loss = criterion(y pred.view (-1, tokenizer.vocab size), y.view(-1))
# to understand the above view(...) transformation - uncomment the below:
# print (y pred.shape, y.shape)
# print (y pred.view (-1, tokenizer.vocab size) .shape, y.view(-1) .shape)
loss.backward/()
optimizer.step ()
print ("Loss:",loss.item())
tr.save (model.state dict (), 'model eng 1t.pth')



A trivial Language Model: training

Create anewfile fit languate model eng it.py andrunit:

import torch as tr
from transformers import AutoTokenizer

# tokenize data

tokenizer = AutoTokenilzer.from pretrained("gpt2l")
x = tokenizer ("I am GPT", return tensors="pt").lnput ids
y = tokenizer ("Sono GPT", return tensors="pt").lnput 1ids

The view (.. .) operationis needed to reduce batch and sequence

4 define the model, 1 d optimi for traini AN .
S e e e e e e dimensions into a single one for the CrossEntropyLoss to

model = tr.nn.Sequential ( ) ) . . .
tr.nn.Embedding (tokenizer.vocab size, 512), understand” the data(try uncommenting the corresponding print
tr.nn.Linear (512, tokenizer. vocag_size) ) statements)*:

criterion = tr.nn.CrosskEntropylLoss (ignore index=0)

optimizer = tr.optim.Adam(model.parameters/()) torch.Size([1, 4, 50257]) torch.Size([1l, 4])

torch.Size([4, 50257]) torch.Size([4])

# fit the model
model.train() # training mode on
for 1 1n range (30) :
y pred = model (x)
loss = criterion(y pred.view (-1, tokenizer.vocab size), y.view(-1))
# to understand the above view(...) transformation - uncomment the below:
# print (y pred.shape, y.shape)
# print (y pred.view (-1, tokenizer.vocab size) .shape, y.view(-1) .shape)
loss.backward/()
optimizer.step ()
print ("Loss:",loss.item())

tr.save (model.state dict(), 'model eng it.pth') *Note that CrossEntropyLoss of PyTorch automatically acts
as SparseCategoricalCrossentropy of Tensorflow



A trivial Language Model: inference

Create anew file eval languate model eng it.py

import torch as tr
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from pretrained("gpt2") # tokenizer instance

model = tr.nn.Sequential ( # define the model
tr.nn.Embedding (tokenizer.vocab size, 512),
tr.nn.Linear (512, tokenizer.vocab size)

)
model.load state dict(tr.load('model eng it.pth', weights only=True)) + load trained model welights

model.eval () # set model 1in the evaluation mode

Now let'srunit: python -i eval languate model eng it.py

>>> in data = tokenizer ("I am", return tensors="pt").input ids
>>> out data = model (in data)

>>> print (out data.shape)

>>> print (out data)

torch.Size ([1, 2, 50257])
tensor ([[[-6.3526, -5.8213, -5.9804, ..., —6.5088, -5.9832, -6.1094],[-6.8054, -6.9886, -5.6512, C e,

-0.5140, -0.8379, -6.2870]]],9grad fn=<ViewBackward0>)

In principle we could run the Sof tmax transformation to convert the vector of dimension
50257 into the actual probabilities, however it is not needed since we are basically
interested in the order only (Softmax is monotonic function) - at which position is the
highest value?



A trivial Language Model: inference

Create anew file eval languate model eng it.py

import torch as tr
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from pretrained("gpt2") # tokenize data

model = tr.nn.Sequential ( # define the model
tr.nn.Embedding (tokenizer.vocab size, 512),
tr.nn.Linear (512, tokenizer.vocab size)

)
model.load state dict(tr.load('model eng it.pth', weights only=True)) +# load trained model weights

model.eval () # set model 1in the evaluation mode

Now let'srunit: python -i eval languate model eng it.py

>>> in data = tokenizer ("I am", return tensors="pt").input ids
>>> out data = model (in data)

>>> print (out data.shape)

>>> print (out data)

torch.Size ([1, 2, 50257])
tensor ([[[-6.3526, -5.8213, -5.9804, ..., —6.5088, -5.9832, -6.1094],[-6.8054, -6.9886, -5.6512, C e,

-0.5140, -0.8379, -6.2870]]],9grad fn=<ViewBackward0>)

>>> out indexmax = tr.argmax (out data,dim=-1)
>>> print (out indexmax.shape)

torch.Size ([1, 2])
>>> print (out indexmax)

tensor ([ | 50, 29941117])
>>> print (tokenizer.batch decode (out indexmax)) ‘[
— -——— I
"' Sono ' ] J Et voila!

We see our Eng-It model in action!



A trivial Language Model: inference (recap)

Update eval languate model eng it.py tohave everything in one place (will need it for later...)

import torch as tr
from transformers 1mport AutoTokenizer

tokenizer = AutoTokenizer.from pretrained("gpt2") # tokenize data

model = tr.nn.Sequential ( # define the model
tr.nn.Embedding (tokenizer.vocab size, 512),
tr.nn.Linear (512, tokenizer.vocab size)

)
model.load state dict(tr.load('model eng it.pth', welghts only=True)) # load trained model

welghts
model.eval () # set model 1in the evaluation mode

# example of model inference

1n data = tokenizer ("I am", return tensors="pt").input 1ds
out data = model (1n data)
out 1ndexmax = tr.argmax (out data,dim=-1)

human readable output = tokenizer.batch decode (out 1ndexmax)



Coming back to Transformers...

Now as we (hopefully) have some intuition regarding the
Language models, we can get back to the Transformers.
Transformer is a model architecture. In the previously
considered example we used a trivial model architecture with 2
layers only:

* Embedding (tokens --> embedding vectors)

* Linear (embedding vectors --> token probabilities)

Q Q Q Q Qs

ALAL AL AL AL AL

model = tr.nn.Sequential (
tr.nn.Embedding (tokenizer.vocab size, 512),

tr.nn.Linear (512, tokenizer.vocab size)



Coming back to Transformers...

Now as we (hopefully) have some intuition regarding the
Language models, we can get back to the Transformers.
Transformer is a model architecture. In the previously
considered example we used a trivial model architecture with 2
layers only:

* Embedding (tokens --> embedding vectors)

_> * Transformer

* Linear (embedding vectors --> token probabilities)

Q Q Q Q Qs

ALAL AL AL AL AL

model = tr.nn.Sequential (
tr.nn.Embedding (tokenizer.vocab size, 512),

# Transofmer

tr.nn.Linear (512, tokenizer.vocab size)



Transformers are about the attention matrix

Cross-attention Self-attention
come . how .
S1 are
Q glaciali Q glacier .

Caves

formed .

formano .

how
are
glacier
caves
formed
how
are
glacier
caves
formed

K

Q = query; K = key See also: https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/

Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.htm|



https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html
https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html

Transformers are about the attention matrix

Cross-attention Self-attention

Sl are

Q
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grotte- . .\ caves

formano For e?(ample, think of this Pt
specific number as a dot

product of embedding vector
corresponding to ‘grotte’ and

the one corresponding to
formed’

how
are
glacier
caves
formed
how
are
glacier
caves
formed

K

Q = query; K = key See also: https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/

Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.htm|



https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html
https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html

Transformers are about the attention matrix

Cross-attention Self-attention
come ‘ how
S1 are
Q glaciali Q glacier
grotte- caves
formano formed
2 8 B 8 g 2 2 B 8 g
= S z E s 5z E
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Wb Q — st Q —
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K

K

Both cross-attention and self-attention is used in Language translation problems (original model in "Attention is all you need" paper)



Transformers are about the attention matrix

Cross-attention Self-attention
coxae how
S1 are
Q glaciali Q glacier

grotte- caves

formed .

formano

glacier
cave
fefmed

In chatbot models like GPT only self-attention is used
(unless it deals with translation)



Transformers are about the attention matrix

For clarity, let's not consider cross-attention and
focus on self-attention only (all basic concepts
are valid ~ identical for both cases)

Self-attention

how

arc

Q glacier

Caves

formed

In chatbot models like GPT only self-attention is used
(unless you ask it for translation of something)



Transformers are about the attention matrix

Input sequence of embeddings (e.g. "how", "are", "glacier”, "caves", "formed") is transformed through attention matrix (attention block):

| [ om0

are are
— Q glacier glacier —
caves caves:

formed formed
o
=

X K V

are

glacier
caves 1

formed

X - input; for now, think of Q = K = V = X (sequence of input embedding vectors)



Transformers are about the attention matrix

Input sequence of embeddings (e.g. "how", "are", "glacier”, "caves", "formed") is transformed through attention matrix (attention block):

This is a scalar

/ \ how

how
arc arc
—) Q glacier ‘ glacier —

caves: caves

. formed . ‘ N - formed I .
°0 2
X K v Embedding-space vectors (e.qg.
dimension=512 as in our previous example)

X - input; for now, think of Q = K = V = X (sequence of input embedding vectors) Zgg(gﬁlr;f};’ &Trgggﬁot: 7;;’;%5%’?%’2?;5? C)e



Transformers are about the attention matrix

Input sequence of embeddings (e.g. "how", "are", "glacier”, "caves", "formed") is transformed through attention matrix (attention block):

For example, let's consider the value of
first element, it equals:

arc ar
| | OK (how—-how) Embed (how) +
; ; OK (how—-are) Embed (are) +
_} Q glac1er- glac1e — OK (how-glacier) Embed (glacier) +
OK (how—-caves) Embed (caves) +
caves- caves QK (how-formed) Embed (formed) +
formed forme
f L — ; )
2 & 8 O 9
0 i Scalar (element of Embedding vector
QK matrix)

Let's call it QK matrix



Transformers are about the attention matrix

Input sequence of embeddings (e.g. "how", "are", "glacier”, "caves", "formed") is transformed through attention matrix (attention block):

S Output of the Transformer - same
structure as the input: a sequence
P of embedding-space vectors (5
vectors in our example) but...

— Q o Each "embedding" is not merely
| \ the one corresponding to the
—_— p— ' — ~ TR a— word/token itself, but is rather a
sum of all original embeddings
weighted according to their
correlation/attention

X K vV
A

Attention Transformation block (in analogy with convolutional filter of CNN)



Transformers are about the Attention matrix

Input sequence of embeddings (e.g. "how", "are", "glacier”, "caves", "formed") is transformed through attention matrix (attention block):

Output of the Transformer - same
. structure as the input: a sequence

of embedding-space vectors (5
vectors in our example) but...

Each "embedding" is not merely
the one corresponding to the
word/token itself, but is rather a
sum of all original embeddings
weighted according to their
correlation/attention

X K V
T 1

Attention Transformation block (in analogy with convolutional filter of CNN)




Attention: queries (Q), keys (K), values (V)

Now where is the catch?

 Before we considered Q=K=V = (sequence of embedding vectors each one corresponding to an input token)
= | that would be the case, the only way were model could learn something is in the Embedding layer (the one that
translates tokens into embedding vectors) - which would barely be enough for any real-life application

* |n reality is that Q, K, V are not merely the input embeddings, but linearly-transformed input embeddings!

Q=WoX K=WgX V=W¢X

Wq, Wk, Wv -n X n matrices where n is the number of dimensions in embedding space (512 x 512 in our example)

X - input embeddings (5 x 512 matrix in our example of "now’, "are’, "glacier”, ‘caves’, "formed")
Q - query-transformed "embeddings” (5 x 512 matrix ...)

K - key-transformed "embeddings” (5 x 512 matrix ...

V - value-transformed "embeddings” (5 x 512 matrix ...)



Attention: queries (Q), keys (K), values (V)

Now where is the catch?
 Before we considered Q=K=V = (sequence of embedding vectors each one corresponding to an input token)
= | that would be the case, the only way were model could learn something is in the Embedding layer (the one that
translates tokens into embedding vectors) - which would barely be enough for any real-life application

* |n reality is that Q, K, V are not merely the input embeddings, but linearly-transformed input embeddings!

Important!
The Wq, Wk, Wy (query, key, value)

Q=WoX K=WkX V=WvX | | mod inmaogywir

convolutional filters of CNN) - that is where
the model encodes much of its knowledge!

In PyTorch (given our example) the three matrices are implemented with the Linear layers:

W Q = tr.nn.Linear (512, 512)
W K = tr.nn.Linear (512, 512)
W V = tr.nn.Linear (512, 512)




Attention: queries (Q), keys (K), values (V)

* Okay, the transformer takes as an input a sequence of embedding corresponding to tokens (how', ‘are’, ‘glacier’, ‘caves’, "formed’)
* What do we want to predict? The answer is: for every input token we train the model to predict next one in the sequence...

how how " how
are are are
glacier glacier glacier ?
Ccaves: caves- l Ccaves: ’
formed formed formed
'z 2 5 3 3
50 2
X Wk-Y Wy X

Input embeddings Transformer



Transformer training: input & output

* Okay, the transformer takes as an input a sequence of embedding corresponding to tokens (how', ‘are’, ‘glacier’, ‘caves’, "formed’)
* What do we want to predict? The answer is: for every input token we train the model to predict next one in the sequence...

how how how:
arc
are are are ;
glacier
lacier o -
g —_— WQ . X glacier glacier — —
caves , | —
' e e formed
2 & &8 8
20
X Wk X Wy-X Output embeddings
Input embeddings Transformer

We removed the last token/embedding from the input ("formed"), while the target output (used to
trained the model) is the same as input but shifted by one position ("how" removed in the beginning).
Remember: number if input and output tokens in self-attention models is always the same!



Transformer training: input & output

* To avoid the model "looking into the future” at training, we mask elements below the main diagonal in the attention matrix

|

how-

arc

glacier

caves

\ how

arc

X

| WQ . X glacier

caves

\ how \
are

are

| glacier
l | glacier b caves
Layes: formed |
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an
Wi-X Wy-X Output embeddings

Input embeddings Transformer



Transformer training: input & output

* To avoid the model "looking into the future” at training, we mask elements below the main diagonal in the attention matrix

arc

arc are nn arc ;

glacier
lacier - n -
g WQ . X glacier . glacier —l caves-
e — I caves formed

2 2 08 8
o))
X Wi-X Wy-X Output embeddings
Input embeddings Transformer

~or example, the output of transformer for the word "glacier” will be a weighted sum of embeddings of word “glacier” itself and the words preceding in the
sequence (‘are’'how") but not those after (‘caves’). Otherwise, the model will just pick up (learn) to use the features of a word/token that comes right after - it
will trivially work to predict n-1 tokens out of n, but will yield nonsense for the last one (as it has no information about the word that come after)



Transformer inference: input & output

During the inference, we ask model to iteratively predict one toke at at time:

e F'1rst call of the model:
= Inputs: ["how'"]
= Qutputs: ["are"]

e Second call of the model:
= Inputs: ["how", "are" ]
= Outputs: ["are", "glacier" |

e Third call of the model:
— Inputs : ["how" , "are" , "glacier" ]
= OQutputs: ["are", "glacier", "caves" ]

e Fourth call of the model:
= Inputs: ["how", "are", "glacier", "caves" ]
= Qutputs: ["are", "glacier", "caves", "formed" ]

etc. (we can, 1n principle, continue forever ...)



Transformer inference: input & output (cross-attention)

During the inference, we ask model to iteratively predict one toke at at time:

e First call of the model:

- Inputs: ["how", "are", '"glacier", "caves'", "formed"],
= OQutputs: ["come']
e Second call of the model:
= Inputs: ["how", "are", "glacier", '"caves'", "formed"], [<s>, "come'"]
= Outputs: ["come",6"si" ]
e Third call of the model:
= Inputs: ["how", "are", "glacier", '"caves'", "formed"], [<s>, "come",
= QOutputs: ["come",b"si", I'"glaciali"]
e Fourth call of the model:
= Inputs: ["how", "are", "glacier", '"caves", "formed"], [<s>,
= QOutputs: ["come",'"si", '"glaciali", "grotte'"]

e Fifth call of the model (we don't predict, we translate the sentence):
= Inputs: ["how", "are", "glacier", '"caves'", "formed"], [<s>,
= QOutputs: ["come","si", "glaciali", "grotte","formatto"]

e Fifth call of the model (we don't predict, we translate the sentence):
= Inputs: ["how", "are", "glacier", '"caves'", "formed"], [<s>,
= QOutputs: ["come",b"si", 'glaciali", "grotte","formatto", <e>]

If trained well,
and the English sentence translation 1s completed

"come","s1i","glaciali",

"come","s1i","glaciali",

Special start-of-sequence token - it is
required since, by construction, one Italian

input token will correspond to exactly one
[<s>] / Italian output token (number of English
S

inputs/tokens can be whatever, in the end of
translation the number of Italian tokens
might be different from the English ones)

"si"]

"come","si","glaciali"]

"grotte'"]

"grotte", "fomratto"]

the model will likely vyield a stop-sequence token telling us that 1t no more tokens are needed



Enough (almost) theory, let's get
back to coding...



Attention block code

Code adapted from: https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch

Create transformer torch.py :

import torch as tr

import math

class Attention(tr.nn.Module) :
def 1nit (self, d model):

super (). 1nit ()

# Linear layers for transforming inputs We aIready know W_k, W_q, W_v
self.W g = tr.nn.Linear (d model, d model) # Query transformation matrices

self.W k = tr.nn.Linear (d model, d model) # Key transformation

self.W v = tr.nn.Linear (d model, d model) # Value transformation

self.d model = d model & embedding dimension

e Calculate attention (QK) matrix

« Apply mask (for example QK
elements below the main diagoanal)

 Obtained QK matrix embedding
vector (divided by d model to

def scaled dot product attention(self, Q, K, V, mask=None):
# Calculate attention scores
attn scores = tr.matmul (Q, K.transpose (-2, -1)) / math.sgrt (self.d model)

# Apply mask (for example the under-diagonal elements)

1f mask 1s not None: attn scores = attn scores.masked fill (mask==0,-1e9) , , :

normalize typical value and avoid
# Softmax 1s applied to obtain attention probabilities growth with Iarge d_model)
attn probs = tr.softmax (attn scores, dim=-1)

 Softamax is applied to normalize to

# Multiply by values to obtain the final output QK matrix element to probabilities
return tr.matmul (attn probs, V)

def forward(self, x, mask=None) :

# Apply linear transformations and split head

Q = self.W g(x) .

K = self.W k(x) Propagate our input sequence
V = self.W v (x) through the attention block

i

Perform scaled dot-product attention and return
attn output = self.scaled dot product attention(Q, K, V, mask)
return attn output


https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch

Attention block code: test

Create test attention block torch.py

import torch as tr
from transformer torch import Attention
from transformers 1mport AutoTokenizer

tokenizer = AutoTokenizer.from pretrained("gpt2")
attentionblock = Attention(512)

We generate a batch of random data 32

x = tr.randint (1, tokenizer.vocab size-1, (32, 100))
print (x.shape) sequences of 100 tokens each. Then
x _embed = tr.nn.Embedding (tokenizer.vocab size, 512) (x) we convert it to embedding vectors

print (x embed.shape)

We process the embedding vectors of our input data
through the attention block, in the end we should get the
output sequence if the same dimension

X attention = attentionblock(x embed)
print (x embed.shape)

python test attention block torch.py

torch.Size ([32, 100]) ?
torch.Size ([32, 100, 512]) .
torch.Size ([32, 100, 512])



Fxercise (5 mins): understanding of the Attention

Look inside the function scaled dot product attention ofthe Attention class
= [nsert print statements to show the dimension (shape) of 0, K, Vv, attn scores, attn probs
... Do you understand those?
= Print the values of attn scores and attn probs matrices

... Does the second one look like probabilities?



Multi-head attention

* Inreality, each transformer block has multiple attention heads. What does that mean? Consider our example:

how \ how \ how \

are are are
glacier W X glacier | glacier
Ccaves: caves- Ccaves:

|

X Wk X Wy-X

|

—
how

are

glacier
caves



Multi-head attention

* Inreality, each transformer block has multiple attention heads. What does that mean? Consider our example:

how how how
are are are
glacier glacier glacier
— Wq- X
Ccaves: caves- Ccaves:
= & ) O
o1}
X Wk-X Wy-X

Each element here is an embedding vector (dimension 512 in our example)



Multi-head attention

Attention Head 1 Attention Head 2 Attention Head 8

1 T

"caves" - [FO.34, 1.31, ....,1l... ) ey eeey eeddy eee, 0.93, =-0.57]

512 numbers

Vectors in embedding space are split into equal size parts processed separately each by its own Transformer (Key-Query-
Value transformation), which is called a "head". In a canonical "Attention is all you need" paper, there are 8 heads per
attention block, which makes the dimension of sub-embedding for each head 512/8 = 64.



Multi-head attention

Attention Head 1 Attention Head 2 Attention Head 8

1 T

"caves" - [FO.34, 1.31, ....,1l... ) ey eeey eeddy eee, 0.93, =-0.57]

512 numbers

Vectors in embedding space are split into equal size parts processed separately each by its own Transformer (Key-Query-
Value transformation), which is called a "head". In a canonical "Attention is all you need" paper, there are 8 heads per
attention block, which makes the dimension of sub-embedding for each head 512/8 = 64.

In practice, the algorithm is as follows:

1. Apply key/value/query transformation to each embedding

2. Split embeddings into multiple equal-length parts (8 pars, 64 each - in the original paper)

3. Apply attention transformation for each sub-embedding (head) (8 attention blocks)

4. Combine the outputs of 8 transformations back to the original-size embedding vector (dimension 512 in our example)




Multi-head attention

Main advantage if multi-head attention is that at the ~same computation complexity, the model can encode different attention patterns
in through different heads in one attention block

how how —
are - .
glacier glacier ” glacier
caves: — o
= L H %
o0
A Wi-X Wy-X

For example, the first head may converge towards focusing on correlation in the beginning and the end of the phrase, putting
more weight to those ("how" and "caves" in our example), while the other head may focus more on attention patters between
subsequent words ("are”, "glacier”) etc. Remember that these attention patterns are encoded in the Wq, Wk, Wy, matrices...

)



Multi-head attention block: code

Now let's update the transformer torch.py code (make a back-up copy of it before!):

#class Attention (tr.nn.Module) : # before
class MultiHeadAttention (tr.nn.Module) : # now
#def  init (self, d model): # before
def  init (self, d model, num heads): # now
super().__init () | o o We need to define number of heads
everything before remains the same, add the following in the end of init N e . 1 .
self.num heads = num heads # Number of attention heads o o and ?ISO to Create.a mixing™ matrix
self.d.__k_= d model /7'num;heads # Dimension of each head's key, query, value to mix the heads in the end

self.W o = tr.nn.Linear(d model, d model) & Mixing matrix (we'll understand 1t later)

def scaled dot product attention(self, Q, K, V, mask=None):
everything the same except for replacing "d model" with "d k":
#attn scores = tr.matmul (Q, K.transpose (-2, -1)) / math.sqgrt(self.d model)
attn_gcores = tr.matmul (Q, K.transpose (-2, -1)) / math.sqrt(self. d_f) Replace "d_model" with "d_k"

def forward(self, x, mask=None) :

add the following code to split heads after the Q,V,K definition

#

Q = self.split heads(self.W q(Q)) We first split the Q, K, V vectors into
K = self.split heads(self.W k(K)) parts (8 parts 64 length each in our
V = self.split_heads(self.W_v(V)) example) to be processed by 8
independent Attention

# add the following after the "attn output" definition and before "return": transformations

attn output = self.combine heads(attn output) # combine heads

attn output = self.W o(attn output) # mix heads

Then we combine back the output

contiunued on the next pate (we need to 1mplement "split heads" and "comblne heads" methods )



Multi-head attention block: code

edit transformer torch.py (continued from the previous slide):

i

continued from the previous page

# add these methods

def

def

split heads(self, x):

# Reshape the input to have num heads for multi-head attention

batch size, seq length, d model = x.shape

output = x.view(batch size, seqg length, self.num heads,
print ("Tensor shape before splitting heads",
print ("Tensor shape after splitting heads",

return output

comblne heads (self, Xx):

X .shape)
output.shape)

# Combine the multiple heads back to original shape

batch size, , seqg length, d k = x.shape

output = x.transpose(l, 2).contiguous ()

output = output.view(batch size, seq length,
print ("Tensor shape before comblining heads",
print ("Tensor shape after combining heads",

return output

self.d model)
X .shape)
output.shape)

self.d k) .transpose(l, 2)

P

We need these print stamtants in order to

understand what does the split heads and
combine heads code do. After we do all the
tests, you can/should remove or comment those




Multi-head attention block: code (recap and test

transformer torch.py:

def

def

def

def

import torch as tr

import math

class MultiHeadAttention (tr.nn.Module) :
def

~init (self, d model, num heads):
super (). 1init ()

self.W g = tr.nn.Linear (d model, d model)
self.W k = tr.nn.Linear (d model, d model)
self.W v = tr.nn.Linear (d model, d model)

self.d model = d model

self.num heads = num heads

self.d k = d model // num heads

self.W o = tr.nn.Linear (d model, d model)

scaled dot product attention(self, Q, K, V, mask=None):

attn scores = tr.matmul (Q, K.transpose(-2, -1)) / math.sqgrt(self.d k)

1f mask 1s not None: attn scores = attn scores.masked fill (mask==0,-1e9)

attn probs = tr.softmax(attn scores, dim=-1)

return tr.matmul (attn probs, V)

forward(self, x, mask=None) :

self.W g(x)
self.W k(x)
self. W v(x)
self.split heads(self.W g(Q))
self.split heads(self.W k(K))
self.split heads(self.W v (V))

< RIO S RO

attn output self.scaled dot product attention(Q, K, V, mask)
attn output self.combine heads (attn output)
attn output self.W o(attn output)

return attn output

split heads (self, x):

batch size, seq length, d model = x.shape

output = x.view(batch size, seq length, self.num heads, self.d k).transpose(l, 2)
print ("Tensor shape before splitting heads", x.shape) # remove me later!
print ("Tensor shape after splitting heads", output.shape) # remove me later!
return output

combine heads (self, x):

batch size, , seq length, d k = x.shape

output = x.transpose(l, 2).contiguous()

output = output.view(batch size, seq length, self.d model)

print ("Tensor shape before combining heads", x.shape) # remove me later!
print ("Tensor shape after combining heads", output.shape) # remove me later!
return output

In test attention block torch.py replace:

from transformer torch import MultiHeadAttention

attentionblock = MultiHeadAttention (512, 8)

Run the test;

python test attention block torch.py :

Tensor shape before splitting heads torch.Size([32, 100, 512])

Tensor shape after splitting heads torch.Size([32, 8, 100, 064])
Tensor shape before combining heads torch.Size([32, 8, 100, 64])
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Multi-head attention block: code recap and test

transformer torch.py:

import torch as tr
import math
class MultiHeadAttention (tr.nn.Module) :
def  init (self, d model, num heads):

super (). 1init ()

self.W g = tr.nn.Linear (d model, d model)
self.W k = tr.nn.Linear (d model, d model)
self.W v = tr.nn.Linear (d model, d model)

self.d model = d model

self.num heads = num heads
self.d k = d model // num heads
self.W o = tr.nn.Linear (d model, d model)

def scaled dot product attention(self, Q, K, V, mask=None):

attn scores = tr.matmul (Q, K.transpose(-2, -1)) / math.sqgrt(self.d k)
1f mask 1s not None: attn scores = attn scores.masked fill (mask==0,-1e9)

attn probs = tr.softmax(attn scores, dim=-1)

MultiHeadAttention is a building block of a Transformer model.
. Now let's build the model itself - which is, roughly speaking, just
- seltw <€ 3 sequence of multiple instances of MultiHeadAttention stacked

self.W k(x)

L e e m o) one after another (sort of convolutional filters in a CNN)...

self.split heads(self.W k(K))
= self.split heads(self.W v (V))

return tr.matmul (attn probs, V)

< RIO S RO

attn output = self.scaled dot product attention(Q, K, V, mask)
attn output = self.combine heads (attn output)

attn output = self.W o(attn output)

return attn output

def split heads(self, x):

batch size, seq length, d model = x.shape

output = x.view(batch size, seq length, self.num heads, self.d k).transpose(l, 2)
print ("Tensor shape before splitting heads", x.shape) # remove me later!
print ("Tensor shape after splitting heads", output.shape) # remove me later!

return output
def combine heads(self, x):

batch size, , seq length, d k = x.shape

output = x.transpose(l, 2).contiguous()

output = output.view(batch size, seq length, self.d model)

print ("Tensor shape before combining heads", x.shape) # remove me later!
print ("Tensor shape after combining heads", output.shape) # remove me later!
return output




Transformer model: architecture

Original cross-attention Transformer Outout

from the "Attention is all you need ” Probabilties
paper https://arxiv.org/abs/1706.03762 ( Soﬂ'max
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See the full code of cross-attention tutorial in: https://
www.datacamp.com/tutorial/building-a-transformer-with-py-torch
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Transformer model: architecture
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Transformer model: architecture

Self-attention-only (decoder-only)
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Transformer model: architecture

Self-attention-only (decoder-only)
Transformer used in GPT-like models
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Transformer layer: code

Edit transformer torch.py (add the following inthe end):

class TransformerlLayer (tr.nn.Module) :
def 1nit (self, d model, num heads, d ff, dropout):

super (). 1init ()
self.self attn = MultiHeadAttention (d model, num heads)
self.norml = tr.nn.LayerNorm(d model)
self.fcl = tr.nn.Linear(d model, d ff)
self.fc2 = tr.nn.Linear(d ff, d model)
self.relu = tr.nn.RelLU()

self.norm3 = tr.nn.LayerNorm(d model)
self.dropout = tr.nn.Dropout (dropout)

def forward(self, x, mask):
attn output = self.self attn(x, mask)
x = self.norml (x + self.dropout (attn output))
ff output = self.fc2(self.relu(self.fcl(x)))

x = self.norm3(x + self.dropout (ff output))
return x



Transformer layer: code

Edit transformer torch.py (add the following inthe end):

class TransformerlLayer (tr.nn.Module) :
def 1nit (self, d model, num heads, d ff, dropout):
super (). 1init ()

self.norml = tr.nn.LayerNorm(d model)
self.fcl = tr.nn.Linear (d model, d ff)

self.fc2 = tr.nn.Linear(d ff, d model)
self.relu = tr.nn.RelLU()

self.norm3 = tr.nn.LayerNorm(d model)
self.dropout = tr.nn.Dropout (dropout)

def forward(self, x, mask):

x = self.norml (x + self.dropout (attn output))

ff output = self.fc2(self.relu(self.fcl(x)))

x = self.norm3(x + self.dropout (ff output))
return Xx

Pay attention to flow of non-changed input
that is always added to the output
(inspired by ResNET convolutional nets...)



Positional Encoding

So far we never mentioned positional encoding... How does the Attention transformation know about relative positions of tokens/
embedding in the sequence? A neat trick to facilitate positional encoding is to add to the embedding vector another vector that
encodes the position (Positional Encoding a.k.a. Positional Embedding). This is done before the data is fed to transformer layers.

"caves" embedding - [-0.34, N 0.93, -0.57]

encoding for position 3 - [ 0.14, -0.99, ... ..,+..., ey eeey eeey, .. 0.0003, 1.00]

Position encoding vector:

sin(pos/1000), for i=0.2,... where
PEpos, 1) = { cos((l;os/ 1000(:)@) for i=13 i=0, .., d-1
T d - embedding dimension (512 in our example)
pos =0, ..., max_segence_length >

Why 100007 — Wide range of wavelets covering patterns from short to long distances.
For example, for small i the period is close to ~1 - short dependancies, for the largest i period gets very
high - close to 10000 (long dependencies)



Positional Encoding

Why this specific definition is used?

1. Unique representation of each position
2. Values limited in +-1 range — good for NN
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See also:

https://medium.com/@hirok4/understanding-transformer-
sinusoidal-position-embedding-7cbaaf3b9f6a

Positional embedding value

3. Encodes relative distance*:

Position

Dot product of two positional embeddings

Position

* Dot product between between two positional vectors is only
defined by their relative position difference


https://medium.com/@hirok4/understanding-transformer-sinusoidal-position-embedding-7cbaaf3b9f6a
https://medium.com/@hirok4/understanding-transformer-sinusoidal-position-embedding-7cbaaf3b9f6a

Positional Encoding: code implementation

Edit transformer torch.py (add the following inthe end):

class PositionalEncoding(tr.nn.Module) :

def 1nit (self, d model, max seq length):
super (). 1init ()
pe = tr.zeros(max seq length, d model)
position = tr.arange (0, max seq length, dtype=tr.float) .unsqueeze (1)

div term = tr.exp(tr.arange(0, d model, 2).float() / d model * -(math.log(10000.0)))
pel:, 0::2] = tr.sin(position * div term)

pel:, 1l::2] = tr.cos(position * div term)

self.register buffer('pe', pe)

def forward(self, Xx):
return x + self.pel:x.s1ze(l)]

Let's testit,run python -i transformer torch.py:

>>> p = PositionalEncoding (512, 100) # embedding dimension 512, maximum 100 tokens in a sequence
>>> x = tr.zeros (100, 512) # 100 embedding-size (512) vectors with with initiated with zeros
>>> position embeddings = p(X) # this is a sum of embedding itself + position, however our embeddings are just zeros...
>>> print (position embeddings[0])
tensor([{0., 1., 0., 1., 0., ... 1., 0., 1.1)

>>> print (position embeddings([1l])
tensor ([8.4147e-01, 5.4030e-01,..., 1.0366e-04, 1.0000e+007)



Putting Transformer pieces together

Incorporate everything into the final model = edit transformer torch.py (addthe following in the end):

class Transformer (tr.nn.Module) :

def  init (self, tgt vocab size, d model, num heads, num layers, d ff, max seqg length, dropout):
super (). 1nit ()
self.embedding = tr.nn.Embedding(tgt vocab size, d model)
self.positional encoding = PositionalEncoding(d model, max seq length)
self.layers = tr.nn.Modulelist ([TransformerlLayer (d model, num heads, d ff, dropout) for  1in range(num layers)])
self.fc = tr.nn.Linear (d model, tgt vocab size)
self.dropout = tr.nn.Dropout (dropout)

def generate mask(self, x):

mask nonzero = (x != 0).unsqueeze(l) .unsqueeze (3)

seq length = x.shapel[1l]

mask = (1 - tr.triu(tr.ones(l, seq length, seqg length), diagonal=1)) .bool ()
mask = mask nonzero & mask

return mask

def forward(self, x):
mask = self.generate mask (x)
x embedded = self.dropout (self.positional encoding(self.embedding(x)))

output = x embedded
for layer 1n self.layers:

output = layer (output, mask)
return self.fc(output)



Training Transformer with mockup data

Now let's test the code with a random data, create train transformer torch.py:

import torch as tr
from transformer torch import Transformer

tgt vocab size = 5000
d model = 512

num heads = 8

num layers = 06

d ff = 2048

max seq length = 100
dropout = 0.1

transformer = Transformer (tgt vocab size, d model, num heads, num layers, d ff, max seq length, dropout)

data = tr.randint(l, tgt vocab size, (64, max seq length)) 1 to tgt vocab size
X = datal:, :-1] # remember, we remove last token in the sequence

y = datal:, 1:] # the target for training is the same as the input but shifted by +1

criterion = tr.nn.CrossEntropylLoss (ignore index=0)

optimizer = tr.optim.Adam(transformer.parameters())

transformer.train ()
for epoch in range (10) :
optimizer.zero grad()
y pred = transformer (x)
loss = criterion(y pred.contiguous () .view (-1, tgt vocab size), y.contiguous().view(-1))
loss.backward()
optimizer.step ()
print (f"Epoch: {epoch+l}, Loss: {loss.item()}")

Run the test: python train transformer torch.py:

Epoch: 1, Loss: 8.696113586425781
Epoch: 2, Loss: 8.363970756530762



Training Transformer with real data

e Let's run it with some real text, create train transformer torch real.py:

import torch as tr

from transformer torch import Transformer

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from pretrained("gpt2")

tgt vocab size = tokenizer.vocab size
d model = 128

num heads = 8

num layers = 2

d ff = 2048

max seq length = 10

dropout = 0.1

transformer = Transformer (tgt vocab size, d model, num heads, num layers, d ff, max seq length, dropout)
with open('little prince.txt','r') as f: text = f.read()

data = tokenizer (text, return tensors="pt").input ids[0]

n seq = 32

data = datal[:n seg*max seq length]

data = data.view(n seg,max sedq length)

x = datal:, :—-1]

y = datal[:,1:]

criterion = tr.nn.CrossEntropyLoss (ignore index=0)
optimizer = tr.optim.Adam(transformer.parameters())

transformer.train ()
for epoch 1in range (50) :
optimizer.zero grad()
y pred = transformer (x)
loss = criterion(y pred.contiguous() .view (-1, tgt vocab size), y.contiguous() .view(-1))
loss.backward/()
optimizer.step ()
print (f"Epoch: {epoch+1l}, Loss: {loss.item()}")
tr.save (transformer.state dict (), './model.pth'")

« Create little prince.txt manually by copying the first fragment of text (few pages) from https://archive.org/stream/TheLittlePrince-English/littleprince_djvu.txt
* Runthetrainingpython train transformer torch real.py:

Epoch: 50, Loss: 0.7570830583572388



Transformer prediction/inference: word-by-word

* Create test transformer torch real.py:

# ============== copypasted from the training file before ============
import torch as tr

from transformer model import Transformer

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from pretrained("gpt2")
tgt vocab size = tokenizer.vocab size

d model = 128

num heads = 8

num layers = 2

d ff = 2048
max seq length = 10
dropout = 0.1

transformer = Transformer (tgt vocab size, d model, num heads, num layers, d ff, max seq length, dropout)
# ============== copypasted from the training file before ============

transformer.load state dict(tr.load('./model.pth'"))

transformer.eval ()

def predict next word(x):

print ("Input string: ", Xx)

data = tokenizer (x, return tensors="pt").input ids
output = transformer (data)

outtokens = tr.argmax (output,dim=-1)

return tokenizer.batch decode (outtokens[:,-1:]) [0]

* Runthecode: python test transformer torch real.py:

>>> x="The Little Prince"

>>>

>>> x+=predict next word (x)

Input string: The Little Prince

>>> x+=predict next word (x)

Input string: The Little Prince appears

>>> x+=predict next word (x)

Input string: The Little Prince appears to
>>> x+=predict next word(x)

Input string: The Little Prince appears to be
>>> x+=predict next word (x)

Input string: The Little Prince appears to be a



Transformers & Language Models: summary

» Language Model ~ a neural network that predicts word/token one at a time given the tokens before

» Embedding - key instrument in Language Models:
= representation of words/tokens with continues vectors in multidimensional space

» Transformers- the most powerful/efficient architecture for language models so far

» Attention transformation: central component of Transformers
= alike convolutional filter in CNNs

 (Can we use Transformers outside Language Models? - Of course!

R R B



Step 4: Visualizing the results

prediction of layer 9

\ Input
) l Al generated




Final Exercise: Transformer in physics (DAMPE case)

Consider applying our Transformer model to the analysis of DAMPE data. The goal
is to train the model to predict the development of particle interaction (shower) in
the detector.

= Consider DAMPE calorimeter image (14 x 22) as a sequence of (14) "words"

>>> from dampe import get dampe data, plot dampe event

= Can we predict next word based on the current and previous ones? >>> data = get_dampe data ()

>>> plot dampe event (datal['caloimages'][12])

NOTE: for simplicity, we have specifically chosen the task that somewhat resembles
the Language Model text sequence. However, Transformers can be equally applied to
any other task in physics, such as classification (identifying particle type from the
image), regression (predicting particle direction) etc.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0



Final Exercise: Transformer in physics (DAMPE case)

Consider applying our Transformer model to the analysis of DAMPE data. The goal
is to train the model to predict the development of particle interaction (shower) in
the detector.

= Consider DAMPE calorimeter image (14 x 22) as a sequence of (14) "words"

>>> from dampe import get dampe data, plot dampe event

= Can we predict next word based on the current and previous ones? >>> data = get dampe data ()

>>> plot dampe event (datal['caloimages'][12])

Implementation hints:
* No need for tokenizer

* In the Transformer model use Linear layerinstead of Embedding
to convert 22-pixel array ("word") into 512 vector

* Qutput of the model should be a set of 22 numbers, each representing
a signal in a pixel of subsequent layer (instead of probabilities) e P T PR PR

e Use L1Loss instead of CrossEntropyLoss




Step 1: Modity Transformer to DAMPE case

Create a DAMPE transformer file: cp transformer torch.py transformer torch dampe.py, editit

class Transformer (tr.nn.Module) :
def init (self, tgt vocab size, d model, num heads, num layers, d ff, max seq length, dropout):

Replace embedding layer with with a linear transform,

tgt vocab size will 22 in our case (one row of DAMPE image). We
still call it "embedding” since the concept is the same -- we map our
"word" (array of 22 numbers) into a vector in a higher-dimensional space

self.embedding = tr.nn.Linear (tgt vocab size, d model)

def generate mask(self, x):

seq length = x.shapel[l]

mask = (1 - tr.triu(tr.ones(l, seq length, seqg length), diagonal=1l)) .bool () Comment our the mask nonzero part of the
mask, since we will not have such thing as empty
return mask tokens. Also the input data format changed -

before we had one number that is a token ID, now
we have an array of 22 numbers which represents
a "word" (row of DAMPE pixels)



Step 2: Modify torch training code to DAMPE case

Create training code: cp run fit dampe torch.py run fit dampe torch transformer.py, editit:

from transformer torch dampe import Transformer
model = Transformer (tgt vocab size=22, d model=64, num heads=2, num layers=2, d ff=256, max seq length=13, dropout=0.)

Initiate the transformer model. We will use simpler version of the model
(compared to the original one), having 2 heads instead of 8, 2 layers instead of
6, d_model = 64 instead of 512, and d_ff=256 instead of 2048

x = datal'caloimages'][:,:-1,:] Unlike before, our images are now both input (x) and target (y). The difference is that in the input we remove
y = data['caloimages'][:,1:, =] the last word (last row of image, so now it has 13 rows, not 14). For the output, we shift the rows by +1
We change the shape of the data to remove the last dimension/mode, so that instead of
X = tr.squeeze (x,dim=3) [n samples, n rows, n columns, 1] itbecomes
y = tr.squeeze(y,dim=3) [n samples, n rows, n columns]
Remember that the last axis was required for CNNs and represented the number of
image channels (1 in our DAMPE case, 3 in case of typical RGB color images)
tr.save (model.state dict (), './model transformer dampe.pth')

durmp (history, open('history transformer dampe.p','wb')) Don't forget to rename the model and

history to save ...



Step 3: Running torch training code

Set number of epochs to 10 in run fit dampe torch transformer.py andrun the code:

pyhon run fit dampe torch transformer.py
Processed valid: 99.9 elapsed:28.5s

loss: 0.03037726884624309 loss val: 0.026196253926468058
Processed valid: 99.9 elapsed:28.8s

loss: 0.022899649906208453 loss val: 0.019884693373397395 P S
Processed valid: 99.9 elapsed:28.6s 0.0275 -
loss: 0.01885740954044424 loss val: 0.017063721486019926

Processed valid: 99.9 elapsed:28.5s 0.0250 -
loss: 0.016504979629425022 loss val: 0.015762685200300167

Processed valid: 99.9 elapsed:28.6s oS
loss: 0.015107720140568331 loss val: 0.014291047355629973 —
Processed valid: 99.9 elapsed:28.6s

loss: 0.01421325003580015 loss val: 0.013719815335043514 0.0175 -
Processed valid: 99.9 elapsed:28.6s

loss: 0.013527586701636979 loss val: 0.013062344417227683 |
Processed valid: 99.9 elapsed:28.3s AR
loss: 0.012988901886007207 loss val: 0.01236261014600058

Processed valid: 99.9 elapsed:28.5s 0 2 4 6 8
loss: 0.012554175169350597 loss val: 0.012217357914122913

Processed valid: 99.9 elapsed:28.2s
loss: 0.012218388652761583 loss val: 0.011963540029519045

Depending on the hardware, it may take 5 to 10 minutes to finish. We have this time to discuss, ask question etc. If it takes significantly
onger on your hardware, either use small number of iterations (~2) - it will be enough for illustrative purposes, or just copy the already
ore-trained model from the DAMPE package you dowloaded earlier (see saved models folders there)




Step 4: Visualizing the results

cp run fit dampe torch transformer.py test dampe torch transformer.py,
edit: test dampe torch transformer.py:

fcriterion = tr.nn.LlLoss () # <--—- remove everything below this line (training loop etc.)
# ... add the following code instead:

from dampe 1mport plot dampe event
model.load state dict(tr.load("model transformer dampe.pth'"))

model .eval ()

def predict dampe layers (x, event 1d, predict from layer):
in 1mage = X[event id:event 1d+1l,:predict from layer] +# DAMPE image truncated after [predict from layer]
plot dampe event (i1n image[0], # show image before any prediction
title=f"1nput truncated 1mage (no predictions yet")

for 1 1n range (predict from layer,14): # loop over remaining layers
out image = model (in image) # predicted image shifted by +1
out last predicted layer = out image[:,-1:,:] # take the last layer of the predicted image and
in 1mage = tr.cat ( i add it to the input image
(1n 1mage, out last predicted layer),dim=1)
plot dampe event (i1n image.detach () .numpy () [0], # show image after one prediction step
title=f"prediction of layer {1}")
return i1n 1mage.detach () .numpy () [0]
event id = 12 # let's pick some event from the data
predict from layer = 9 # let's feed the model an image of 9 layers and see if it can predict the remaining 5
al generated image = predict dampe layers(x, event 1d, predict from layer)
plot dampe event (data['caloimages'] [event 1d],title="that 1s the original image")

plot dampe event (al generated image,title=f"that image 1s generated starting from layer {predict from layer}")



Step 4: Visualizing the results

input truncated image (no predictions so far)
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Step 4: Visualizing the results
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Step 4: Visualizing the results

prediction of layer 11
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Step 4: Visualizing the results
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Step 4: Visualizing the results
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Step 4: Visualizing the results

that is the original image
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