
AI Hands-On
By Andrii Tykhonov  [andrii.tykhonov@cern.ch]

ISAPP Lecce, Italy. June 12, 2025

Code: https://gitlab.cern.ch/andrii/mlregressioncalo/-/tree/tutorial

mailto:andrii.tykhonov@cern.ch
https://gitlab.cern.ch/andrii/mlregressioncalo/-/tree/tutorial


Preface: Installing Software



Operating system: Linux or MacOS
Supported and tested operating systems:  

• Linux (currently tested on Ubuntu, but others like Debian, Fedora etc. should work just fine) 

• Mac OS 

Note on Windows — while it is not forbidden in the tutorial — it is neither tested nor fully supported, so it will be at your 
own risk. If you have a windows machine, it is adviced to install Linux either as a second operating system or in a virtual 
environment (e.g. through VirtualBox). Please contact me in advance if you have a Windows machine and never worked 
with Linux before.

3



Software prerequisite: Miniconda is (almost) all you need!
Install Miniconda: 

• Follow the instructions in:  https://www.anaconda.com/docs/getting-started/miniconda/install#macos-
linux-installation 

• Use Terminal installer (not graphical one): it allows to easily install/replace and experiment with Miniconda - everything will be placed 
in your home directory instead of the system one, so you will avoid potential conflicts with already pre-installed python versions etc. 

• For example, in linux (basically same in MacOs but using curl instead of wget): 
➡ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh 

➡ bash ~/Miniconda3-latest-Linux-x86_64.sh 

➡ You will have to agree license agreement etc ( press “q” to exit license agreement in the terminal 🙂 ). 

➡ When it prompts “Choose an initialization options:” choose YES. If you are worried, you can make a backup of your profile 
initialization scripts (~/.bashrc or ~/.zshrc depending on the shell you use), but in principle all what conda does is adding 
one paragraph to the setup script — you can easily remove if you want to delete conda 

➡ source ~/.bashrc    (or ~/.zshrc — depending on which shell you are using)

4

https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh


Setup ML software: Tensorflow

Throughout the tutorial we will use both Tensorflow and Pytorch frameworks. We will install those in a two separate 
“environments” of conda and you will be able to easily switch between the two. You will appreciate the convenience and 
power of Conda — it allows you to install ML software (hopefully) quickly, (hopefully) gracefully, and without experiencing 
library conflicts etc. (unless something goes really wrong - but we are here to help you in this case …). In the first part of the 
tutorial we will work with Tensorflow since (arguably) it is more simple/intuitive to use. 

• Install Tensorflow 
1. Add conda-forge channel to look for software:    conda config --add channels conda-forge 
2. Create new environment that we will call “tf”:              conda create -n tf tensorflow 
3. Activate the “tf” environment:                                        conda activate tf 

Comment on activation (step 3): this has to be done in each new shell. If you want it to active the environment  
automatically at the start of a new shell, you can add the above command to your ~/.bashrc   [or ~/.zshrc] 
Note on the tensorflow versions: sometimes one needs to experiment with versions, for example I have experienced 
problems with latest tensorflow versions, so I downgraded to 2.16 on Ubuntu (2.15 on MacOS): 
conda create -n tf tensorflow=2.16  

5



Test  Tensorflow #1 …

• Activate the Tensorflow environment in conda (see previous page for mode details): 
conda activate tf 

• See if Tensorflow libs are there and working: 
python  

>>> import tensorflow as tf 

>>> print (tf.__version__) 

2.16.XX  

### NOTE USE Tensorflow version 2.15 or higher! 

### If nothing crashes so far — things seem to work so far.. 

### First import of tensorflow on some systems (e.g. MacOS) may take   

### a while - be patient (it will cache and work faster afterwards)

6



Test  Tensorflow #2…

• Let’s run a mock-up model training: 
python  

>>> import tensorflow as tf 

>>> import numpy as np 

>>> x = np.random.rand(1000,10) # random sample of 1000 sets of numbers 

>>> y = np.random.rand(1000,)   # random sample of 1000 set ‘labels' 

>>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) # trivial nonsense model 

>>> l = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # we will learn about it later  

>>> m.compile(loss=l, metrics=['accuracy'])   # compile the model 

>>> m.fit(x,y,epochs=5)                       # train the model 

• You should see something like:

Epoch 1/5 
32/32 [==============================] - 0s 206us/step - loss: 1.5475 - accuracy: 0.0000e+00 
Epoch 2/5 
32/32 [==============================] - 0s 158us/step - loss: 1.2575 - accuracy: 0.0000e+00 
Epoch 3/5 
32/32 [==============================] - 0s 136us/step - loss: 1.0151 - accuracy: 0.0000e+00 
Epoch 4/5 
32/32 [==============================] - 0s 129us/step - loss: 0.8074 - accuracy: 0.0000e+00 
Epoch 5/5 
32/32 [==============================] - 0s 144us/step - loss: 0.6322 - accuracy: 0.0000e+00

7



If things go wrong ...

• Encountered runtime error on Ubuntu (perhaps other Linux distributives ) 

• Encountered on MacOs (apple silicon):

libdevice not found at ./libdevice.10.bc 
         [[{{node StatefulPartitionedCall}}]] [Op:__inference_multi_step_on_iterator_579]

Assertion failed: (f == nullptr || dynamic_cast<To>(f) != nullptr), function down_cast, file 
external/local_tsl/tsl/platform/default/casts.h, line 58. 

Possible solutions: 
1. Re-install another tenosorflow version (you may have to experiment with a few different versions): 

conda remove -n tf --all              # delete existing tf environment from conda 
conda create -n tf tensorflow=2.16    # install a specific tensorflow version (e.g. 2.16 ubuntu, or 2.15 for MacOs)   

2. Mask out your GPU*: 
export CUDA_VISIBLE_DEVICES=""

 — these are few typical problems I 
encountered myself … Unfortunately there 
might be more, but normally with the slight 
help of google, chatgpt, stackoverflow and 
a little prayer — things will work ;-)

* If you you have an Nvidia GPU and the the solution 1 (re-installing different tensorflow versions) do not help, try forcing tensorflow NOT to 
use the GPU (it is OK for the sake of this tutorial; in the future you may tweak your software setup to fully profit of your nice GPU hardware)

8



Choose your weapon (text editor)

• It is perfectly fine to use your favorite python editor throughout the tutorial: 
vim, emacs, nano, eclipse+pydev, ... 

• If you don’t have one, for sake of simplicity and convenience — it is suggested to install jupyter: 
# open  a separate terminal window where you will run the editor 

conda activate tf 

conda install jupyter 

• Create a directory for the code and run the editor there: 
mkdir mycode  

cd mycode 

jupyter notebook 

9

tab.         



Using jupyter as text editor

• Jupyter will run a python text editor in your browser, there you can create new (click right mouse button) 

10



Using jupyter as text editor

• Let’s call our file mycode.py — double click on it and you will enter the editor 

11



Using jupyter as text editor

• Et voilà! 

• Keep a separate terminal window to run your code (essentially you have two terminal windows, in one of those 
you run the editor — jupyter, in the other one — the code itself): 

>>> python mycode.py  
>>> Tensorflow version 2.16.1 

12



Part I: Our first Neural Network

Adapted from:  https://www.tensorflow.org/tutorials/quickstart/beginner

13



Test  Tensorflow …
First we get some data that we want to train our NN ...  Create a new file:        first_nn.py   

Reference: https://www.tensorflow.org/tutorials/quickstart/beginner

import tensorflow as tf 

mnist = tf.keras.datasets.mnist  

(x_train, y_train), (x_test, y_test) = mnist.load_data()  

x_train, x_test = x_train / 255.0, x_test / 255.0

Let’s have a look inside the data…

python -i first_nn.py 

>>> x_train.shape  

(60000, 28, 28) # - 60000 images of digits 28x28 pixel each 

>>> y_train.shape  

(60000,) >>>    # - 60000 labels corresponding to a number (from 0 to 9) 

Our first dataset: MNIST 14



Test  Tensorflow …
MNIST dataset (Modified National Institute of Standards and Technology database): 

• A database of handwritten digits in the format of 28 x 28 pixel b/w images (pixel intensity 
encoded in 1 byte, from 0 to 255)

Reference: doi.org/10.3390/app9153169

Our goal — develop a NN that can classify a hand-written image telling wether it corresponds to 0, 1, … or 9

Our first dataset: MNIST 15

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology


Test  Tensorflow …
• Let’s get a habit of doing visualization/debugging of our data — we will need marplotlib library: 

conda install matplotlib 

• Add visualization code to our first_nn.py and run it:

Our first dataset: MNIST

import matplotlib.pyplot as plt  

... 

plt.imshow(data_train[0], interpolation='none', cmap='gray')  # comment out this line afterwards 

plt.show()                                                    # comment out this line afterwards    

plt.imshow(data_train[1], interpolation='none', cmap='gray')  # comment out this line afterwards    

plt.show()                                                    # comment out this line afterwards  

16



Image: 
qtravel.ai

Test  Tensorflow …
Tensorflow is normally used with Keras wrapper API (comes as a part of tensorflow installation) which allows 
to create and manipulate Neural Networks in intuitive way, composed of “layers” stacked one after another

tf.keras.layers.Input(3,..)

tf.keras.layers.Dense(4,...)

tf.keras.layers.Dense(1,…)

... ...

On the Neural Networks (NN) in Tensorflow & Keras... 17



Test  Tensorflow …
Add NN model to our first_nn.py:

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)), # First we convert input image into a flat array of numbers
  tf.keras.layers.Dense(128, activation='relu'), # Next, we add a layer of 128 neurons
  tf.keras.layers.Dropout(0.2),                  # Dropout randomly removes 20% neurons from the above layer
  tf.keras.layers.Dense(10)                      # Final layer will correspond to 10 probabilities
])

Constructing our first model (NN) in Tensorflow

128 neurons (activation function Relu)

10 outputs — will be converted into probabilities of an image representing 0,1,2,...,9

dropout - randomly removes 20% (0.2) of neurons from the above layer during training

Input image converted into a flat array

18



Test  Tensorflow …

>>> python -i first_nn.py 
>>> model.summary() 

Let’s inspect our model (NN)

Model: "sequential" 
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ 
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃ 
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ 
│ flatten (Flatten)                    │ (None, 784)                 │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ dense (Dense)                        │ (None, 128)                 │         100,480 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ dropout (Dropout)                    │ (None, 128)                 │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ dense_1 (Dense)                      │ (None, 10)                  │           1,290 │ 
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ 
 Total params: 101,770 (397.54 KB) 
 Trainable params: 101,770 (397.54 KB) 
 Non-trainable params: 0 (0.00 B) 

?

?

Remember neuron structure & parameters:

19



Side note on activation functions ...



Test  Tensorflow …Why do we need activation functions?

Sigmoid

And there are more (leaky ReLU, tanh etc.)

Softmax

• Primary reason for activation functions is to introduce a non-linearity in the model, otherwise the output will be a 
simple linear combination of inputs! 

• Activations are also required in classification tasks in order to convert continue outputs into contained [0,1] 
probabilities  

ReLU (Rectified Linear Unit)

21



Test  Tensorflow …Example of NN without activation function

In this example model is not able to learn the data representation (identify two classes of orange and blue points ) ...

https://playground.tensorflow.org/

22



 … adding non-linear function of inputs as additional inputs does not help …

Test  Tensorflow …Example of NN without activation function

https://playground.tensorflow.org/

23



Test  Tensorflow …Activation function (ReLU) added

https://playground.tensorflow.org/

24



Now getting back to our code…



What does our model do?

python -i first_nn.py 
>>> predictions = model(x_train[:1]).numpy() # let’s process a first training image with our model 
>>> print (predictions) 

[[ 0.37128526 -0.10725151  0.18021962  0.10659367  0.20349179  0.00092683 
  -0.45577508 -0.23256837  0.02991931 -0.14916359]] 

# ... these do not look like probabilities 
# To interpret model output as probabilities we process the output with Softmax function: 

>>> predictions = tf.nn.softmax(predictions).numpy() 
>>> print (predictions) 

[[0.11647741, 0.05115878, 0.09075072, 0.15573394, 0.10448843, 
        0.07079597, 0.05859897, 0.12428293, 0.14535967, 0.08235319]] 

# ... now it looks like probabilities, but they are clearly wrong, because we need to train our model first!

Try yourself:

26



Adding loss function and compiling the model
Add to first_nn.py:

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)  
# Note that from_logits=True informs the loss function that the model output is not reduced  
# to probabilities [0 to 1], hence the loss will apply softmax function to the model output 

# example of loss calculation  
predictions = model(x_train[:1]).numpy()                    # comment me out later            
print ('loss=',loss_fn(y_train[:1], predictions).numpy())   # comment me out later  

model.compile(optimizer='adam', 
              loss=loss_fn, 
              metrics=['accuracy'])                 # accuracy = N_correct_guesses / N_total 

27



— number of classes (10 in our case)

— true label for class i (either 1 or 0)

— predicted label for class i (in the 0 to 1 range)

Categorial cross-entropy: 

— correct class index (from 0 to 9 in our case)

— predicted label for class c

Space Categorial cross-entropy:

>>> from tensorflow import keras
>>> import numpy as np
>>> y_true = np.array([1, 2])
>>> y_pred = np.array([[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
>>> scce = keras.losses.SparseCategoricalCrossentropy()
>>> print (scce(y_true, y_pred))

>>> from tensorflow import keras
>>> import numpy as np
>>> y_true = np.array([[0,1,0], [0,0,1]])
>>> y_pred = np.array([[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
>>> cce = keras.losses.CategoricalCrossentropy()
>>> print (cce(y_true, y_pred))

Try yourself: Try yourself:

The two examples correspond to identical cases, the only difference is in the format of the true labels! 

Note on the loss function 28



Training and testing the model
Add training part to the first_nn.py and run it: 

.. you will get something like: 

Add testing part: 

.. you will get something like: 

history = model.fit(x_train, y_train, epochs=5) 

Epoch 1/5 
1875/1875 [==============================] - 1s 339us/step - loss: 0.3030 - accuracy: 0.9123 
Epoch 2/5 
1875/1875 [==============================] - 1s 333us/step - loss: 0.1431 - accuracy: 0.9577 
Epoch 3/5 
1875/1875 [==============================] - 1s 464us/step - loss: 0.1061 - accuracy: 0.9679 
Epoch 4/5 
1875/1875 [==============================] - 1s 327us/step - loss: 0.0880 - accuracy: 0.9728 
Epoch 5/5 
1875/1875 [==============================] - 1s 338us/step - loss: 0.0750 - accuracy: 0.9768 
...

model.evaluate(x_test,  y_test, verbose=2) 

313/313 - 0s - loss: 0.0760 - accuracy: 0.9762

That’s it - we trained our first NN model!

29



Recap
import tensorflow as tf 
#import matplotlib.pyplot as plt  

# get the dataset 
mnist = tf.keras.datasets.mnist 
(x_train, y_train), (x_test, y_test) = mnist.load_data() 
x_train, x_test = x_train / 255.0, x_test / 255.0 

# example of input data 
#plt.imshow(x_train[0], interpolation='none',cmap='gray')  # comment me out later   
#plt.show()                                                # comment me out later    
#plt.imshow(x_train[1], interpolation='none',cmap='gray')  # comment me out later   
#plt.show()                                                # comment me out later     

# create the model 
model = tf.keras.models.Sequential([ 
  tf.keras.layers.Flatten(input_shape=(28, 28)), # First we convert input image into a flat array of numbers 
  tf.keras.layers.Dense(128, activation='relu'), # Next, we add a layer of 128 neurons 
  tf.keras.layers.Dropout(0.2),                  # Dropout randomly removes 20% neurons from the above layer 
  tf.keras.layers.Dense(10)                      # Final layer will correspond to 10 probabilities 
]) 

# example of how model process the intput data 
#predictions = model(x_train[:1]).numpy()          
#print (predictions) 

# define the loss function 
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) 

# example of loss calculation                                # comment me out later    
#predictions = model(x_train[:1]).numpy()                    # comment me out later            
#print ('loss=',loss_fn(y_train[:1], predictions).numpy())   # comment me out later  

# compile the model 
model.compile(optimizer='adam', 
              loss=loss_fn, 
              metrics=['accuracy']) # accuracy = N_correct_guesses / N_total 

# train the model 
history = model.fit(x_train, y_train, epochs=5) 

# test the model 
model.evaluate(x_test,  y_test, verbose=2)                                                           

first_nn.py

30



Recap (remove non-essential commented parts)

import tensorflow as tf 

# get the dataset 
mnist = tf.keras.datasets.mnist 
(x_train, y_train), (x_test, y_test) = mnist.load_data() 
x_train, x_test = x_train / 255.0, x_test / 255.0 

# create the model 
model = tf.keras.models.Sequential([ 
  tf.keras.layers.Flatten(input_shape=(28, 28)), # First we convert input image into a flat array of numbers 
  tf.keras.layers.Dense(128, activation='relu'), # Next, we add a layer of 128 neurons 
  tf.keras.layers.Dropout(0.2),                  # Dropout randomly removes 20% neurons from the above layer 
  tf.keras.layers.Dense(10)                      # Final layer will correspond to 10 probabilities 
]) 

# define the loss function 
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) 

# compile the model 
model.compile(optimizer='adam', 
              loss=loss_fn, 
              metrics=['accuracy']) 

# train the model 
history = model.fit(x_train, y_train, epochs=5) 

# test the model 
model.evaluate(x_test,  y_test, verbose=2)                                                           

31



Recap (remove non-essential commented parts)

import tensorflow as tf 

# get the dataset 
mnist = tf.keras.datasets.mnist 
(x_train, y_train), (x_test, y_test) = mnist.load_data() 
x_train, x_test = x_train / 255.0, x_test / 255.0 

# create the model 
model = tf.keras.models.Sequential([ 
  tf.keras.layers.Flatten(input_shape=(28, 28)), # First we convert input image into a flat array of numbers 
  tf.keras.layers.Dense(128, activation='relu'), # Next, we add a layer of 128 neurons 
  tf.keras.layers.Dropout(0.2),                  # Dropout randomly removes 20% neurons from the above layer 
  tf.keras.layers.Dense(10)                      # Final layer will correspond to 10 probabilities 
]) 

# define the loss function 
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) 

# compile the model 
model.compile(optimizer='adam', 
              loss=loss_fn, 
              metrics=['accuracy']) 

# train the model 
history = model.fit(x_train, y_train, epochs=5) 

# test the model 
model.evaluate(x_test,  y_test, verbose=2)                                                           

This is the core part of tensorlfow (or any other ML 
framework) — when the model is built, tensorflow 
becomes aware of its trainable parameters (wights 
and bias values of every neuron in every layer)

32



Recap (remove non-essential commented parts)

import tensorflow as tf 

# get the dataset 
mnist = tf.keras.datasets.mnist 
(x_train, y_train), (x_test, y_test) = mnist.load_data() 
x_train, x_test = x_train / 255.0, x_test / 255.0 

# create the model 
model = tf.keras.models.Sequential([ 
  tf.keras.layers.Flatten(input_shape=(28, 28)), # First we convert input image into a flat array of numbers 
  tf.keras.layers.Dense(128, activation='relu'), # Next, we add a layer of 128 neurons 
  tf.keras.layers.Dropout(0.2),                  # Dropout randomly removes 20% neurons from the above layer 
  tf.keras.layers.Dense(10)                      # Final layer will correspond to 10 probabilities 
]) 

# define the loss function 
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) 

# compile the model 
model.compile(optimizer='adam', 
              loss=loss_fn, 
              metrics=['accuracy']) 

# train the model 
history = model.fit(x_train, y_train, epochs=5) 

# test the model 
model.evaluate(x_test,  y_test, verbose=2)                                                           

This is the core part of tensorlfow (or any other ML 
framework) — when the model is built, tensorflow 
becomes aware of its trainable parameters (wights 
and bias values of every neuron in every layers)

The partial derivatives w.r.t. trainable parameters are computed during the execution of “fit” 
given the input data. The parameters are updated in every “epoch” following the gradient 
descent method (e.g. “adam” is one of the most common types of gradient descent algorithms)

33



Fun part: let’s run some predictions!
First, remember that our model produces a set of 10 numbers as the input, however they are not constrained to [0,1] range since the 
constraining part (Softmax activation) was included in the loss function, but not in the model itself.  
Hence, we need to convert our 10 number into 10 probabilities, in first_nn.py add:  

probability_model = tf.keras.Sequential([ 
  model, 
  tf.keras.layers.Softmax() 
]) 

Now let’s run the predictions: 

python -i first_nn.py 
>>> import numpy as np                                       # we need numpy for some array manipulations 
>>> import matplotlib.pyplot as plt  
>>> plt.imshow(x_test[17], interpolation='none')             # pick some random image from the data 
>>> plt.show()                                               # let’s first look at that image ourselves  
>>> model_guss = probability_model(x_test[17:18])            # run the prediction 
>>> print ("The guessed number is:", np.argmax(model_guss))  # ??? Did it guess?

Try with the other images and see for yourself how good (or maybe not) our model is? :-)

34

Don't close the console with the first_nn.py yet!  (See next slide...)



Visualizing the training process
Don’t close your console with  first_nn.py yet,  let’s examine the history object: 

>>> print (history.history) 

{'loss': [0.29248857498168945, 0.1410820633172989, 0.10512221604585648, 0.08767301589250565, 
0.07357344776391983], 'accuracy': [0.914900004863739, 0.9583333134651184, 0.9677833318710327, 
0.9729166626930237, 0.9773499965667725]} 

Now let’s do some plots: 

>>> plt.plot(history.history['loss'])  

>>> plt.plot(history.history['accuracy']) 

>>> plt.legend(['loss', 'accuracy']) 

>>> plt.show()

35



Let’s complicate things a bit ...
In your  first_nn.py modify the fit function to the following and re-run the code: 

history = model.fit(x_train, y_train, epochs=50, validation_split=0.1) 

Now let’s inspect the history object again and plot the numbers there: 

>>> print (history.history.keys()) 

dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) 

>>> plt.plot(history.history['loss'])  

>>> plt.plot(history.history['val_loss']) 

>>> plt.plot(history.history['accuracy']) 

>>> plt.plot(history.history['val_accuracy']) 

>>> plt.legend(['loss','val_loss','accuracy','val_accuracy']) 

>>> plt.show()

36



Let’s complicate things a bit (adding validation)...
In your  first_nn.py modify the fit function to the following and re-run the code: 

history = model.fit(x_train, y_train, epochs=50, validation_split=0.1) 

Now let’s inspect the history object again and plot the numbers there: 

>>> print (history.history.keys()) 

dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) 

>>> plt.plot(history.history['loss'])  

>>> plt.plot(history.history['val_loss']) 

>>> plt.plot(history.history['accuracy']) 

>>> plt.plot(history.history['val_accuracy']) 

>>> plt.legend(['loss','val_loss','accuracy','val_accuracy']) 

>>> plt.show()

?

Try to experiment a bit, consider modifying model “horizontally” or “vertically” (adding/removing layers, number of neurons etc.). 
Can we arrive with a better (more accurate model) that, at the same time, does not overfit? ...

37



Put our code in order
For convenience of further work, let’s re-structure our code a bit: 

cp first_nn.py run_fit.py   

In  run_fit.py:  
  

from model_nn import model                 # <-- add this in the beginning  
...  
#model = tf.keras.models.Sequential([...]) # <-- remove or comment out this part 

Create an empty  __init__.py  along with the following  model_nn.py: 

import tensorflow as tf 

model = tf.keras.models.Sequential([ 
  tf.keras.layers.Flatten(input_shape=(28, 28)), 
  tf.keras.layers.Dense(128, activation='relu'), 
  tf.keras.layers.Dropout(0.2),                 
  tf.keras.layers.Dense(10)                    
])

We didn’t do anything new, we just re-
structured the code for easier manipulation 
with difference models. If you run 
run_fit.py you will get the same result 
as with first_nn.py

38



Another way of defining Tensorlfow (TF) model
Let’s rewrite our NN model in slightly different format (it will get useful for us later ...). Create  model_nn_new.py:  

import tensorflow as tf 

input_ = tf.keras.Input(shape=(28 , 28)) 

layer = tf.keras.layers.Flatten()(input_) 
layer = tf.keras.layers.Dense(128, activation='relu')(layer) 
layer = tf.keras.layers.Dropout(0.2)(layer) 
layer = tf.keras.layers.Dense(10)(layer) 

model = tf.keras.Model(inputs=input_,outputs=layer) 

• In the run_fit.py  file: replace model_nn with  model_nn_new and run the run_fit.py again ... 

➡While nothing really changed in what the code does, the new format/definition of the model will come in hand while 
working with CNNs, in particular for understanding the dimensionality of tensors etc.

39



Part II: Convolutional Neural Networks



What are Convolutional Neural Networks?

Convolution is essentially a filter that slides through the 
image producing one output value per each position 

In the example of 5x5 convolution filter, at every position 
the output value will be:

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27

— output value at filter position (i,j)  — in this example from 0 to 23 

— the convolutional kernel value at row m and column n (from 0 to 4)           

— the corresponding pixel value being convolved 

— bias term 

4 4

41



What are Convolutional Neural Networks?
With the 5x5 filter, the output will be another picture of dimension 24 x 24. Now imagine you have two such 
filters, so that the two output images will be produced:

youtube.com/watch?v=JboZfxUjLSk

42



What are Convolutional Neural Networks?
With the 5x5 filter, the output will be another picture of dimension 24 x 24. Now imagine you have two such 
filters, so that the two output images will be produced:

28 x 28 x 1

24 x 24 x 2 20 x 20 x ...

...
etc.

1 x 1 x N

• We apply convolutional layers one after another allowing the model to learn some deep features in the data 
• The 2D dimensionality necessarily decreases layer after layer 
• The 3rd dimension equals the number of Conv filters at every step (usually is set to increase layer after layer,  but not necessarily) 
• Normally after the last layer will will end up with 1x1xN images, i.e. N numbers which we can then process with the usual NN

NN out

43



CNN with our MNIST example
Let’s get back our number classification example: copy model_nn_new.py to  model_cnn.py and let’s do some changes there: 

import tensorflow as tf 

#input_ = tf.keras.Input(shape=(28,28)) 
input_ = tf.keras.Input(shape=(28,28,1))# <-- third dimension specify number of channels in the image  
                                        # <-- for example, b/w has only 1 channel, colored has 3 (RGB)   

#layer = tf.keras.layers.Flatten()(input_) # <-- we don’t need to flatten at this point...   

# convolutional part 
layer = tf.keras.layers.Conv2D(32,(4,4),strides=(4,4), activation='relu')(input_)  
layer = tf.keras.layers.Conv2D(64,(7,7),strides=(1,1), activation='relu')(layer) 
layer = tf.keras.layers.Flatten()(layer) 

# usual NN part remains the same 
layer = tf.keras.layers.Dense(128, activation='relu')(layer) 
layer = tf.keras.layers.Dropout(0.2)(layer) 
layer = tf.keras.layers.Dense(10)(layer) 

model = tf.keras.Model(inputs=input_,outputs=layer)

44



CNN with our MNIST example
Let’s get back our number classification example: copy model_nn_new.py rewrite model_cnn.py and let’s do some changes: 

import tensorflow as tf 

#input_ = tf.keras.Input(shape=(28,28)) 
input_ = tf.keras.Input(shape=(28,28,1))# <-- third dimension specify number of channels in the image  
                                        # <-- for example, b/w has only 1 channel, colored has 3 (RGB)   

#layer = tf.keras.layers.Flatten()(input_) # <-- we don’t need to flatten at this point...   

# convolutional part 
layer = tf.keras.layers.Conv2D(32,(4,4),strides=(4,4), activation='relu')(input_)  
print('Conv layer 1 shape:', layer.shape) 
layer = tf.keras.layers.Conv2D(64,(7,7),strides=(1,1), activation='relu')(layer) 
print('Conv layer 2 shape:', layer.shape) 
layer = tf.keras.layers.Flatten()(layer) 

# usual NN part remains the same 
layer = tf.keras.layers.Dense(128, activation='relu')(layer) 
layer = tf.keras.layers.Dropout(0.2)(layer) 
layer = tf.keras.layers.Dense(10)(layer) 

model = tf.keras.Model(inputs=input_,outputs=layer) 

python model_cnn.py 
 

Check the output for yourself and let’s see if we understand it ...

Let’s add some print statements to look 
inside our model. In this way it is very easy to 
experiment with layers, for example if you are 
not sure what the layer does etc…

45

?



CNN with our MNIST example
Open  run_fit.py  and replace the NN with the CNN; re-run the training: 

#from model_nn_new import model  # comment out the NN 
from model_cnn import model      # import CNN instead   

python run_fit.py 

Epoch 1/50 
1688/1688 [==============================] - 1s 789us/step - loss: 0.2831 - accuracy: 0.9139 - val_loss: 0.1069 - val_accuracy: 0.9710 
Epoch 2/50 
1688/1688 [==============================] - 1s 765us/step - loss: 0.1134 - accuracy: 0.9660 - val_loss: 0.0829 - val_accuracy: 0.9768 
Epoch 3/50 
1688/1688 [==============================] - 1s 761us/step - loss: 0.0798 - accuracy: 0.9753 - val_loss: 0.0782 - val_accuracy: 0.9765 
Epoch 4/50 
1688/1688 [==============================] - 1s 762us/step - loss: 0.0624 - accuracy: 0.9807 - val_loss: 0.0663 - val_accuracy: 0.9817 

Comped to NN model, the CNN model appears to 
have similar performance (check the loss and 
accuracy metrics of both models)… 
However, keep in mind that we deal with very 
small images (28 x 28) — things will be different 
if we consider e.g. Megapixel scale pictures…

46

?



python -i model_cnn.py 
>>> model.summary() 

Model: "functional" 
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ 
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃ 
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ 
│ input_layer (InputLayer)             │ (None, 28, 28, 1)           │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ conv2d (Conv2D)                      │ (None, 7, 7, 32)            │             544 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ conv2d_1 (Conv2D)                    │ (None, 1, 1, 64)            │         100,416 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ flatten (Flatten)                    │ (None, 64)                  │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ dense (Dense)                        │ (None, 128)                 │           8,320 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ dropout (Dropout)                    │ (None, 128)                 │               0 │ 
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ 
│ dense_1 (Dense)                      │ (None, 10)                  │           1,290 │ 
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ 
 Total params: 110,570 (431.91 KB) 
 Trainable params: 110,570 (431.91 KB) 
 Non-trainable params: 0 (0.00 B) 

Inspect our first CNN model

?

?

?

Do the math yourself, do you arrive to the same numbers?

?

47

?



On the power of CNNs...
Consider 4K image classification(~10 megapixels): 

• Take a simple NN (not CNN) model architecture from the MNIST example (with ~100 neurons in the first layer) —        
how many trainable parameters do you get? Compare it with the number of trainable parameters we had in our NN and 
CNN models (~100’000). The number of parameters in NN model looks big, right? (Comparable to GPT-2!) 

• CNNs, on the other hand, allow to extract features from the images of arbitrary size and resolution. The complexity of 
CNN model is defined only by the filter dimension, their number, and amount of layers — all these can be set to whatever 
number depending on how complex is the model that you want to build (how much trainable date you have etc.)

3

Figure 1. The five columns on the left represent photometric bands from SDSS. Simulated galaxy clusters are shown in the first
row along with random SDSS noise in the second row. The combination of the two is shown in the third row, and a real WHL12
cluster is shown in the final row for comparison. In the rightmost column, we give an example of a cluster being o↵-centered by
illustrating the process on the simulated r-band.

Simulated cluster images are then generated using
the Python package PyMGal1, which calculates magni-
tudes using techniques from EzGal (Mancone & Gonza-
lez 2012) and then projects them to create mock obser-
vations. When using the software, we assume the simple
stellar population model described in Bruzual & Charlot
(2003) with a Chabrier initial mass function (Chabrier
2003), and we select the Gaussian smoothing length of
a given particle to be the distance to its 30th nearest
neighbor.
For each snapshot, 10 random projection angles are

chosen, giving 40 di↵erent projections for each of the
324 clusters. This makes for a total of 12960 projec-
tions. For each one, we generate images in all five of the
SDSS bands. These bands are ultraviolet (u), green, (g),
red (r), near-infrared (i), and infrared (z). Each projec-
tion is thus made up of a 5-channel 256x256 image. We
select the side lengths to represent a physical distance
of roughly 1.33 Mpc. A sample can be found in the first
row in Figure 1.

2.2. SDSS data

The data obtained from SDSS can be split into two
separate parts: noise images and cluster images.

1 https://pypi.org/project/pymgal/

We begin with the noise. To make the simulated clus-
ters similar in appearance to observed ones, we must
add realism to them. To do this, we superimpose ran-
domly selected images of the sky obtained from SDSS.
Coordinates are chosen randomly from the area of the
Baryon Oscillation Spectroscopic Survey (BOSS) survey
(Alam et al. 2017). We then cut out an image with side
length equal to approximately 1.33 Mpc to match the
scale of simulated images. This side length is calcu-
lated by producing a random redshift between z = 0.15
and z = 0.25. For a given redshift, the length is con-
verted to a physical distance by assuming a cosmology
of H0 = 67.8 and ⌦m,0 = 0.307. The number of unique
noise samples collected is equal to the number of sim-
ulated observations, meaning that no noise sample is
repeated.
Though the mock observations each have a side length

of 256 pixels, this is not necessarily true for SDSS data.
We must therefore resize SDSS images to match the di-
mensions of the simulations. We use the rebinning algo-
rithm described in the RealSim Python package (Bot-
trell et al. 2019), which resizes images to a charge-
coupled device (CCD) angular scale. This method en-
sures that the total flux is conserved and maximizes the
fidelity of the mock observations. Clean simulated im-
ages and SDSS noise are then added together in FITS

Identification of Brightest Cluster Galaxies 
in Large Surveys (arxiv.org/pdf/2502.00104)

48



CNN example with the DAMPE 
cosmic ray detector 



DAMPE example
Predicting cosmic ray (or gamma ray) particle direction from a signal (shower) in DAMPE calorimeter:

“Heart” of the DAMPE detector - the BGO imaging calorimeter

50



DAMPE example
Predicting cosmic ray (or gamma ray) particle direction from a signal (shower) in DAMPE calorimeter: 

DAMPE detects particle spatial information and energy deposition in two orthogonal projections (XZ and YZ)

51



DAMPE example: classical approach (no AI)
Predicting cosmic ray (or gamma ray) particle direction from a signal (shower) in DAMPE calorimeter: 

DAMPE detects particle spatial information and energy deposition in two orthogonal projections (XZ and YZ)

In a classical approach, the particle trajectory in the calorimeter is estimated by performing a linear 
regression fit of the line through the points in calorimeter, where the contribution of every point in the 
fit is weighted by the energy deposition in this point

52



DAMPE example: CNN
• We will use CNN instead of the classical linear regression -  to predict particle direction 

• We will train it on a sample of ~140’000 simulated particle showers in DAMPE

53



DAMPE example: getting the data 
• Download and setup the training DAMPE data and the corresponding software: 

git clone https://gitlab.cern.ch/andrii/mlregressioncalo.git 
cd mlregressioncalo 
git switch tutorial 
source ./setup.sh      # do it in every new console (cd [path-/mlregressioncalo]; source ./setup.sh)    

• Inspect the content of DAMPE package & data 
python 
>>> from dampe import get_dampe_data, plot_dampe_event 
>>> data = get_dampe_data() 
>>> data.keys() 
dict_keys(['caloimages', 'truthdata', 'standardrecdata'])

DAMPE images on which 
we will train our network

Array of 4 numbers representing 
the truth particle direction (two 
in XZ projection, two in YZ)

The same 4 numbers but obtained with the standard linear 
regression algorithm — we will not use it for training, but will keep 
it for reference when comparing with the CNN predictions 

Do yourself — check the dimensions of the data arrays: data[‘caloimages'].shape etc.

54

https://gitlab.cern.ch/andrii/mlregressioncalo.git


DAMPE example: visually examining the data 
• Let’s inspect some of the data events: 

>>> plot_dampe_event(data['caloimages'][10],data['truthdata'][10])

55



DAMPE example: visually examining the data 
• Let’s inspect some of the data events: 

>>> plot_dampe_event(data['caloimages'][10],data['truthdata'][10],data['standardrecdata'][10])

You can experiment with the different events in the dataset, for example in the event 19 one can see a 
very distinct difference between the truth and reconstructed particle direction. 

Let’s add a prediction with the 
standard (linear regression) 
algorithm

56



DAMPE CNN training ...
• Let’s get back to our CNN training code from the MNIST example, we will use it as a base: 

cp run_fit.py run_fit_dampe.py 
cp model_cnn.py  model_cnn_dampe.py 

• In  run_fit_dampe.py change: 
#from model_cnn import model         # before 
from model_cnn_dampe import model    # now 
from dampe import get_dampe_data     # 
from pickle import dump              # 
... 

# get the dataset                                           # before 
#mnist = tf.keras.datasets.mnist                            # 
#(x_train, y_train), (x_test, y_test) = mnist.load_data()   # 
#x_train, x_test = x_train / 255.0, x_test / 255.0          # 
data = get_dampe_data()                                     # now 
x, y = data['caloimages'], data['truthdata']    # 
... 

#loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)                              # before 
loss_fn = tf.keras.losses.MeanAbsoluteError()                                                           # now 
model.compile(optimizer='adam',loss=loss_fn, metrics=['mean_squared_error']) #metrics=[‘accuracy'])     #  

history = model.fit(x, y, epochs=5, validation_split=0.1) # training part remains the same 
# After the fitting part let's save the model and history for further analysis 
model.save_weights('model_cnn_dampe.weights.h5')                                             
dump(history.history, open('history_cnn_dampe.p','wb')) 
# comment out the rest of the code afterwards (plt.plot(history.history ... etc.) 

57

Note that we reduce number of epochs since training DAMPE models is more time consuming ...



DAMPE CNN model ...
• Now we need to modify the model itself, keeping the changes minimal. In the model_cnn_dampe.py  do the following: 

#input_ = tf.keras.Input(shape=(28,28,1)) # before 
input_ = tf.keras.Input(shape=(14,22,1))  # now   
layer  = tf.keras.layers.ZeroPadding2D(((1,1),(1,1)))(input_)  

# convolutional part 
#layer = tf.keras.layers.Conv2D(32,(4,4),strides=(4,4), activation="relu")(input_)# before 
layer = tf.keras.layers.Conv2D(32,(4,4),strides=(4,4), activation="relu")(layer)  # now 
#layer = tf.keras.layers.Conv2D(64,(7,7),strides=(1,1), activation="relu")(layer) # before  
layer = tf.keras.layers.Conv2D(64,(6,4),strides=(1,1), activation="relu")(layer)  # now  
layer = tf.keras.layers.Flatten()(layer)                                          # same as before (not changed)      

# NN part 
layer = tf.keras.layers.Dense(128, activation="relu")(layer)    # same as before (not changed) 
#layer = tf.keras.layers.Dropout(0.2)(layer)                    # comment out the dropout part 
#layer = tf.keras.layers.Dense(10)(layer)                       # before 
layer = tf.keras.layers.Dense(4)(layer)                         # now (instead of 10 neurons, now we have 4) 

# this remains the same as before ... 
model = tf.keras.Model(inputs=input_,outputs=layer) 

• We are ready to run the DAMPE model training: 
python run_fit_dampe.py 

... 
Epoch 1/50 
3993/3993 [==============================] - 3s 684us/step - loss: 76.2474 - mean_squared_error: 11470.5166 - val_loss: 
34.6831 - val_mean_squared_error: 2725.1121 
... Note the loss value at the first iteration (we will 

compare it later with the loss of the other model)

Test/print the layer 
shapes/dimensions at 
different steps, let's see if 
we understand it ...

58



DAMPE CNN model from the paper
• Let's try a deeper model (from the paper), cp model_cnn.py model_cnn_dampe_paper.py  and modify it: 

#input_ = tf.keras.Input(shape=(28,28,1)) # before 
input_ = tf.keras.Input(shape=(14,22,1))  # now    

# convolutional part 
#layer = tf.keras.layers.Conv2D(32,(4,4),strides=(4,4), activation='relu')(input_) # before 
#layer = tf.keras.layers.Conv2D(64,(7,7),strides=(1,1), activation=‘relu’)(layer)  #  
layer = tf.keras.layers.Conv2D(128,(4,4), activation="relu")(input_)               # now  
layer = tf.keras.layers.Conv2D(64,(4,4), activation="relu")(layer)                 #  
layer = tf.keras.layers.Conv2D(32,(4,4), activation="relu")(layer)                 #  
# ... what is the ouput shape after this layer? (see for yourself with print…)     #  
layer = tf.keras.layers.Conv2D(100,(5,13), activation="relu")(layer)               #  
# ... why is there (5,13) filter size used at this point? What is the output shape? 
layer = tf.keras.layers.Flatten()(layer)                                                 

# NN part 
#layer = tf.keras.layers.Dense(128, activation=‘relu’)(layer)   # before 
#layer = tf.keras.layers.Dropout(0.2)(layer)                    # 
#layer = tf.keras.layers.Dense(10)(layer)                       #   
layer = tf.keras.layers.Dense(50, activation="relu")(layer)     # now 
layer = tf.keras.layers.Dense(4, activation="linear")(layer)    # 

# this remains the same as before ... 
model = tf.keras.Model(inputs=input_,outputs=layer) 

Model from:

59



DAMPE CNN model from the paper
• In run_fit_dampe.py modify the CNN model import and run the script again: 

#from model_cnn_dampe import model        # before  
from model_cnn_dampe_paper import model   # now 

# save model under different name 
#model.save_weights('model_cnn_dampe.weights.h5')                                             
#dump(history.history, open('history_cnn_dampe.p','wb')) 
model.save_weights('model_cnn_dampe_paper.weights.h5')                                             
dump(history.history, open('history_cnn_dampe_paper.p','wb')) 

python run_fit_dampe.py 

... 
Epoch 1/50 
3993/3993 [==============================] - 44s 11ms/step - loss: 27.7825 - mean_squared_error: 2802.2505 - val_loss: 10.1922 - 
val_mean_squared_error: 229.4982 
... 

Note that the loss value after the first iteration is considerably lower that 
with the first (simple) CNN model that we tried... Also, training takes 
considerably longer due to a more complex (dense) CNN model!

It will take  1-2 hours on conventional hardware to train this model... We can't wait that long, hence you can find this saved model and 
training history inside the dampe package downloaded earlier, see the saved_models folder

60



Comparing the two CNN models
python 

from pickle import load 
import matplotlib.pyplot as plt  

history1 = load(open('history_cnn_dampe.p','rb')) 
history2 = load(open('history_cnn_dampe_paper.p','rb')) 

plt.plot(history1['loss'])  
plt.plot(history1['val_loss']) 
plt.plot(history2['loss']) 
plt.plot(history2['val_loss']) 
plt.legend(['loss (model simple)', 'val_loss (model simple)', 'loss (model paper)', 'val_loss (model paper)']) 
plt.show() 

You can find both models and their training history 
inside saved_model folder of the DAMPE package. 
Copy the content of saved_model folder to the 
folder where you run your examples.

Simple CNN model  
(same as for MNIST example)

Model from the DAMPE paper 
(deeper, more neurons per layer)

61



Fun part: inference/prediction with the DAMPE CNN
• Let's compare performance of classical DAMPE algorithm and the CNN one. Create test_dampe_images.py and run it:  

# This is test_dampe_images.py file for DAMPE CNN testing 

from dampe import get_dampe_data, plot_dampe_event 
import tensorflow as tf 
from model_cnn_dampe import model 

data = get_dampe_data() 

# plot the results with the standard algorithm (linear regression) 
standardprediction = data['standardrecdata'][10] 
plot_dampe_event(data['caloimages'][10],data['truthdata'][10], standardprediction) 

# plot the results with CNN 
model.compile() 
model.load_weights('model_cnn_dampe_paper.weights.h5') 
prediction = model(data['caloimages'][10:11])  
prediction = prediction[0] # prediction is done in batches. We have a "batch" of 1 event  
plot_dampe_event(data['caloimages'][10],data['truthdata'][10], prediction) 

# caclcualte yourself accucay of standard approach VS CNN 
import numpy as np 
n = 1000  
print("Standard algorithm mean absolute error:", 

np.sum(np.abs(data['truthdata'][:n]-data['standardrecdata'][:n])) / (4*n)) 
prediction = model(data['caloimages'][:n])  
print("CNN mean absolute error:",  

np.sum(np.abs(data['truthdata'][:n]-prediction)) / (4*n)) 

Linear regression 

CNN

62



Recap of the DAMPE CNN model (training script)
run_fit_dampe.py:  

import tensorflow as tf 
import matplotlib.pyplot as plt  
from model_cnn_dampe_paper import model 
from dampe import get_dampe_data 
from pickle import dump 

data = get_dampe_data() 
x, y = data['caloimages'], data['truthdata'] 

loss_fn = tf.keras.losses.MeanAbsoluteError() 
model.compile(optimizer='adam', loss=loss_fn, 
metrics=['mean_squared_error']) 
history = model.fit(x, y, epochs=5, validation_split=0.1) 

model.save_weights('./model_cnn_dampe_paper.weights.h5') 
dump(history.history, open('history_cnn_dampe_paper.p','wb')) 

Linear regression 

CNN

63



Recap of the DAMPE CNN model (model definition)
model_cnn_dampe_paper.py:  

import tensorflow as tf 

input_ = tf.keras.Input(shape=(14,22,1)) 

# convolutional part 
layer = tf.keras.layers.Conv2D(128,(4,4), activation="relu")(input_) 
layer = tf.keras.layers.Conv2D(64,(4,4), activation="relu")(layer) 
layer = tf.keras.layers.Conv2D(32,(4,4), activation="relu")(layer) 
layer = tf.keras.layers.Conv2D(100,(5,13), activation="relu")(layer)   
layer = tf.keras.layers.Flatten()(layer) 

# fully-connected part 
layer = tf.keras.layers.Dense(50, activation="relu")(layer) 
layer = tf.keras.layers.Dense(4, activation="linear")(layer) 

model = tf.keras.Model(inputs=input_,outputs=layer)

Linear regression 

CNN

64



Exercise  (20 mins)

Linear regression 

CNN

• Develop your own NN (not CNN) model for DAMPE  (similar to MNIST example discussed earlier) 

➡ Experiment with architecture (number of layers, neurons, etc...) 

➡ The goal is to try to obtain a simple NN model comparable in performance with the CNN 

For simplicity, as a metrics of "performance" just use the value of loss (the lower the better) 

No need to run the entire model training and visualization, just run a training with 2-3 iterations at most and see if your 
NN model converges as fast (with the similar or lower loss values) as the CNN model (usually it is already seen from the 
first few iterations how good the model is...) 

• Modify the original CNN according to your intuition and try to beat the original DAMPE CNN!

65



Before we move on: let's repeat 
the DAMPE exercise while learning 
a bit of PyTorch 
(We will need PyTorch for the 
following part of the course) 



Install PyTorch

To avoid possible conflicts between the two frameworks, we will install PyTorch in a separate conda 
environment 

• Install PyTorch 
1. Create new environment that we will call “tr”:              conda create -n tr pytorch matplotlib 
2. Activate the “tf” environment:                                        conda activate tr 

• Test PyTorch 
python  

>>> import torch as tr 

>>> print (tr.__version__) 

67



Test PyTorch NN training

• Run the following code snippet in python (let's call it test_pytorch_minimal.py): 

import torch as tr 
import numpy as np 

x = tr.tensor(np.random.rand(1000,10),dtype=tr.float64) # random sample of 1000 sets of numbers 
y = tr.tensor(np.random.rand(1000,),dtype=tr.int64)     # random sample of 1000 set ‘labels' 
model = tr.nn.Sequential( tr.nn.Linear(10,10,dtype=tr.float64)) 
criterion = tr.nn.CrossEntropyLoss() 
optimizer = tr.optim.Adam(model.parameters()) 

# one training step 
y_pred = model(x) 
loss = criterion(y_pred,y) 
loss.backward() 
optimizer.step() 
print ("Loss:",loss.item()) 

• If everything is installed correctly, you should see the log of the training: 
Loss: 1.930114470175824

68



PyTorch DAMPE example - training script
Let's rewrite our DAMPE CNN code in PyTorch:   
cp run_fit_dampe.py run_fit_dampe_torch.py,  
edit run_fit_dampe_torch.py: 

#import tensorflow as tf 
import torch as tr 
#from model_cnn_dampe_paper import model 
from model_cnn_dampe_paper_torch import model 

#... after you obtained the dampe data in the usual way, convert it to torch tensors 
x, y = tr.tensor(x,dtype=tr.float32), tr.tensor(y,dtype=tr.float32) 

#... we need to convert data format from [N,H,W,C] (Tensorflow) to [N,W,H,C] (Pytorch) 
x = x.squeeze(3).unsqueeze(1) 
#... you can check later by inserting print(x.shape) statement before and after... 

#loss_fn = tf.keras.losses.MeanAbsoluteError() 
#model.compile(optimizer='adam', loss=loss_fn, metrics=['mean_squared_error']) 
criterion = tr.nn.L1Loss()                      # mean absolute error loss 
optimizer = tr.optim.Adam(model.parameters()) 

# continued on the next page ...

69



... edit run_fit_dampe_torch.py continued: 
... 
#history = model.fit(x, y, epochs=5, validation_split=0.1) 
model.train() # set model in the training mode 
history = {'loss':[],'loss_val':[]} 
n_total, n_split, n_batch = x.shape[0], int(x.shape[0] * 0.9), 32 
for i in range(5): # loop over training epochs 
    loss_train, loss_val, n_batches_train, n_batches_val = 0, 0, 0, 0 
    for j in range(0, n_split, n_batch): # loop over batches in training sub-sample 
        print (f"Processed: {j*100./n_split:3.1f}%",end="\r") # status bar 
        optimizer.zero_grad() 
        y_pred = model(x[j:j+n_batch]) 
        loss = criterion(y_pred,y[j:j+n_batch]) 
        loss.backward() 
        optimizer.step() 
        loss_train+=loss.item() 
        n_batches_train+=1 
    model.valid() # set model in validation mode 
    for j in range(n_split, n_total, n_batch): # loop over batches in validation sub-sample 
        print (f"Processed valid: {(j-n_split)*100./(n_total-n_split):3.1f}",end="\r") # status bar   
        y_pred = model(x[j:j+n_batch]) 
        loss = criterion(y_pred,y[j:j+n_batch]) 
        loss_val+=loss.item()  
        n_batches_val+=1 
    loss_train, loss_val = loss_train / n_batches_train, loss_val / n_batches_val 
    print ("loss:",loss_train, "loss_val:",loss_val) 
    history['loss'], history['loss_val'] = history['loss']+[loss_train], history['loss_val']+[loss_val] 
#model.save_weights('./model_cnn_dampe_paper.weights.h5') 
#dump(history.history, open('history_cnn_dampe_smallmodel.p','wb')) 
tr.save(model.state_dict(), './model_cnn_dampe_paper_torch.pth') # just to show how saving model in torch works 
dump(history.history, open('history_cnn_dampe_paper_torch.p','wb')) # the same, just changed the file name

instead of this

we have 
that...

70PyTorch DAMPE example - training script



Let's rewrite the model in PyTorch, 
cp model_cnn_dampe_paper.py model_cnn_dampe_paper_torch.py,  
edit model_cnn_dampe_paper_torch.py: 

#import tensorflow as tf                           # before  
import torch as tr                                 # now  
import numpy as np 

#input_ = tf.keras.Input(shape=(14,22,1)) 

# convolutional part 
#layer = tf.keras.layers.Conv2D(128,(4,4), activation="relu")(input_) 
#layer = tf.keras.layers.Conv2D(64,(4,4), activation="relu")(layer)  
#layer = tf.keras.layers.Conv2D(32,(4,4), activation="relu")(layer) 
#layer = tf.keras.layers.Conv2D(100,(5,13), activation="relu")(layer)  
#layer = tf.keras.layers.Flatten()(layer) 

# usual NN part remains the same 
#layer = tf.keras.layers.Dense(50, activation="relu")(layer) 
#layer = tf.keras.layers.Dense(4, activation="linear")(layer) 
#model = tf.keras.Model(inputs=input_,outputs=layer) 

# continued on the next page...

Just comment it out but do 
not delete yet (convenient to 
keep for a reference while we 
code the torch model ...)

71

Import torch instead of 
tensorflow

PyTorch DAMPE example - model definition



... edit model_cnn_dampe_paper_torch.py  continued: 

class DampeCNN(tr.nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.conv_layer1   = tr.nn.Conv2d(1,   128, (4,4 )) 
        self.conv_layer2   = tr.nn.Conv2d(128, 64,  (4,4 )) 
        self.conv_layer3   = tr.nn.Conv2d(64,  32,  (4,4 )) 
        self.conv_layer4   = tr.nn.Conv2d(32,  100, (5,13)) 
        self.flatten_layer = tr.nn.Flatten() 
        self.dense_layer1  = tr.nn.Linear(100,50) 
        self.dense_layer2  = tr.nn.Linear(50, 4) 
        self.relu          = tr.nn.ReLU() 
    def forward(self, x): 
        x = self.conv_layer1(x) 
        x = self.relu(x) 
        x = self.conv_layer2(x) 
        x = self.relu(x) 
        x = self.conv_layer3(x) 
        x = self.relu(x) 
        x = self.conv_layer4(x) 
        x = self.relu(x) 
        #print (x.shape) 
        #raise SystemExit 
        x = self.flatten_layer(x) 
        x = self.dense_layer1(x) 
        x = self.relu(x) 
        x = self.dense_layer2(x) 
        return x 

model = DampeCNN() 

For simple models (including this one) we could in principle use 
a simplified syntax with tr.nn.Sequential (see our 2nd 
PyTorch installation test), but the low-level definition shown 
here offers more flexibility (for example in Transformer models 
that we will consider later)

72PyTorch DAMPE example - model definition



Let's test a bit our model. Similar to PyTorch case, we can feed it some random data and print the layer shape on the way. 
First, let's add a print statements to the model forward method in model_cnn_dampe_paper_torch.py: 

class DampeCNN(tr.nn.Module): 
    ... 
    ... 
    def forward(self, x): 
        x = self.conv_layer1(x) 
        print ("Dimensions after layer 1:", x.shape) 
        # etc 
        ... 

Enter a print statement 

Now let's run it the model a random data: 
python -i model_cnn_dampe_paper_torch.py 
>>> data=tr.tensor(np.zeros((100,1,14,22)),dtype=tr.float32) 
>>> tmp = model(data) 

Dimensions after layer 1: torch.Size([100, 128, 11, 19]) Result of a print statement 

73PyTorch DAMPE example - test



Now finally as we have all pieces in place, we can run the training of the DAMPE CNN model in PyTorch: 
python  run_fit_dampe_torch.py 

Processed valid: 99.9 elapsed:164.9s 
loss: 78.60382124119583 loss_val: 21.724795972978747 
Processed valid: 99.9 elapsed:165.9s 
loss: 16.86408121580472 loss_val: 12.455400391741916 
... 

We will not run this training, just make sure that it works in principle ... Later you can run that CNN model in PyTorch and 
compare the performances with Tensorflow: execution time, convergence, final accuracy (loss) of the model ...

Now let's briefly re-cap our PyTroch CNN example ...

74PyTorch DAMPE example - test



Recap (PyTorch DAMPE example)
run_fit_dampe_torch.py 

import torch as tr 
import matplotlib.pyplot as plt  
from model_cnn_dampe_torch import model 
from dampe import get_dampe_data 
from pickle import dump 
import time 

data = get_dampe_data() 
x, y = data['caloimages'], data['truthdata'] 
x, y = tr.tensor(x,dtype=tr.float32), tr.tensor(y,dtype=tr.float32) 
x = x.squeeze(dim=3).unsqueeze(dim=1) 

criterion = tr.nn.L1Loss() 
optimizer = tr.optim.Adam(model.parameters()) 

# training loop 
history = {'loss':[],'loss_val':[]} 
n_total, n_split, n_batch = x.shape[0], int(x.shape[0] * 0.9), 32 
for i in range(5): # loop over training epochs 
    loss_train, loss_val, n_batches_train, n_batches_val, timestamp = 0, 0, 0, 0, time.time() 
    model.train() # set model in training mode 
    for j in range(0, n_split, n_batch): # loop over batches in training sub-sample 
        print (f"Processed: {j*100./n_split:3.1f}% elapsed:{time.time()-timestamp:4.1f}s",end="\r") 
        optimizer.zero_grad() 
        y_pred = model(x[j:j+n_batch]) 
        loss = criterion(y_pred,y[j:j+n_batch]) 
        loss.backward() 
        optimizer.step() 
        loss_train+=loss.item() 
        n_batches_train+=1 
    model.eval() # set model in validation mode 
    for j in range(n_split, n_total, n_batch): # loop over batches in validation sub-sample 
        print (f"Processed valid: {(j-n_split)*100./(n_total-n_split):3.1f} elapsed:{time.time()-timestamp:4.1f}s",end="\r") 
        y_pred = model(x[j:j+n_batch]) 
        loss = criterion(y_pred,y[j:j+n_batch]) 
        loss_val+=loss.item() 
        n_batches_val+=1 
    loss_train, loss_val = loss_train / n_batches_train, loss_val / n_batches_val 
    print ("\nloss:",loss_train, "loss_val:",loss_val) 
    history['loss'], history['loss_val'] = history['loss'] + [loss_train], history['loss_val'] + [loss_val] 

# save model and training history 
tr.save(model.state_dict(), './model_cnn_dampe_paper_torch.pth') 
dump(history, open('history_cnn_dampe_paper_torch.p','wb')) # remains the same - we just changed the name of the file

75



Recap (PyTorch DAMPE example)
model_cnn_dampe_paper_torch.py 

import torch as tr 
class DampeCNN(tr.nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.conv_layer1   = tr.nn.Conv2d(1,   128, (4,4 )) 
        self.conv_layer2   = tr.nn.Conv2d(128, 64,  (4,4 )) 
        self.conv_layer3   = tr.nn.Conv2d(64,  32,  (4,4 )) 
        self.conv_layer4   = tr.nn.Conv2d(32,  100, (5,13)) 
        self.flatten_layer = tr.nn.Flatten() 
        self.dense_layer1  = tr.nn.Linear(100,50) 
        self.dense_layer2  = tr.nn.Linear(50, 4) 
        self.relu          = tr.nn.ReLU() 
   def forward(self, x): 
        x = self.conv_layer1(x) 
        x = self.relu(x) 
        x = self.conv_layer2(x) 
        x = self.relu(x) 
        x = self.conv_layer3(x) 
        x = self.relu(x) 
        x = self.conv_layer4(x) 
        x = self.relu(x) 
        x = self.flatten_layer(x) 
        x = self.dense_layer1(x) 
        x = self.relu(x) 
        x = self.dense_layer2(x) 
        return x 
model = DampeCNN() 

76



Exercise  (10 mins)

Linear regression 

CNN

• Implement your previously developed DAMPE NN (not CNN) in PyTorch 

➡ Goal: make sure you understand the layer implementation in PyTorch (where and how to look for documentation) 

➡ You will create your own PyTorch model class similar to the CNN example  

➡ No need to run the full training, just make sure that the training works and you are able to run ~ 1 training epoch 

From the previous example, you should already know the name of layers in PyTorch. For more information/references, see 
PyTorch documentation 

• For example, the Flatten layer in PyTorch: https://docs.pytorch.org/docs/stable/generated/torch.nn.Flatten.html

77

https://docs.pytorch.org/docs/stable/generated/torch.nn.Flatten.html


Part III: Transformers



Transformers
Before starting preparing this tutorial, I promised 
myself not to make too obvious flat jokes connected 
to the comic books characters ... 

79



Transformers

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

Now seriously... According to Stephen Wolfram:

Before starting preparing this tutorial, I promised 
myself not to make too obvious flat jokes connected 
to the comic books characters ... 

80

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/


From Wolfram's article:

On Large Language Models (LLMs)

Adding from myself: in some sense, LLMs can be considered ~ autocompletion on steroids

81



On Large Language Models (LLMs) & Transformers

https://arxiv.org/abs/1706.03762

It turned to be that the so-called "Transformer"-like architectures, originally suggested in 
the "Attention is All You Need" paper, are currently the best ones for LLM implementation 
(including GPT, Gemini, DeepSeek)

While the first GPT models were predicting 
tokens based on the preceding sequence of 
text of ~1-2 pages at most, GPT-4 turbo has a 
maximum sequence length (based on which it 
does "autocompletion") of the size of ~ 
Orwell's "1984" (or "The Hobbit", if you like)

82

https://arxiv.org/abs/1706.03762


What is a token?

LLMs are prediction tokens one-by-one 
• A word is token ? - in most cases YES 
• Is token a word? - NOT necessarily 

➡A token can be a part of a word 
➡It can be a single digit, i.e. "1", "2", etc, combination of digits "12", "567", etc. 
➡One single letter is a token, frequent combination of letters/syllables are tokens (that's how LLMs can invent new words) 
➡Event frequent combination of words, or entire sentences can be tokens, depending on the implementation  
➡End of sequence (e.g. what tells GPT to stop further generation of reply in the chat) is a token (in fact an important one!) 

83



Neural Networks deal with numbers. How do we represent tokens as numbers? Say, GPT-4 uses ~100'000 token dictionary 
• Obviously, we assign every token a number from 0 to 100'000 
• We can also represent those in vectors of 100'000 digits, all of which are 0 except for one: 

[0,0,0, ..., 1, ..., 0, 0,0] 
[0,1,0, ..., 0, ..., 0, 0,0] 
... 
[0,0,0, ..., 0, ..., 0, 0,1] 

Now what LLM does when prediction a next token, it essentially yields a so-called logit vector of 100'000 numbers each 
representing a probability for a certain token to be the next one in a sequence: 

[0.01, 0., 0.8, ..., 0.02, ..., 0, 0,1]    # Numbers sum up to 1

100'000 vectors

100'000 numbers

100'000 numbers

What is a token?

Token 1 ("Hello")
Token 2 ("world")

Token 100'000 ("bye")

etc.

84



Embedding vectors (or Embeddings) - key concept in LLMs! 
• In previous illustration of token vectors - how do we encode similarity of tokens in that kind of vectors in that n-dimensional 

space (n is the dictionary size - 100'000 in previous example) - The answer is - we don't do that! 
• Instead, we convert token into embedding vector in lower dimension space through linear transformation:

Tokens & Embedding vectors

[ 0, 0, 0, ...,  1, ...]   (dimension Ndict~100'000)

[1.5,-6.3,10.1,0.1 ...] (dimension Nembed~10'000)

Embedding transformation is a look-up table of  Ndict · Nembed parameters (trainable):
"warm"

"hot"

"machine learning"

Illustration of embedding vectors corresponding to the tokens 
"warm", "hot", and "machine learning". The "warm" and "hot" 
embeddings will likely occur very aligned in the embedding space

Not sum up to 1, not even 
positive-only numbers!

85



Tokens & Embedding vectors

Projection of typical Embedding 
space in 2D (credit: Stephen 
Wolfram)

You can think of embedding 
space as a way of mapping 
language into a multi-
dimensional cartesian space, 
where close-by-semantical-
meaning words/phrases/
syllables/etc. will normally 
appear as nearby vectors

86



Data flow in Langauge Models
[ 0, 0, 0, ...,  1, ...]   (input tokens)

[1.5,-6.3,10.1,0.1 ...] (input embedding vectors)

[ 0.1, 0.01, 0.8, ...]   (output token probabilities logit vector Ndict~100'000)

[1.5,-6.3,10.1,0.1 ...] (output/predicted embedding vector)

Sum up to 1

Neural Network (Transformer)

87

Tokens-to-
embeddings

Embeddings-to-token 
probabilities



Before we go to Transformer implementation, let's first experiment with tokens & embeddings 
Why this is important: if we want to transform the use "Transformers" into physics applications we shall first get a clear 
idea of the "Transformers" original intended use  (which is in fact language processing) 

conda activate tr 
conda install transformers         
python 

>>> 
>>> from transformers import  AutoTokenizer 
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2") 
>>> input_tokens = tokenizer("I am GPT", return_tensors="pt").input_ids 
>>> output_tokens = tokenizer("Sono GPT", return_tensors="pt").input_ids 
>>> print(input_tokens) 

tensor([[   40,   716,   402, 11571]]) 
>>> print(output_tokens) 

tensor([[   50, 29941,   402, 11571]]) 
>>> print (tokenizer.vocab_size) 

50257 

Tokens & Embedding vectors: try yourself

Don't close the python session yet, we continue on the next slide ...

• We will consider a vastly oversimplified example of  
language translation when one token encoding an English 
word is sought/trained to connect to exactly one other 
token that encodes the corresponding Italian word 

• In this example, both English and Italian phrases are 
represented by 4 tokens, each token as a number is from 
1 to 50256, 0 is reserved for empty token (masked in 
model predictions - as you will see further...) 

• As can be seen the word "GPT" is represented presented 
by 2 tokens (402 and 11571)

Don't worry - we will implement tranformers ourself, we just need this package for 
token generation (we can/will do it ourself, but better to use the pre-cooked one)

88



Tokens & Embedding vectors: try yourself
... continued from the previous slide 

>>> 
>>> import torch as tr 
>>> embedding_layer = tr.nn.Embedding(tokenizer.vocab_size, 512) 
>>> input_embeddings = embedding_layer(input_tokens) 
>>> 
>>> print (input_embeddings) 

tensor([[[ 1.1413, -0.0440, -0.0919,  ..., -0.5301, -0.1368, -1.3453], 
         [-0.6645, -1.8470,  2.2914,  ...,  1.6478,  2.7773,  1.2885], 
         [ 0.2227,  2.6014, -0.1832,  ...,  1.9270, -0.4772, -0.9424], 
         [ 0.0736, -1.0592, -0.2594,  ...,  1.0837, -0.9624,  0.1389]]], 
       grad_fn=<EmbeddingBackward0>) 

>>> 
>>> print (input_embeddings.shape) 

torch.Size([1, 4, 512])

We choose embedding 
dimension to be 512 - as in the 
original "Attention is all you 
need" paper (GPT-1 had 768)

* Tensor operations are supposed to be done in batches (e.g. batches of token sequences) for efficient parallel execution on the hardware (e.g. GPU). In our case we have only one sequence of 
four tokens, which explains the first dimension  

Batch size (number of token 
sequence in a batch)*

Embedding vector 
dimension

Token sequence 
length

Question: why do we need a dedicated  PyTorch Embedding layer and why 
Linear is not OK for this job?  

Answer: this is all about data format, Linear would fit the purpose if each 
toked would be presented in the format of [0,0,0, ...1, 0,0] 
sparse vectors (of dimension vocab_size) which is clearly not practical ...

89



Create a new file fit_languate_model_eng_it.py and run it: 

import torch as tr 
from transformers import  AutoTokenizer 

# tokenize data 
tokenizer = AutoTokenizer.from_pretrained("gpt2") 
x = tokenizer("I am GPT", return_tensors="pt").input_ids 
y = tokenizer("Sono GPT", return_tensors="pt").input_ids 

# define the model, loss and optimizer for training 
model = tr.nn.Sequential( 

tr.nn.Embedding(tokenizer.vocab_size, 512), 
tr.nn.Linear(512,tokenizer.vocab_size)) 

criterion = tr.nn.CrossEntropyLoss(ignore_index=0) 
optimizer = tr.optim.Adam(model.parameters()) 

# fit the model 
model.train() # training mode on 
for i in range(30): 
    y_pred = model(x) 
    loss = criterion(y_pred.view(-1, tokenizer.vocab_size), y.view(-1)) 
    # to understand the above view(...) transformation - uncomment the below: 
    # print (y_pred.shape, y.shape)  
    # print (y_pred.view(-1, tokenizer.vocab_size).shape, y.view(-1).shape) 
    loss.backward() 
    optimizer.step() 
    print ("Loss:",loss.item()) 
tr.save(model.state_dict(), 'model_eng_it.pth') 

A trivial Language Model: training 90



Create a new file fit_languate_model_eng_it.py and run it: 

import torch as tr 
from transformers import  AutoTokenizer 

# tokenize data 
tokenizer = AutoTokenizer.from_pretrained("gpt2") 
x = tokenizer("I am GPT", return_tensors="pt").input_ids 
y = tokenizer("Sono GPT", return_tensors="pt").input_ids 

# define the model, loss and optimizer for training 
model = tr.nn.Sequential( 

tr.nn.Embedding(tokenizer.vocab_size, 512), 
tr.nn.Linear(512,tokenizer.vocab_size)) 

criterion = tr.nn.CrossEntropyLoss(ignore_index=0) 
optimizer = tr.optim.Adam(model.parameters()) 

# fit the model 
model.train() # training mode on 
for i in range(30): 
    y_pred = model(x) 
    loss = criterion(y_pred.view(-1, tokenizer.vocab_size), y.view(-1)) 
    # to understand the above view(...) transformation - uncomment the below: 
    # print (y_pred.shape, y.shape)  
    # print (y_pred.view(-1, tokenizer.vocab_size).shape, y.view(-1).shape) 
    loss.backward() 
    optimizer.step() 
    print ("Loss:",loss.item()) 
tr.save(model.state_dict(), 'model_eng_it.pth') 

The view(...) operation is needed to reduce batch and sequence 
dimensions into a single one for the CrossEntropyLoss to 
"understand" the data(try uncommenting the corresponding print 
statements)*: 

torch.Size([1, 4, 50257]) torch.Size([1, 4]) 
torch.Size([4, 50257]) torch.Size([4])

*Note that CrossEntropyLoss of PyTorch automatically acts 
as SparseCategoricalCrossentropy of Tensorflow

91A trivial Language Model: training



Create a new file eval_languate_model_eng_it.py 

import torch as tr 
from transformers import  AutoTokenizer 

tokenizer = AutoTokenizer.from_pretrained("gpt2") # tokenizer instance 
model = tr.nn.Sequential(                         # define the model 

tr.nn.Embedding(tokenizer.vocab_size, 512), 
tr.nn.Linear(512,tokenizer.vocab_size) 

) 
model.load_state_dict(tr.load('model_eng_it.pth', weights_only=True)) # load trained model weights 
model.eval() # set model in the evaluation mode 

Now let's run it:  python -i eval_languate_model_eng_it.py 
>>> in_data = tokenizer("I am", return_tensors="pt").input_ids 
>>> out_data = model(in_data) 
>>> print (out_data.shape)  
>>> print (out_data) 

torch.Size([1, 2, 50257]) 
tensor([[[-6.3526, -5.8213, -5.9804,  ..., -6.5088, -5.9832, -6.1094],[-6.8054, -6.9886, -5.6512,  ..., 
-6.5140, -6.8379, -6.2876]]],grad_fn=<ViewBackward0>) 

In principle we could run the Softmax transformation to convert the vector of dimension 
50257 into the actual probabilities, however it is not needed since we are basically 
interested in the order only (Softmax is monotonic function) - at which position is the 
highest value?

92A trivial Language Model: inference



Create a new file eval_languate_model_eng_it.py 

import torch as tr 
from transformers import  AutoTokenizer 

tokenizer = AutoTokenizer.from_pretrained("gpt2") # tokenize data 
model = tr.nn.Sequential(                         # define the model 

tr.nn.Embedding(tokenizer.vocab_size, 512), 
tr.nn.Linear(512,tokenizer.vocab_size) 

) 
model.load_state_dict(tr.load('model_eng_it.pth', weights_only=True)) # load trained model weights 
model.eval() # set model in the evaluation mode 

Now let's run it:  python -i eval_languate_model_eng_it.py 
>>> in_data = tokenizer("I am", return_tensors="pt").input_ids 
>>> out_data = model(in_data) 
>>> print (out_data.shape)  
>>> print (out_data) 

torch.Size([1, 2, 50257]) 
tensor([[[-6.3526, -5.8213, -5.9804,  ..., -6.5088, -5.9832, -6.1094],[-6.8054, -6.9886, -5.6512,  ..., 
-6.5140, -6.8379, -6.2876]]],grad_fn=<ViewBackward0>) 

>>> out_indexmax = tr.argmax(out_data,dim=-1) 
>>> print (out_indexmax.shape) 

torch.Size([1, 2]) 
>>> print (out_indexmax) 

tensor([[   50, 29941]]) 
>>> print (tokenizer.batch_decode(out_indexmax)) 
['Sono'] Et voilà!  

We see our Eng-It model in action!

93A trivial Language Model: inference



Update eval_languate_model_eng_it.py to have everything in one place (will need it for later...) 

import torch as tr 
from transformers import  AutoTokenizer 

tokenizer = AutoTokenizer.from_pretrained("gpt2") # tokenize data 
model = tr.nn.Sequential(                         # define the model 

tr.nn.Embedding(tokenizer.vocab_size, 512), 
tr.nn.Linear(512,tokenizer.vocab_size) 

) 
model.load_state_dict(tr.load('model_eng_it.pth', weights_only=True)) # load trained model 
weights 
model.eval() # set model in the evaluation mode 

# example of model inference 
in_data = tokenizer("I am", return_tensors="pt").input_ids 
out_data = model(in_data) 
out_indexmax = tr.argmax(out_data,dim=-1) 
human_readable_output = tokenizer.batch_decode(out_indexmax) 

94A trivial Language Model: inference (recap)



Coming back to Transformers...

Now as we (hopefully) have some intuition regarding the 
Language models, we can get back to the Transformers. 
Transformer is a model architecture. In the previously 
considered example we used a trivial model architecture with 2 
layers only: 

• Embedding (tokens --> embedding vectors) 

• Linear (embedding vectors --> token probabilities)

model = tr.nn.Sequential( 
tr.nn.Embedding(tokenizer.vocab_size, 512), 

tr.nn.Linear(512,tokenizer.vocab_size) 
) 

95



Coming back to Transformers...

Now as we (hopefully) have some intuition regarding the 
Language models, we can get back to the Transformers. 
Transformer is a model architecture. In the previously 
considered example we used a trivial model architecture with 2 
layers only: 

• Embedding (tokens --> embedding vectors) 
• Transformer 
• Linear (embedding vectors --> token probabilities)

model = tr.nn.Sequential( 
tr.nn.Embedding(tokenizer.vocab_size, 512), 
Transofmer 
tr.nn.Linear(512,tokenizer.vocab_size) 

) 

96



Transformers are about the attention matrix

See also: https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/
Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html

come

si

  grotte 

glaciali

formano

Q

K

Q

K
Q = query, K = key

Cross-attention Self-attention

97

https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html
https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html


Transformers are about the attention matrix

See also: https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/
Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html

come

si

  grotte 

glaciali

formano

Q

K

Q

K
Q = query, K = key

Cross-attention Self-attention

For example, think of this 
specific number as a dot 
product of embedding vector 
corresponding to 'grotte' and 
the one corresponding to 
'formed'

98

https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html
https://fall-2023-python-programming-for-data-science.readthedocs.io/en/latest/Lectures/Theme_3-Model_Engineering/Lecture_20-Transformer_Networks/Lecture_20-Transformer_Networks.html


Transformers are about the attention matrix

come

si

  grotte 

formano

Cross-attention Self-attention

Q

K

Q

K
Both cross-attention and self-attention is used in Language translation problems (original model in "Attention is all you need" paper)

glaciali

99



Transformers are about the attention matrix

come

si

  grotte 

formano

Cross-attention Self-attention

Q

K

Q

K
In chatbot models like GPT only self-attention is used 
(unless it deals with translation)

glaciali

100



Transformers are about the attention matrix

Self-attention

Q

K
In chatbot models like GPT only self-attention is used 
(unless you ask it for translation of something)

For clarity, let's not consider cross-attention and 
focus on self-attention only (all basic concepts 
are valid ~ identical for both cases)

101



Transformers are about the attention matrix
Input sequence of embeddings (e.g. "how", "are", "glacier", "caves", "formed") is transformed through attention matrix (attention block):

Q

K V

X - input; for now, think of Q = K = V = X (sequence of input embedding vectors)

→

X

=

102



Transformers are about the attention matrix

This is a scalar

Embedding-space vectors (e.g. 
dimension=512 as in our previous example)

For clarity, imagine that the Embedding space 
has only 1 dimension (not 512 or whatever...) 

Q

K V

→

X

=

103

Input sequence of embeddings (e.g. "how", "are", "glacier", "caves", "formed") is transformed through attention matrix (attention block):

X - input; for now, think of Q = K = V = X (sequence of input embedding vectors)



Q

K V

→

X

Transformers are about the attention matrix

Let's call it QK matrix

Scalar (element of 
QK matrix)

Embedding vector

For example, let's consider the value of 
first element, it equals: 

  QK(how-how)     * Embed(how)  + 
  QK(how-are)     * Embed(are)  + 
  QK(how-glacier) * Embed(glacier)  + 
  QK(how-caves)   * Embed(caves)  + 
  QK(how-formed)  * Embed(formed)  +

=

104

Input sequence of embeddings (e.g. "how", "are", "glacier", "caves", "formed") is transformed through attention matrix (attention block):



Q

K V

=→

X

Transformers are about the attention matrix

Attention Transformation block (in analogy with convolutional filter of CNN)

Output of the Transformer - same 
structure as the input: a sequence 
of embedding-space vectors (5 
vectors in our example) but...  

Each "embedding" is not merely 
the one corresponding to the 
word/token itself, but is rather a 
sum of all original embeddings 
weighted according to their 
correlation/attention

105

Input sequence of embeddings (e.g. "how", "are", "glacier", "caves", "formed") is transformed through attention matrix (attention block):



Q

K V

=→

X

Transformers are about the Attention matrix

Attention Transformation block (in analogy with convolutional filter of CNN)

Output of the Transformer - same 
structure as the input: a sequence 
of embedding-space vectors (5 
vectors in our example) but...  

Each "embedding" is not merely 
the one corresponding to the 
word/token itself, but is rather a 
sum of all original embeddings 
weighted according to their 
correlation/attention

106

Input sequence of embeddings (e.g. "how", "are", "glacier", "caves", "formed") is transformed through attention matrix (attention block):



Attention: queries  (Q), keys (K), values (V)

Q = WQ·X    K = WK·X    V = WV·X

Wq, Wk, Wv - n x n matrices where n is the number of dimensions in embedding space  (512 x 512 in our example) 
X - input embeddings (5 x 512 matrix in our example of "how", "are", "glacier", "caves", "formed") 
Q - query-transformed "embeddings" (5 x 512 matrix ...) 
K - key-transformed "embeddings" (5 x 512 matrix ...) 
V - value-transformed "embeddings" (5 x 512 matrix ...) 

107

Now where is the catch? 
• Before we considered Q=K=V = (sequence of embedding vectors each one corresponding to an input token) 

➡If that would be the case, the only way were model could learn something is in the Embedding layer (the one that 
translates tokens into embedding vectors) - which would barely be enough for any real-life application 

• In reality is that Q, K, V are not merely the input embeddings, but linearly-transformed input embeddings!



In PyTorch (given our example) the three matrices are implemented with the Linear layers: 
W_Q = tr.nn.Linear(512, 512) 
W_K = tr.nn.Linear(512, 512) 
W_V = tr.nn.Linear(512, 512)

Q = WQ·X    K = WK·X    V = WV·X
Important!        

The WQ, WK, WV  (query, key, value) 
matrices are trainable parameters of a 
Transformer model (in analogy with 
convolutional filters of CNN) - that is where 
the model encodes much of its knowledge!

108

Now where is the catch? 
• Before we considered Q=K=V = (sequence of embedding vectors each one corresponding to an input token) 

➡If that would be the case, the only way were model could learn something is in the Embedding layer (the one that 
translates tokens into embedding vectors) - which would barely be enough for any real-life application 

• In reality is that Q, K, V are not merely the input embeddings, but linearly-transformed input embeddings!

Attention: queries  (Q), keys (K), values (V)



?

WK·Y

WQ·X

WV·XX
Input embeddings Transformer

109

• Okay, the transformer takes as an input a sequence of embedding corresponding to tokens ("how", "are", "glacier", "caves", "formed")  
• What do we want to predict? The answer is: for every input token we train the model to predict next one in the sequence...

Attention: queries  (Q), keys (K), values (V)



• Okay, the transformer takes as an input a sequence of embedding corresponding to tokens ("how", "are", "glacier", "caves", "formed")  
• What do we want to predict? The answer is: for every input token we train the model to predict next one in the sequence...

Input embeddings Transformer

We removed the last token/embedding from the input ("formed"), while the target output (used to 
trained the model) is the same as input but shifted by one position ("how" removed in the beginning). 
Remember: number if input and output tokens in self-attention models is always the same!

WK·X

WQ·X

WV·XX

110Transformer training: input & output

Output embeddings



• To avoid the model "looking into the future" at training, we mask elements below the main diagonal in the attention matrix

Input embeddings Transformer

WK·X

WQ·X

WV·XX

111Transformer training: input & output

Output embeddings



Transformer training: input & output

Input embeddings Transformer

WK·X

WQ·X

WV·XX

O0 O0

O0

O0

O0

O0

For example, the output of transformer for the word "glacier" will be a weighted sum of embeddings of word "glacier" itself and the words preceding in the 
sequence ("are","how")  but not those after ("caves"). Otherwise, the model will just pick up (learn) to use the features of a word/token that comes right after - it 
will trivially work to predict n-1 tokens out of n, but will yield nonsense for the last one (as it has no information about the word that come after)

112

• To avoid the model "looking into the future" at training, we mask elements below the main diagonal in the attention matrix

Output embeddings



Transformer inference: input & output
During the inference, we ask model to iteratively predict one toke at at time: 

• First call of the model: 
➡ Inputs:  ["how"] 
➡ Outputs: ["are"] 

• Second call of the model: 
➡ Inputs:  ["how", "are"     ] 
➡ Outputs: ["are", "glacier" ] 

• Third call of the model: 
➡ Inputs:  ["how", "are",     "glacier" ] 
➡ Outputs: ["are", "glacier", "caves"   ] 

• Fourth call of the model: 
➡ Inputs:  ["how", "are",     "glacier", "caves"  ] 
➡ Outputs: ["are", "glacier", "caves",   "formed" ] 

etc. (we can, in principle, continue forever ...)

113



Transformer inference: input & output (cross-attention)
During the inference, we ask model to iteratively predict one toke at at time: 

• First call of the model: 
➡ Inputs:  ["how", "are", "glacier", "caves",  "formed"], [<s>] 
➡ Outputs: ["come"] 

• Second call of the model: 
➡ Inputs:  ["how", "are", "glacier", "caves",  "formed"], [<s>, "come"] 
➡ Outputs: ["come","si"  ] 

• Third call of the model: 
➡ Inputs:  ["how", "are", "glacier", "caves",  "formed"], [<s>, "come", "si"] 
➡ Outputs: ["come","si",  "glaciali"] 

• Fourth call of the model: 
➡ Inputs:  ["how", "are", "glacier", "caves",  "formed"], [<s>, "come","si","glaciali"] 
➡ Outputs: ["come","si",  "glaciali", "grotte"] 

• Fifth call of the model (we don't predict, we translate the sentence): 
➡ Inputs:  ["how", "are", "glacier", "caves",  "formed"], [<s>, "come","si","glaciali", "grotte"] 
➡ Outputs: ["come","si",  "glaciali", "grotte","formatto"] 

• Fifth call of the model (we don't predict, we translate the sentence): 
➡ Inputs:  ["how", "are", "glacier", "caves",  "formed"], [<s>, "come","si","glaciali", "grotte", "fomratto"] 
➡ Outputs: ["come","si",  "glaciali", "grotte","formatto", <e>] 

If trained well, the model will likely yield a stop-sequence token telling us that it no more tokens are needed 
and the English sentence translation is completed

Special start-of-sequence token -- it is 
required since, by construction, one Italian 
input token will correspond to exactly one 
Italian output token (number of English 
inputs/tokens can be whatever, in the end of 
translation the number of Italian tokens 
might be different from the English ones)

114



Enough (almost) theory, let's get 
back to coding... 



Code adapted from: https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch
Create  transformer_torch.py : 

import torch as tr 
import math 
class Attention(tr.nn.Module): 
    def __init__(self, d_model): 
        super().__init__() 
        # Linear layers for transforming inputs 
        self.W_q = tr.nn.Linear(d_model, d_model) # Query transformation 
        self.W_k = tr.nn.Linear(d_model, d_model) # Key transformation 
        self.W_v = tr.nn.Linear(d_model, d_model) # Value transformation 
        
        self.d_model = d_model  # embedding dimension 

    def scaled_dot_product_attention(self, Q, K, V, mask=None): 
        # Calculate attention scores 
        attn_scores = tr.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_model) 
         
        # Apply mask (for example the under-diagonal elements)  
        if mask is not None: attn_scores = attn_scores.masked_fill(mask==0,-1e9) 

        # Softmax is applied to obtain attention probabilities 
        attn_probs = tr.softmax(attn_scores, dim=-1) 

        # Multiply by values to obtain the final output 
        return tr.matmul(attn_probs, V) 

    def forward(self, x, mask=None): 
        # Apply linear transformations and split head 
        Q = self.W_q(x) 
        K = self.W_k(x) 
        V = self.W_v(x) 
        # Perform scaled dot-product attention and return 
        attn_output = self.scaled_dot_product_attention(Q, K, V, mask)  
        return attn_output

We already know W_k, W_q, W_v 
matrices

• Calculate attention (QK) matrix 
• Apply mask (for example QK 

elements below the main diagoanal) 
• Obtained QK matrix embedding 

vector (divided by d_model to 
normalize typical value and avoid 
growth with large d_model) 

• Softamax is applied to normalize to 
QK matrix element to probabilities 

Propagate our input sequence 
through the attention block

Attention block code 116

https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch


Create  test_attention_block_torch.py : 

import torch as tr 
from transformer_torch import Attention 
from transformers import  AutoTokenizer 

tokenizer = AutoTokenizer.from_pretrained("gpt2") 
attentionblock = Attention(512) 

x = tr.randint(1, tokenizer.vocab_size-1, (32, 100)) 
print (x.shape) 
x_embed = tr.nn.Embedding(tokenizer.vocab_size, 512)(x) 
print (x_embed.shape) 

x_attention = attentionblock(x_embed) 
print (x_embed.shape) 

python test_attention_block_torch.py : 

torch.Size([32, 100]) 
torch.Size([32, 100, 512]) 
torch.Size([32, 100, 512])

Attention block code: test

We generate a batch of random data 32 
sequences of 100 tokens each. Then 
we convert it to embedding vectors

We process the embedding vectors of our input data 
through the attention block, in the end we should get the 
output sequence if the same dimension

?

117



Exercise  (5 mins): understanding of the Attention

Look inside the function scaled_dot_product_attention of the Attention class 

➡ Insert print statements to show the dimension (shape) of Q, K, V, attn_scores, attn_probs  

...  Do you understand those?  

➡ Print the values of attn_scores and attn_probs matrices 

... Does the second one look like probabilities? 

118



• In reality,  each transformer block has multiple attention heads. What does that mean? Consider our example:

Multi-head attention

WK·X

WQ·X

WV·XX

119



• In reality,  each transformer block has multiple attention heads. What does that mean? Consider our example:

Multi-head attention

WK·X

WQ·X

WV·XX

Each element here is an embedding vector (dimension 512 in our example)

120



Multi-head attention

"caves"   → [-0.34,  1.31, ..., ..., ..., ..., ..., ..., ..., ..., ..., 0.93, -0.57] 

512 numbers

Vectors in embedding space are split into equal size parts processed separately each by its own Transformer (Key-Query-
Value transformation), which is called a "head". In a canonical "Attention is all you need" paper, there are 8 heads per 
attention block, which makes the dimension of sub-embedding for each head 512/8 = 64.

Attention Head 1 Attention Head 2 Attention Head 8...

121



Multi-head attention

"caves"   → [-0.34,  1.31, ..., ..., ..., ..., ..., ..., ..., ..., ..., 0.93, -0.57] 

512 numbers

Attention Head 1 Attention Head 2 Attention Head 8

Vectors in embedding space are split into equal size parts processed separately each by its own Transformer (Key-Query-
Value transformation), which is called a "head". In a canonical "Attention is all you need" paper, there are 8 heads per 
attention block, which makes the dimension of sub-embedding for each head 512/8 = 64. 

In practice, the algorithm is as follows:  
1. Apply key/value/query transformation to each embedding 
2. Split embeddings into multiple equal-length parts (8 pars, 64 each -  in the original paper) 
3. Apply attention transformation for each sub-embedding (head)  (8 attention blocks) 
4. Combine the outputs of 8 transformations back to the original-size embedding vector (dimension 512 in our example)

...

122



Main advantage if multi-head attention is that at the ~same computation complexity, the model can encode different attention patterns 
in through different heads in one attention block

Multi-head attention

WK·X

WQ·X

WV·XX

For example, the first head may converge towards focusing on correlation in the beginning and the end of the phrase, putting 
more weight to those ("how" and "caves" in our example), while the other head may focus more on attention patters between 
subsequent words ("are", "glacier") etc. Remember that these attention patterns are encoded in the WQ, WK, WV, matrices... 

123



Now let's update the transformer_torch.py code (make a back-up copy of it before!): 

#class Attention(tr.nn.Module):              # before 
class MultiHeadAttention(tr.nn.Module):      # now 
    #def __init__(self, d_model):            # before 
    def __init__(self, d_model, num_heads):  # now 
        super().__init__() 
        ... everything before remains the same, add the following in the end of __init__: 
        self.num_heads = num_heads                # Number of attention heads 
        self.d_k = d_model // num_heads           # Dimension of each head's key, query, value 
        self.W_o = tr.nn.Linear(d_model, d_model) # Mixing matrix (we'll understand it later)  

    def scaled_dot_product_attention(self, Q, K, V, mask=None): 
        ... everything the same except for replacing "d_model" with "d_k": 
        #attn_scores = tr.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_model) 
        attn_scores = tr.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k) 
        
    def forward(self, x, mask=None): 
        ... 
        # add the following code to split heads after the Q,V,K definition 
        Q = self.split_heads(self.W_q(Q)) 
        K = self.split_heads(self.W_k(K)) 
        V = self.split_heads(self.W_v(V)) 

              ...

        # add the following after the "attn_output" definition and before "return": 
        attn_output = self.combine_heads(attn_output)   # combine heads        
        attn_output = self.W_o(attn_output)             # mix heads    
         
    
    ... contiunued on the next pate (we need to implement "split_heads" and "combine_heads" methods )

We need to define number of heads 
and also to create a "mixing" matrix 
to mix the heads in the end

Replace "d_model" with "d_k"

We first split the Q, K, V vectors into 
parts (8 parts 64 length each in our 
example) to be processed by 8 
independent Attention 
transformations

Then we combine back the output

Multi-head attention block: code 124



edit transformer_torch.py (continued from the previous slide): 
    
    # ... continued from the previous page 
    # add these methods :  
    def split_heads(self, x): 
        # Reshape the input to have num_heads for multi-head attention 
        batch_size, seq_length, d_model = x.shape 
        output = x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2) 
        print ("Tensor shape before splitting heads", x.shape)  
        print ("Tensor shape after splitting heads", output.shape) 
        return output 
     
    def combine_heads(self, x): 
        # Combine the multiple heads back to original shape 
        batch_size, _, seq_length, d_k = x.shape 
        output = x.transpose(1, 2).contiguous() 
        output = output.view(batch_size, seq_length, self.d_model)  
        print ("Tensor shape before combining heads", x.shape)  
        print ("Tensor shape after combining heads", output.shape) 
        return output

We need these print stamtants in order to 
understand what does the split_heads and 
combine_heads code do. After we do all the 
tests, you can/should remove or comment those

Multi-head attention block: code 125



import torch as tr 
import math 
class MultiHeadAttention(tr.nn.Module): 
    def __init__(self, d_model, num_heads): 
        super().__init__() 
        # Linear layers for transforming inputs 
        self.W_q = tr.nn.Linear(d_model, d_model) # Query transformation 
        self.W_k = tr.nn.Linear(d_model, d_model) # Key transformation 
        self.W_v = tr.nn.Linear(d_model, d_model) # Value transformation 

        self.d_model = d_model                # embedding dimension 
        self.num_heads = num_heads            # Number of attention heads 
        self.d_k = d_model // num_heads        # Dimension of each head's key, query, and value 
        self.W_o = tr.nn.Linear(d_model, d_model)# Mixing matrix (we'll understand it later)  

    def scaled_dot_product_attention(self, Q, K, V, mask=None): 
        # Calculate attention scores 
        attn_scores = tr.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k) 

        # Apply mask (for example the under-diagonal elements)  
        if mask is not None: attn_scores = attn_scores.masked_fill(mask==0,-1e9) 

        # Softmax is applied to obtain attention probabilities 
        attn_probs = tr.softmax(attn_scores, dim=-1) 

        # Multiply by values to obtain the final output 
        return tr.matmul(attn_probs, V) 

    def forward(self, x, mask=None): 
        # Apply linear transformations and split head 
        Q = self.W_q(x) 
        K = self.W_k(x) 
        V = self.W_v(x) 
        Q = self.split_heads(self.W_q(Q)) 
        K = self.split_heads(self.W_k(K)) 
        V = self.split_heads(self.W_v(V)) 

        # Perform scaled dot-product attention and return        
        attn_output = self.scaled_dot_product_attention(Q, K, V, mask) 
        attn_output = self.combine_heads(attn_output)   # combine heads        
        attn_output = self.W_o(attn_output)             # mix heads    
        return attn_output 

    def split_heads(self, x): 
        # Reshape the input to have num_heads for multi-head attention 
        batch_size, seq_length, d_model = x.shape 
        output = x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2) 
        print ("Tensor shape before splitting heads", x.shape)         # remove me later! 
        print ("Tensor shape after splitting heads", output.shape)     # remove me later! 
        return output 

    def combine_heads(self, x): 
        # Combine the multiple heads back to original shape 
        batch_size, _, seq_length, d_k = x.shape 
        output = x.transpose(1, 2).contiguous() 
        output = output.view(batch_size, seq_length, self.d_model) 
        print ("Tensor shape before combining heads", x.shape)        # remove me later! 
        print ("Tensor shape after combining heads", output.shape)    # remove me later! 
        return output

In   test_attention_block_torch.py replace: 

... 
#from transformer_torch import Attention 
from transformer_torch import MultiHeadAttention 
... 
#attentionblock = Attention(512) 
attentionblock = MultiHeadAttention(512, 8) 
... 

Run the test: 
python test_attention_block_torch.py : 

... 
Tensor shape before splitting heads torch.Size([32, 100, 512]) 
Tensor shape after splitting heads torch.Size([32, 8, 100, 64]) 
Tensor shape before combining heads torch.Size([32, 8, 100, 64]) 
...

Batch 
size

Number of 
heads

Sequence 
length

transformer_torch.py:

Sub-embedding dimension 
(embedding  dimension 
divided by number of heads)

Multi-head attention block: code (recap and test) 126



import torch as tr 
import math 
class MultiHeadAttention(tr.nn.Module): 
    def __init__(self, d_model, num_heads): 
        super().__init__() 
        # Linear layers for transforming inputs 
        self.W_q = tr.nn.Linear(d_model, d_model) # Query transformation 
        self.W_k = tr.nn.Linear(d_model, d_model) # Key transformation 
        self.W_v = tr.nn.Linear(d_model, d_model) # Value transformation 

        self.d_model = d_model                # embedding dimension 
        self.num_heads = num_heads            # Number of attention heads 
        self.d_k = d_model // num_heads        # Dimension of each head's key, query, and value 
        self.W_o = tr.nn.Linear(d_model, d_model)# Mixing matrix (we'll understand it later)  

    def scaled_dot_product_attention(self, Q, K, V, mask=None): 
        # Calculate attention scores 
        attn_scores = tr.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k) 

        # Apply mask (for example the under-diagonal elements)  
        if mask is not None: attn_scores = attn_scores.masked_fill(mask==0,-1e9) 

        # Softmax is applied to obtain attention probabilities 
        attn_probs = tr.softmax(attn_scores, dim=-1) 

        # Multiply by values to obtain the final output 
        return tr.matmul(attn_probs, V) 

    def forward(self, x, mask=None): 
        # Apply linear transformations and split head 
        Q = self.W_q(x) 
        K = self.W_k(x) 
        V = self.W_v(x) 
        Q = self.split_heads(self.W_q(Q)) 
        K = self.split_heads(self.W_k(K)) 
        V = self.split_heads(self.W_v(V)) 

        # Perform scaled dot-product attention and return        
        attn_output = self.scaled_dot_product_attention(Q, K, V, mask) 
        attn_output = self.combine_heads(attn_output)   # combine heads        
        attn_output = self.W_o(attn_output)             # mix heads    
        return attn_output 

    def split_heads(self, x): 
        # Reshape the input to have num_heads for multi-head attention 
        batch_size, seq_length, d_model = x.shape 
        output = x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2) 
        print ("Tensor shape before splitting heads", x.shape)         # remove me later! 
        print ("Tensor shape after splitting heads", output.shape)     # remove me later! 
        return output 

    def combine_heads(self, x): 
        # Combine the multiple heads back to original shape 
        batch_size, _, seq_length, d_k = x.shape 
        output = x.transpose(1, 2).contiguous() 
        output = output.view(batch_size, seq_length, self.d_model) 
        print ("Tensor shape before combining heads", x.shape)        # remove me later! 
        print ("Tensor shape after combining heads", output.shape)    # remove me later! 
        return output

Multi-head attention block: code recap and test

MultiHeadAttention is a building block of a Transformer model. 
Now let's build the model itself - which is, roughly speaking, just 
a sequence of multiple instances of MultiHeadAttention stacked 
one after another (sort of convolutional filters in a CNN)...

transformer_torch.py:

127



Transformer model: architecture
Original cross-attention Transformer 
from the "Attention is all you need " 
paper https://arxiv.org/abs/1706.03762 

See the full code of cross-attention tutorial in: https://
www.datacamp.com/tutorial/building-a-transformer-with-py-torch

128

https://arxiv.org/abs/1706.03762
https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch
https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch


Transformer model: architecture

Self-attention-only (decoder-only) 
Transformer used in GPT-like models 

So-called "Decoder-only" architecture is 
Considered in this tutorial

129



Transformer model: architecture

MultiHeadAttention block 
that we have already 
implemented in PyTorch

Transformer Layer

= 6

130

Self-attention-only (decoder-only) 
Transformer used in GPT-like models 



Transformer model: architecture 131

Self-attention-only (decoder-only) 
Transformer used in GPT-like models 



Transformer layer: code
Edit transformer_torch.py (add the following in the end): 

    
class TransformerLayer(tr.nn.Module):  # a.k.a. "Decoder" Layer 
    def __init__(self, d_model, num_heads, d_ff, dropout): 
        super().__init__() 
        # instance of attnetion head 
        self.self_attn = MultiHeadAttention(d_model, num_heads) 
        # instance of layer normalisation  
        self.norm1 = tr.nn.LayerNorm(d_model) 
        # layers of feed-forward part 
        self.fc1 = tr.nn.Linear(d_model, d_ff) 
        self.fc2 = tr.nn.Linear(d_ff, d_model) 
        self.relu = tr.nn.ReLU() 
        # another layer normalisation and dropout 
        self.norm3 = tr.nn.LayerNorm(d_model) 
        self.dropout = tr.nn.Dropout(dropout) 

    def forward(self, x, mask): 
        # attention block 
        attn_output = self.self_attn(x, mask) 
        # sum attention output and the original input, normalise  
        x = self.norm1(x + self.dropout(attn_output)) 
        # non-linear feed-forward oparation 
        ff_output = self.fc2(self.relu(self.fc1(x))) 
        # sum the non-linear output and the with its input, normalise 
        x = self.norm3(x + self.dropout(ff_output)) 
        return x 

132



Transformer layer: code
Edit transformer_torch.py (add the following in the end): 

    
class TransformerLayer(tr.nn.Module):  # a.k.a. "Decoder" Layer 
    def __init__(self, d_model, num_heads, d_ff, dropout): 
        super().__init__() 
        # instance of attnetion head 
        self.self_attn = MultiHeadAttention(d_model, num_heads) 
        # instance of layer normalisation  
        self.norm1 = tr.nn.LayerNorm(d_model) 
        # layers of feed-forward part 
        self.fc1 = tr.nn.Linear(d_model, d_ff) 
        self.fc2 = tr.nn.Linear(d_ff, d_model) 
        self.relu = tr.nn.ReLU() 
        # another layer normalisation and dropout 
        self.norm3 = tr.nn.LayerNorm(d_model) 
        self.dropout = tr.nn.Dropout(dropout) 

    def forward(self, x, mask): 
        # attention block 
        attn_output = self.self_attn(x, mask) 
        # sum attention output and the original input, normalise  
        x = self.norm1(x + self.dropout(attn_output)) 
        # non-linear feed-forward oparation 
        ff_output = self.fc2(self.relu(self.fc1(x))) 
        # sum the non-linear output and the with its input, normalise 
        x = self.norm3(x + self.dropout(ff_output)) 
        return x 

133

Pay attention to flow of non-changed input 
that is always added to the output 
(inspired by ResNET convolutional nets...)



Positional Encoding
So far we never mentioned positional encoding... How does the Attention transformation know about relative positions of tokens/
embedding in the sequence? A neat trick to facilitate positional encoding is to add to the embedding vector another vector that 
encodes the position (Positional Encoding a.k.a. Positional Embedding). This is done before the data is fed to transformer layers.

"caves" embedding →  [-0.34,  1.31, ..., ..., ..., ..., ..., ..., ..., ..., ..., 0.93, -0.57] 

encoding for position 3 →  [ 0.14, -0.99, ..., ..., ..., ..., ..., ..., ..., ..., .. 0.0003,  1.00] +

sin(pos/1000i/d), for i=0,2,...
cos(pos/1000(i-1)/d), for i=1,3,..

PE(pos, i) = { where  
i=0, .., d-1
d - embedding dimension (512 in our example)
pos = 0, ..., max_seqence_length

Position encoding vector:

Why 10000? → Wide range of wavelets covering patterns from short to long distances. 
For example, for small i the period is close to ~1 - short dependancies, for the largest i period gets very 
high - close to 10000 (long dependencies) 

134



Positional Encoding

Why this specific definition is used?

1. Unique representation of each position 
2. Values limited in +-1 range → good for NN

Embedding vector index (i)

Po
si

tio
n

See also: 

https://medium.com/@hirok4/understanding-transformer-
sinusoidal-position-embedding-7cbaaf3b9f6a

Po
si

tio
na

l e
m

be
dd

in
g 

va
lu

e

3.  Encodes relative distance*:

Do
t p

ro
du

ct
 o

f t
wo

 p
os

iti
on

al
 e

m
be

dd
in

gs

* Dot product between between two positional vectors is only 
defined by their relative position difference

Position

Po
si

tio
n

135

https://medium.com/@hirok4/understanding-transformer-sinusoidal-position-embedding-7cbaaf3b9f6a
https://medium.com/@hirok4/understanding-transformer-sinusoidal-position-embedding-7cbaaf3b9f6a


Positional Encoding: code implementation
Edit transformer_torch.py (add the following in the end): 

    
class PositionalEncoding(tr.nn.Module): 
    def __init__(self, d_model, max_seq_length): 
        super().__init__() 

        pe = tr.zeros(max_seq_length, d_model) 
        position = tr.arange(0, max_seq_length, dtype=tr.float).unsqueeze(1) 
        div_term = tr.exp(tr.arange(0, d_model, 2).float() / d_model * -(math.log(10000.0))) 

        pe[:, 0::2] = tr.sin(position * div_term) 
        pe[:, 1::2] = tr.cos(position * div_term) 

        # register pe as part of the model but do not trat as (trainable) parameters 
        self.register_buffer('pe', pe) 

    def forward(self, x): 
        return x + self.pe[:x.size(1)] 

Let's test it, run python -i transformer_torch.py: 

>>> p = PositionalEncoding(512, 100) # embedding dimension 512, maximum 100 tokens in a sequence 
>>> x = tr.zeros(100, 512)           # 100 embedding-size (512) vectors with with initiated with zeros 
>>> position_embeddings = p(x)       # this is a sum of embedding itself + position, however our embeddings are just zeros... 
>>> print (position_embeddings[0]) 

tensor([0., 1., 0., 1., 0., ... 1., 0., 1.]) 
>>> print (position_embeddings[1]) 

tensor([8.4147e-01, 5.4030e-01,..., 1.0366e-04, 1.0000e+00])

136



Incorporate everything into the final model → edit transformer_torch.py (add the following in the end): 

class Transformer(tr.nn.Module): 
    def __init__(self, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout): 
        super().__init__() 
        self.embedding = tr.nn.Embedding(tgt_vocab_size, d_model) 
        self.positional_encoding = PositionalEncoding(d_model, max_seq_length) 
        self.layers = tr.nn.ModuleList([TransformerLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)]) 
        self.fc = tr.nn.Linear(d_model, tgt_vocab_size) # conversion from embedding space to token probabilities 
        self.dropout = tr.nn.Dropout(dropout) 

    def generate_mask(self, x): # mask 0 (empty) tokens and above-diagonal elements during the attention matrix generation 
        mask_nonzero = (x != 0).unsqueeze(1).unsqueeze(3) 
        seq_length = x.shape[1] 
        mask = (1 - tr.triu(tr.ones(1, seq_length, seq_length), diagonal=1)).bool() 
        mask = mask_nonzero & mask 
        return mask 

    def forward(self, x): 
        mask = self.generate_mask(x) 
        x_embedded = self.dropout(self.positional_encoding(self.embedding(x))) 

        output = x_embedded 
        for layer in self.layers: 
            output = layer(output, mask) 
        return self.fc(output)

137Putting Transformer pieces together



Now let's test the code with a random data, create train_transformer_torch.py: 

import torch as tr 
from transformer_torch import Transformer 

tgt_vocab_size = 5000 
d_model = 512 
num_heads = 8 
num_layers = 6 
d_ff = 2048 
max_seq_length = 100 
dropout = 0.1 

transformer = Transformer(tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout) 

data = tr.randint(1, tgt_vocab_size, (64, max_seq_length))  # radom integers in the range from 1 to tgt_vocab_size (batch_size, seq_length) 
x = data[:, :-1]    # remember, we remove last token in the sequence 
y = data[:, 1:]     # the target for training is the same as the input but shifted by +1  

criterion = tr.nn.CrossEntropyLoss(ignore_index=0) 
optimizer = tr.optim.Adam(transformer.parameters())   #, lr=0.0001, betas=(0.9, 0.98), eps=1e-9) 

transformer.train() 
for epoch in range(10): 
    optimizer.zero_grad() 
    y_pred = transformer(x) 
    loss = criterion(y_pred.contiguous().view(-1, tgt_vocab_size), y.contiguous().view(-1)) 
    loss.backward() 
    optimizer.step() 
    print(f"Epoch: {epoch+1}, Loss: {loss.item()}") 

Run the test: python train_transformer_torch.py: 
Epoch: 1, Loss: 8.696113586425781 
Epoch: 2, Loss: 8.363970756530762 
...

138Training Transformer with mockup data



Training Transformer with real data
• Let's run it with some real text, create train_transformer_torch_real.py: 

import torch as tr 
from transformer_torch import Transformer 
from transformers import  AutoTokenizer     
tokenizer = AutoTokenizer.from_pretrained("gpt2") 

tgt_vocab_size = tokenizer.vocab_size 
d_model = 128 #512  # we use simpler model compared to the original "Attention is all you need" paper 
num_heads = 8 
num_layers = 2 #6 # same here .. simple model 
d_ff = 2048 
max_seq_length = 10 #100  # and here... 
dropout = 0.1 

transformer = Transformer(tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout) 
with open('little_prince.txt','r') as f: text = f.read() 
data = tokenizer(text, return_tensors="pt").input_ids[0] 
n_seq = 32 
data = data[:n_seq*max_seq_length] # use a small portion of text, 32*100 tokens 
data = data.view(n_seq,max_seq_length) 
x = data[:,:-1] 
y = data[:,1:] 

criterion = tr.nn.CrossEntropyLoss(ignore_index=0) 
optimizer = tr.optim.Adam(transformer.parameters()) 

transformer.train() 
for epoch in range(50): 
    optimizer.zero_grad() 
    y_pred = transformer(x) 
    loss = criterion(y_pred.contiguous().view(-1, tgt_vocab_size), y.contiguous().view(-1)) 
    loss.backward() 
    optimizer.step() 
    print(f"Epoch: {epoch+1}, Loss: {loss.item()}") 
    tr.save(transformer.state_dict(), './model.pth') 

• Create   little_prince.txt  manually by copying the first fragment of text (few pages) from https://archive.org/stream/TheLittlePrince-English/littleprince_djvu.txt  
• Run the training python train_transformer_torch_real.py: 

... 
Epoch: 50, Loss: 0.7570830583572388

139



Transformer prediction/inference: word-by-word
• Create test_transformer_torch_real.py: 

# ============== copypasted from the training file before ============ 
import torch as tr 
from transformer_model import Transformer 
from transformers import  AutoTokenizer 
tokenizer = AutoTokenizer.from_pretrained("gpt2") 

tgt_vocab_size = tokenizer.vocab_size 
d_model = 128 
num_heads = 8 
num_layers = 2 
d_ff = 2048 
max_seq_length = 10 
dropout = 0.1 

transformer = Transformer(tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout) 
# ============== copypasted from the training file before ============ 

transformer.load_state_dict(tr.load('./model.pth')) 
transformer.eval() 

def predict_next_word(x): 
    print ("Input string: ", x) 
    data = tokenizer(x, return_tensors="pt").input_ids 
    output = transformer(data) # apply our transformer model  
    outtokens = tr.argmax(output,dim=-1) 
    return tokenizer.batch_decode(outtokens[:,-1:])[0] # decode only last token 

• Run the code:   python test_transformer_torch_real.py: 

>>> x="The Little Prince" 
>>> 
>>> x+=predict_next_word(x) 
Input string:  The Little Prince 
>>> x+=predict_next_word(x) 
Input string:  The Little Prince appears 
>>> x+=predict_next_word(x) 
Input string:  The Little Prince appears to 
>>> x+=predict_next_word(x) 
Input string:  The Little Prince appears to be 
>>> x+=predict_next_word(x) 
Input string:  The Little Prince appears to be a 
...

140



Transformers & Language Models: summary

• Language Model ~ a neural network that predicts word/token one at a time given the tokens before 

• Embedding - key instrument in Language Models:  
➡  representation of words/tokens with continues vectors in multidimensional space 

• Transformers- the most powerful/efficient architecture for language models so far 

• Attention transformation:  central component of Transformers  
➡  alike convolutional filter in CNNs 

• Can we use Transformers outside Language Models? - Of course!



Step 4: Visualizing the results

prediction of layer 9

input

AI generated

142



Final Exercise:  Transformer in physics (DAMPE case)

Consider applying our Transformer model to the analysis of DAMPE data. The goal 
is to train the model to predict the development of particle interaction (shower) in 
the detector. 

➡ Consider DAMPE calorimeter image (14 x 22) as a sequence of (14) "words" 

➡ Can we predict next word based on the current and previous ones? >>> from dampe import get_dampe_data, plot_dampe_event 
>>> data = get_dampe_data() 
>>> plot_dampe_event(data['caloimages'][12]) 

...

...

NOTE: for simplicity, we have specifically chosen the task that somewhat resembles 
the Language Model text sequence. However, Transformers can be equally applied to 
any other task in physics, such as classification (identifying particle type from the 
image), regression (predicting particle direction) etc.

"Word" 1

"Word" 7

etc.

DAMPE

143



Implementation hints: 
• No need for tokenizer 
• In the Transformer model use Linear layer instead of Embedding 

to convert 22-pixel array ("word") into 512 vector 
• Output of the model should be a set of 22 numbers, each representing 

a signal in a pixel of subsequent layer (instead of probabilities) 
• Use L1Loss instead of CrossEntropyLoss

>>> from dampe import get_dampe_data, plot_dampe_event 
>>> data = get_dampe_data() 
>>> plot_dampe_event(data['caloimages'][12]) 

...

...

"Word" 1

"Word" 7

etc.

Final Exercise:  Transformer in physics (DAMPE case)

DAMPE

144

Consider applying our Transformer model to the analysis of DAMPE data. The goal 
is to train the model to predict the development of particle interaction (shower) in 
the detector. 

➡ Consider DAMPE calorimeter image (14 x 22) as a sequence of (14) "words" 

➡ Can we predict next word based on the current and previous ones?



...

Create a DAMPE  transformer file:  cp transformer_torch.py transformer_torch_dampe.py, edit it: 

class Transformer(tr.nn.Module): 
    def __init__(self, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout): 

            
        .... 
        #self.embedding = tr.nn.Embedding(tgt_vocab_size, d_model) 
        self.embedding = tr.nn.Linear(tgt_vocab_size, d_model) 
        .... 

    def generate_mask(self, x): # 
        #mask_nonzero = (x != 0).unsqueeze(1).unsqueeze(3) 
        seq_length = x.shape[1] 
        mask = (1 - tr.triu(tr.ones(1, seq_length, seq_length), diagonal=1)).bool() 
        #mask = mask_nonzero & mask 
        return mask

Replace embedding layer with with a linear transform, 
tgt_vocab_size will 22 in our case (one row of DAMPE image). We 
still call it "embedding" since the concept is the same -- we map our 
"word" (array of 22 numbers) into a vector in a higher-dimensional space

Step 1: Modify Transformer to DAMPE case 

Comment our the mask_nonzero part of the 
mask,  since we will not have such thing as empty 
tokens. Also the input data format changed - 
before we had one number that is a token ID, now 
we have an array of 22 numbers which represents 
a "word" (row of DAMPE pixels)

145



...

...

Word 1

Word 7

etc.

Step 2: Modify torch training code to DAMPE case
Create training code:  cp run_fit_dampe_torch.py run_fit_dampe_torch_transformer.py, edit it: 

... 
#from model_cnn_dampe_torch import model 
from transformer_torch_dampe import Transformer 
model = Transformer(tgt_vocab_size=22, d_model=64, num_heads=2, num_layers=2, d_ff=256, max_seq_length=13, dropout=0.) 
#model = Transformer(tgt_vocab_size=22, d_model=512, num_heads=8, num_layers=6, d_ff=2048, max_seq_length=13, dropout=0.) 
... 

... 
#x, y = data['caloimages'], data['truthdata'] 
x = data['caloimages'][:,:-1,:] 
y = data['caloimages'][:,1:, :] 

... 
#x = x.squeeze(dim=3).unsqueeze(dim=1) 
x = tr.squeeze(x,dim=3) 
y = tr.squeeze(y,dim=3) 

... 
tr.save(model.state_dict(), './model_transformer_dampe.pth') #'./model_cnn_dampe_paper_torch.pth') 
dump(history, open('history_transformer_dampe.p','wb'))      #'history_cnn_dampe_paper_torch.p' 

Initiate the transformer model. We will use simpler version of the model 
(compared to the original one), having 2 heads instead of 8, 2 layers instead of 
6, d_model = 64 instead of 512, and d_ff=256 instead of 2048

Don't forget to rename the model and 
history to save ...

Unlike before, our images are now both input (x) and target (y). The difference is that in the input we remove 
the last word (last row of image, so now it has 13 rows, not 14). For the output, we shift the rows by +1

We change the shape of the data to remove the last dimension/mode, so that instead of              
[n_samples, n_rows, n_columns, 1]  it becomes                                                            
[n_samples, n_rows, n_columns]  
Remember that the last axis was required for CNNs and represented the number of 
image channels (1 in our DAMPE case, 3 in case of typical RGB color images)

146



...

...

Word 1

Word 7

etc.

Step 3: Running torch training code
Set number of epochs to 10 in  run_fit_dampe_torch_transformer.py  and run the code: 

pyhon run_fit_dampe_torch_transformer.py 
Processed valid: 99.9 elapsed:28.5s 
loss: 0.03037726884624309 loss_val: 0.026196253926468058 
Processed valid: 99.9 elapsed:28.8s 
loss: 0.022899649906208453 loss_val: 0.019884693373397395 
Processed valid: 99.9 elapsed:28.6s 
loss: 0.01885740954644424 loss_val: 0.017663721486019926 
Processed valid: 99.9 elapsed:28.5s 
loss: 0.016504979629425022 loss_val: 0.015762685200300167 
Processed valid: 99.9 elapsed:28.6s 
loss: 0.015107720140568331 loss_val: 0.014291047355629973 
Processed valid: 99.9 elapsed:28.6s 
loss: 0.01421325063580615 loss_val: 0.013719815335043514 
Processed valid: 99.9 elapsed:28.6s 
loss: 0.013527586701636979 loss_val: 0.013062344417227683 
Processed valid: 99.9 elapsed:28.3s 
loss: 0.012988961886007207 loss_val: 0.01236261014600058 
Processed valid: 99.9 elapsed:28.5s 
loss: 0.012554175169350597 loss_val: 0.012217357914122913 
Processed valid: 99.9 elapsed:28.2s 
loss: 0.012218388652761583 loss_val: 0.011963540029519045 

Depending on the hardware, it may take 5 to 10 minutes to finish. We have this time to discuss, ask question etc. If it takes significantly 
longer on your hardware, either use small number of iterations (~2) - it will be enough for illustrative purposes, or just copy the already 
pre-trained model from the DAMPE package you dowloaded earlier (see saved_models folders there) 

147



...

...

Word 1

Word 7

etc.

Step 4: Visualizing the results
cp run_fit_dampe_torch_transformer.py test_dampe_torch_transformer.py,  
edit : test_dampe_torch_transformer.py: 

#criterion = tr.nn.L1Loss() # <--- remove everything below this line (training loop etc.) 
# ... add the following code instead: 

from dampe import plot_dampe_event # we will need it for plotting 
model.load_state_dict(tr.load("model_transformer_dampe.pth")) 
model.eval() # set the model into evaluation mode 

def predict_dampe_layers(x, event_id, predict_from_layer): 
    in_image = x[event_id:event_id+1,:predict_from_layer] # DAMPE image truncated after [predict_from_layer]  
    plot_dampe_event(in_image[0],                         # show image before any prediction   
    title=f"input truncated image (no predictions yet")   # 
    for i in range(predict_from_layer,14):                # loop over remaining layers 
        out_image = model(in_image)                       # predicted image shifted by +1 
        out_last_predicted_layer = out_image[:,-1:,:]     # take the last layer of the predicted image and ... 
        in_image = tr.cat(                                # ... add it to the input image 
            (in_image, out_last_predicted_layer),dim=1)   # 
        plot_dampe_event(in_image.detach().numpy()[0],    # show image after one prediction step 
        title=f"prediction of layer {i}") 
    return in_image.detach().numpy()[0] 

# plotting code 
event_id = 12                 # let's pick some event from the data 
predict_from_layer = 9        # let's feed the model an image of 9 layers and see if it can predict the remaining 5 
ai_generated_image = predict_dampe_layers(x, event_id, predict_from_layer) 
plot_dampe_event(data['caloimages'][event_id],title="that is the original image") 
plot_dampe_event(ai_generated_image,title=f"that image is generated starting from layer {predict_from_layer}")

148



Step 4: Visualizing the results

input truncated image (no predictions so far)

input

AI generated

149



Step 4: Visualizing the results

prediction of layer 10

input

AI generated

150



Step 4: Visualizing the results

prediction of layer 11

input

AI generated

151



Step 4: Visualizing the results

prediction of layer 12

input

AI generated

152



Step 4: Visualizing the results

prediction of layer 13

input

AI generated

153



Step 4: Visualizing the results

that is the original image

154




