

Extragalactic Cosmic Rays

Pierre Auger Observatory and Telescope Array

> Ralph Engel Karlsruhe Institute of Technology (KIT)

Physics of extragalactic cosmic rays

Sources have to produce particles reaching 10²⁰ eV

Need accelerator of size of the orbit of the planet Mercury to reach 10²⁰ eV with LHC technology

Hardly any source expected to accelerate protons to 10²⁰ eV

Galactic vs. extragalactic sources

$$I pc = 3.26 ly = 3.08 I0^{16} m$$

Acceleration (bottom-up) or exotic (top-down) scenarios?

X particles from:

- topological defects
- monopoles
- cosmic strings
- cosmic necklaces

.... **Active Galactic Nuclei (AGN):** Black Hole of ~10⁹ solar masses

AGNs, GRBs, ... (🔀)

Young pulsars

X particles (र्रेट्रेर्ट्र)

Z-bursts (र्रे र्रे र्रे र्रे)

Big Bang: super-heavy particles, topological defects: $M_X \sim 10^{23} - 10^{24} \text{ eV}$

Fact sheet: sources

Process	Distribution	Injection flux		
Diffuse shock acceleration	Cosmological	р Fe		
EM acceleration	Galaxy & halo	mainly Fe		
Decay & particle cascade	(a) Halo (SHDM) (b) Cosmological	ν, γ-rays and p		
Z ⁰ decay & particle cascade	Cosmological & clusters	ν, γ-rays and p		

Magnetars: magnetic field up to ~10¹⁵ G

large fluxes of photons and neutrinos

(RE, Nijmegen Summer School, 2006)

Examples of astrophysical source candidates

Diffusive shock acceleration

Inductive acceleration

Rapidly spinning neutron stars

$$\frac{\mathrm{d}N_{\mathrm{inj}}}{\mathrm{d}E} \sim E^{-1} \left(1 + \frac{E}{E_g}\right)^{-1}$$

Single (relativistic) reflection

al.; STScl (for the inset)

Re-cap: Propagation effects

(González et al. PRD104(2021)063005)

Distance ranges and matter distribution in the Universe

Cosmic rays, gamma-rays

Source identification by arrival direction distribution

Need additional "component B"

Hillas' model of cosmic ray flux

Mainly protons as UHECR

$$\frac{dN_{\rm inj}}{dE} \sim E^{-2.3}$$

Deformation of injected spectrum fully understood

11

(Hillas J. Phys. G31, 2005)

Standard models of ultra-high energy cosmic rays (2005)

Ankle model: Hillas, Wolfendale et al.

$$\frac{\mathrm{d}N_p}{\mathrm{d}E} \sim E^{-2.3}$$

(J. Phys. G31 (2005) R95)

Dip model: Berezinsky et al.

 $p \gamma_{\rm CMB} \rightarrow p \ e^+ e^-$

$$\frac{\mathrm{d}N_p}{\mathrm{d}E} \sim E^{-2.7}$$

(PRD 74 (2006) 043005)

12

Observatories for ultra-high energy cosmic rays

Telescope Array (TA)

Middle Drum: based on HiRes II

Northern hemisphere: Delta, Utah, USA

Exposure of observatories

(Auger 19 years, TA 16 years)

Upgrades AugerPrime and TAx4 – Phase II

VERTICAL (0-60°)

HORIZONTAL (60-90°)

Detector spacing 1.2 km and 2.08 km, 257 out of 500 detectors installed

Measurement principles (hybrid observation)

Measurement principles (hybrid observation)

Examples of observed events

Observations – selected highlights

All-particle flux

Energy spectrum 2013 and GZK expectation

Greisen-Zatsepin-Kuzmin (GZK) effect

Photo-pion production (mainly Δ resonance) and e⁺e⁻ pair production

Photo-dissociation (giant dipole resonance)

Combined energy spectrum of Auger Observatory

Phys. Rev. Lett. 125 (2020) 121106 Phys. Rev. D102 (2020) 062005

(UHECR 2024)

Energy spectrum of TA

Comparison in common declination band

Masse composition, photons, neutrons

Mass composition results of Auger Observatory

Important: LHC-tuned interaction models used for interpretation

(FD telescopes: PRD 90 (2014), 122005 & 122005, updated ICRC 2023) (SD risetime: Phys. Rev. D96 (2017), 122003)

(AERA/radio: PRL & PRD 2023) (SD DNN: PRL & PRD 2025)

 $(E \sim 10^{18} \,\mathrm{eV})$

Auger-TA comparison of X_{max} distributions (2022)

Mass composition from surface detector data

Simulated signal of one surface station

Model-independent observation in DNN data set

Energy-independent elongation rate excluded at 4.4 sigma Breaks of elongation rate correlated with breaks in energy spectrum

(Auger to appear in PRL & PRD 2406.06315, 2406.06319)

Multi-messenger searches: photons

Photons interact deeper (larger X_{max}), fewer muons (rise time, lateral slope)

Multi-messenger searches: neutrinos

Expected number of <i>v</i> events					1		-
Pierre Auger, 1 Jan 2004 - 31 Dec 2021		, C.L	C.L.				
Cosmogenic neutrino models	68%	95%	%66				
Best-fit to Auger spectrum - proton, $z_{max} = 3$, $(1 + z)^5$ evol. –							
Best-fit to Auger spectrum - proton, $z_{max} = 3$, $(1 + z)^3$ evol.							
Best-fit to Auger spectrum - proton, $z_{max} = 1$, $(1 + z)^5$ evol. –							
Best-fit to Auger spectrum - proton, $z_{max} = 1$, $(1 + z)^3$ evol. –							
est-fit to Auger spectr & composition - mixed, $z_{max} = 3$, $(1 + z)^5 - 1$							
est-fit to Auger spectr & composition - mixed, $z_{max} = 5$, $(1 + z)^5 - \frac{1}{2}$							
Astrophysical neutrino models	 						
Radio-loud AGN (Murase 2014) –							
Low-luminosity BL-Lacs (Rodrigues 2021) –							
Starburst Galaxies (Condorelli 2022) -							
Magnetars from BNS (Fang 2017) –							
0	1	2 3 N	4 5 umber o	6 f event	78 s	9	_ 10

Neutrino sensitivity better than Waxman-Bahcall bound Limits constrain GZK & astrophysical neutrino models

Arrival direction distribution

Arrival direction distribution surprisingly isotropic

Pierre Auger and TA Collaborations, ApJ 794 (2014) 2, 172

Auger data – large angular scales (dipole)

$E \; [\text{EeV}]$	N	d_{\perp} [%]	d_z
4-8	118,722	$1.0^{+0.6}_{-0.4}$	-1.3
≥ 8	$49,\!678$	$5.8^{+0.9}_{-0.8}$	-4.5
8-16	$36,\!658$	$5.7^{+1.0}_{-0.9}$	-3.1
16-32	10,282	$5.9^{+2.0}_{-1.8}$	-7
≥ 32	2,738	11^{+4}_{-3}	-13

Science 357 (2017) 1266)

Arrival direction distribution at highest energies

01 01 2004

Intermediate-scale anisotropy at highest energies

Ursa Major Cluster (D=20Mpc)

Virgo Cluster (D=20Mpc)

> Centaurus Supercluster (D=60Mpc)

> > *Huchra, et al, ApJ, (2012)* Dots : 2MASS catalog Heliocentric velocity <3000 km/s (D<~45MpC)

set of UHECR) world data 2018, ISVHECRI a/. et (Ogi

TA data – high-energy anisotropy searches

Hot Spot

Li-Ma Significance Map with $E \ge 57 \text{ EeV}$

Centaurus A: $E > 3.8 \ 10^{19} \text{ eV}$, ~27° radius, 4.0 σ (post trial) **Starburst galaxies:** E > 3.8 10¹⁹ eV, ~25° radius, 3.8 σ (post trial)

Discovery level of 5σ expected only after 2025 **First probe of TA over-densities thanks to inclined showers**

(Astrophysical Journal, 935:170, 2022, update ICRC 2023)

Arrival directions – Auger-TA overlap region

Pierre Au	ger Obs	ervatory
-----------	---------	----------

E_{\min}	$N_{\rm tot}$	$rac{\mathcal{E}_{ ext{in}}}{\mathcal{E}_{ ext{tot}}}$	$N_{\rm bg}$	$N_{ m in}$	$rac{\Phi_{ m in}}{\Phi_{ m out}}$	$Z_{ m LM}$	99% U.L.
$44.6 \mathrm{EeV}$	1074	1.00%	10.7	9	$0.84^{+0.31}_{-0.25}$	-0.5σ	1.76
$20.5 \mathrm{EeV}$	8374	0.84%	70.1	65	$0.93\substack{+0.12 \\ -0.11}$	-0.6σ	1.23
$25.5 \mathrm{EeV}$	5156	0.84%	43.5	39	$0.90\substack{+0.15 \\ -0.14}$	-0.7σ	1.29
$31.7 \mathrm{EeV}$	2990	0.87%	26.0	27	$1.04\substack{+0.21 \\ -0.19}$	$+0.2\sigma$	1.61

Interpretation of data

Model calculations for mass composition and flux

Arrival directions – large angular scales (dipole)

Arrival directions – large angular scales (dipole)

Combined fit spectrum, mass composition & anisotropy

⁽Auger, JCAP 01 (2024) 022)

Fit with additional model parameters: magnetic field blurring, catalog contribution fraction

- signal fraction of 20% for SBG catalog;
- main contribution from Centaurus region,
- results compatible with standard combined fit
- significance of TS is ~4.5 σ
- but no coherent deflection

Mass composition and deflection at highest energy

Correlation of highest energy events of TA with large-scale structure

Interpretation depends on EGMF assumptions Large deflection at highest energies: heavy mass

(TA, Phys. Rev. Lett. 133 (2024) 041001, Phys. Rev. D110 (2024) 022006)

Searching for sources at the highest energies

Amaterasu event (~2.4x10²⁰ eV)

(TA, Science 382 (2023) 903)

Backtracking of particles through Galactic mag. field

New mag. field model UF24 (Unger & Farrar, ApJ 970 (2024) 95)

Amaterasu event (~1.7x10²⁰ eV)

Auger highest energy event (~1.6x10²⁰ eV)

Closest Active Galactic Nucleus: Centaurus A

Moon for comparison of apparent size

Distance ~3.8 Mpc

50 kpc

Fermi I (diffusive shock acceleration)

X-RAY

(Matthews, Bell, Blundel New Ast. Rev. 89 (2020) 101543)

$$\begin{aligned} |g(E_{max_{36}}^{P} < 2/eV) &= 18.57 \pm 0.0018 \ 20 < A \\ & UFA \ model \\ |g(R_{esc}^{Fe19}) = 2.44 \pm 0.0.1 \\ & \int_{esc}^{70} = -1.00 \\ & \int_{esc}^{60} = 0.558 \pm 0.01 \\ & \int_{gal}^{60} = 0.558 \pm 0.01 \\ & \int_{gal}^{9} \int_{gal}^{60} = -4.18 \pm 0.03 \\ & \int_{gal}^{40} gal / eV) = 19.0 \\ & \int_{a0}^{9} \int_{a0}^{20} 0.05 \ eV \\ & \vdots_{17.5}^{1} = 8.2e \\ & \int_{a12}^{19} \int_{a12}^{20} \int_{a12}^{20} \int_{a12}^{19} \int_{a12}^{19}$$

New generation of complex model scenarios

Interplay between confinement in source and disintegration of nuclei: hard energy spectra (Aloisio et al. 2014, Taylor et al. 2015,

Globus et al. 2015, Unger et al. 2015, Fang & Murase 2017)

Reverse shock scenario in **Iow-Iuminosity Iong GRBs** (Zhang, Murase et al 2019+)

Tidal disruption events (TDEs) of WD or carbon-rich stars

(Farrar, Piran 2009, Pfeffer et al. 2017, Zhang et al 2017)

One-shot acceleration in rapidly spinning **neutron stars** (Arons 2003, Olinto, Kotera, Feng, Kirk ...)

Cen-A bust & deflection on **Council of Giants**, solving isotropy and source diversity problem (Taylor et al. 2023)

Relativistic reflection of existing CR population (Biermann, Caprioli, Wykes, 2012+, Blandford 2023)

Latest addition – binary neutron star mergers

- $M_{BNS} = (2.64 \pm 0.14) M_{\odot}$
- Gravitationally-driven dynamo

Kiuchi+NatureAstron23

- strong magnetic fields
- Energy injection rate: (obs = 6 x 1044 erg Mpc-3 yr-1)

 - BNS rate $\Gamma_{\text{NSmerg}} = 10-1700 \text{ Gpc}^{-3} \text{ yr}^{-1}$ if $\Gamma_{\text{NSmerg}} \ge 100 \text{ Gpc}^{-3} \text{ yr}^{-1}$ Energy in jet alone $E_j \approx 10^{51.5} \text{ erg}$ (Kiuchi+23)
 - Effective source density:

	Powerful AGN	long GRBs	TDEs	Accretion Shocks	BNS mergers
n _S ≈ 10 ^{-3.5} Mpc ⁻³	[*]	[×]	?	?	~
UHECR energy injection	~	×	?	?	[•]
Ordínary galaxy	×	×	~	[x]	~
Universal R _{max}	×	×	×	×	~
Highest energy events?	×	×	×	×	~

⁽Farrar Phys. Rev. Lett. 134 (2025) 081003)

Unexpected observations (not looked for)

Auger muon measurement – vertical showers

Auger muon measurement – inclined showers

(Auger PRD 2015, PRL 2021)

Lorenzo Cazon et al. Astropart. Phys. 36 (2012) 211 Phys. Lett. B784 (2018) 68 Phys. Rev. D103 (2021) 022001

70% of fluctuations from first interaction

Discrepancy of muon number (20–30%), but no in relative shower-to-shower fluctuations

Muon production depends on hadronic energy fraction

Several of these effects: Core-Corona model (Pierog et al.)

1 Baryon-Antibaryon pair production (*Pierog, Werner 2008*)

- Baryon number conservation
- Low-energy particles: large angle to shower axis
- Transverse momentum of baryons higher
- Enhancement of mainly **low-energy** muons

(Grieder ICRC 1973; Pierog, Werner PRL 101, 2008)

2 Enhanced kaon/strangeness production (Anchordoqui et al. 2022)

- Similar effects as baryon pairs
- Decay at higher energy than pions (~600 GeV)

3 Leading particle effect for pions (Drescher 2007, Ostapchenko 2016)

- Leading particle for a π could be ρ^0 and not π^0
- Decay of ρ^0 to 100% into two charged pions

4 New hadronic physics at high energy (Farrar, Allen 2012, Salamida 2009)

- Inhibition of π^0 decay (Lorentz invariance violation etc.)
- Chiral symmetry restauration

Atmospheric and geo-physics observations

Summary – the global picture by using only data

(Global Spline Fit (GSF) 2024, Kozo Fujisue, Dembinski, RE, Fedynitch, UHECR 2024)

Summary – constraints on source scenarios

Hillas criterion

Lovelace energy flux criterion

(MIAPP review, Front.Astron.Space Sci. 6 (2019) 23)

Source injection power

Backup slides

The Auger Collaboration in Malargue – November 2022

Stay tuned for new discoveries!

Multi-messenger observation of sources

Analysis of individual events Stacking analysis of BBH mergers

Search for spatial neutrino and UHECR correlations (ApJ 934 (2022) 164)

Instantaneous apertu **Multi-messenger: sea**

ibe if direction of source is favorable 1 photons in coincidence with GW events

Telescope Array Low-energy Extension – TALE

• Upgrade TA hybrid detector sensitivity down to PeV range \rightarrow **TALE**

- **60**⊢ 50⊢ 40⊢ elevation **20**⊢ 100 SD array

10 High-elevation telescopes (31° - 59°) - 256pixel, 8bit 10MHz FADC readout - Started observation since 2013

- 40SDs with 400m, 40SDs with 600m - 2 layers Scintillation counter, 3m² - Started observation since 2017

UHECR2024

Low-energy composition measurement with TA

• Observed $\langle X_{max} \rangle$ vs. shower energy

⁽TA, UHECR 2024)

An invitation: Auger open data

opendata.auger.org

Significance $[\sigma]$

Model calculations for mass composition and flux

Assumption: source injection spectra universal in rigidity R = E/Z(acceleration, scaling with charge *Z*)

Transition to heavier nuclei

$$E_{\rm p,cut} = 1.4...1.6 \times 10^{18} \, {\rm eV}$$

Exceptionally hard injection spectrum

$$\frac{\mathrm{d}N}{\mathrm{d}E} \sim E^{1.5...2}$$

Fermi acceleration

$$E^{-2...-2.3}$$

Flux suppression due mainly to limit of injection energy of sources

Extragalactic origin of dipole anisotropy

Direction and energy dependence of extragalactic dipole

Hadronic interactions – cross section measurement

(Auger, PRL 109 (2012) 062002)

 σ_{p-a}

$$\frac{D}{X_1} = \frac{1}{\lambda_{\text{int}}} e^{-X_1/\lambda_{\text{int}}}$$

$$a_{air} = rac{\langle m_{air} \rangle}{\lambda_{int}}$$

- fluctuations in shower development (model needed for correction)
- conversion from p-air to p-p

71

Hadronic

(Auger, PRL 109 (2012) 062002)

ion measurement

IceCube: discrimination of enhancement scenarios?

Correlation of low energy muons (surface) and in-ice muon bundles

IceTop: $E_{\mu} \sim 1 \text{ GeV}$

(IceCube, Gonzalez & Dembinski et al. 2016)

IceCube: $E_{\mu} > 300 \text{ GeV}$

World data set on depth of shower maximum (X_{max})

(Coleman et al. Snowmass, Astroparticle Physics 147 (2023) 102794)

