
ISAPP Lecce, Italy. June 12, 2025

AI Hands-On
By Andrii Tykhonov [andrii.tykhonov@cern.ch]

mailto:andrii.tykhonov@cern.ch

Operating system: Linux or MacOS
Supported and tested operating systems:

• Linux (currently tested on Ubuntu, but others like Debian, Fedora etc. should work just fine)

• Mac OS

Note on Windows — while it is not forbidden in the tutorial — it is neither tested nor fully supported, so it will be at your
own risk. If you have a windows machine, it is adviced to install Linux either as a second operating system or in a virtual
environment (e.g. through VirtualBox). Please contact me in advance if you have a Windows machine and never worked
with Linux before.

Software prerequisite: Miniconda is (almost) all you need!
Install Miniconda:

• Follow the instructions in: https://www.anaconda.com/docs/getting-started/miniconda/install#macos-
linux-installation

• Use Terminal installer (not graphical one): it allows to easily install/replace and experiment with Miniconda - everything will be placed
in your home directory instead of the system one, so you will avoid potential conflicts with already pre-installed python versions etc.

• For example, in linux (basically same in MacOs but using curl instead of wget):
➡ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

➡ bash ~/Miniconda3-latest-Linux-x86_64.sh

➡ You will have to agree license agreement etc (press “q” to exit license agreement in the terminal 🙂).

➡ When it prompts “Choose an initialization options:” choose YES. If you are worried, you can make a backup of your profile
initialization scripts (~/.bashrc or ~/.zshrc depending on the shell you use), but in principle all what conda does is adding
one paragraph to the setup script — you can easily remove if you want to delete conda

➡ source ~/.bashrc (or ~/.zshrc — depending on which shell you are using)

https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

Setup ML software: Tensorflow

Throughout the tutorial we will use both Tensorflow and Pytorch frameworks. We will install those in a two separate
“environments” of conda and you will be able to easily switch between the two. You will appreciate the convenience and
power of Conda — it allows you to install ML software (hopefully) quickly, (hopefully) gracefully, and without experiencing
library conflicts etc. (unless something goes really wrong - but we are here to help you in this case …). In the first part of the
tutorial we will work with Tensorflow since (arguably) it is more simple/intuitive to use.

• Install Tensorflow
1. Add conda-forge channel to look for software: conda config --add channels conda-forge
2. Create new environment that we will call “tf”: conda create -n tf tensorflow
3. Activate the “tf” environment: conda activate tf

Comment on activation (step 3): this has to be done in each new shell. If you want it to active the environment
automatically at the start of a new shell, you can add the above command to your ~/.bashrc [or ~/.zshrc]
Note on the tensorflow versions: sometimes one needs to experiment with versions, for example I have experienced
problems with latest tensorflow versions, so I downgraded to 2.16 on Ubuntu (2.15 on MacOS):
conda create -n tf tensorflow=2.16

Test Tensorflow #1 …

• Activate the Tensorflow environment in conda (see previous page for mode details):
conda activate tf

• See if Tensorflow libs are there and working:
python

>>> import tensorflow as tf

>>> print (tf.__version__)

2.16.XX

NOTE USE Tensorflow version 2.15 or higher!

If nothing crashes so far — things seem to work so far..

First import of tensorflow on some systems (e.g. MacOS) may take

a while - be patient (it will cache and work faster afterwards)

Test Tensorflow #2…

• Let’s run a mock-up model training:
python

>>> import tensorflow as tf

>>> import numpy as np

>>> x = np.random.rand(1000,10) # random sample of 1000 sets of numbers

>>> y = np.random.rand(1000,) # random sample of 1000 set ‘labels'

>>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) # trivial nonsense model

>>> l = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # we will learn about it later

>>> m.compile(loss=l, metrics=['accuracy']) # compile the model

>>> m.fit(x,y,epochs=5) # train the model

• You should see something like:

Epoch 1/5
32/32 [==============================] - 0s 206us/step - loss: 1.5475 - accuracy: 0.0000e+00
Epoch 2/5
32/32 [==============================] - 0s 158us/step - loss: 1.2575 - accuracy: 0.0000e+00
Epoch 3/5
32/32 [==============================] - 0s 136us/step - loss: 1.0151 - accuracy: 0.0000e+00
Epoch 4/5
32/32 [==============================] - 0s 129us/step - loss: 0.8074 - accuracy: 0.0000e+00
Epoch 5/5
32/32 [==============================] - 0s 144us/step - loss: 0.6322 - accuracy: 0.0000e+00

Test PyTorch

• Run the following code snippet in python:

import torch as tr
import numpy as np

x = tr.tensor(np.random.rand(1000,10),dtype=tr.float64) # random sample of 1000 sets of numbers
y = tr.tensor(np.random.rand(1000,),dtype=tr.int64) # random sample of 1000 set ‘labels'
model = tr.nn.Sequential(tr.nn.Linear(10,10,dtype=tr.float64))
criterion = tr.nn.CrossEntropyLoss()
optimizer = tr.optim.Adam(model.parameters())

one training step
optimizer.zero_grad()
y_pred = model(x)
loss = criterion(y_pred,y)
loss.backward()
optimizer.step()
print ("Loss:",loss.item())

• If everything is installed correctly, you should see the log of the training:
Loss: 1.930114470175824

If things go wrong ...

• Encountered runtime error on Ubuntu (perhaps other Linux distributives)

• Encountered on MacOs (apple silicon):

libdevice not found at ./libdevice.10.bc
 [[{{node StatefulPartitionedCall}}]] [Op:__inference_multi_step_on_iterator_579]

Assertion failed: (f == nullptr || dynamic_cast<To>(f) != nullptr), function down_cast, file
external/local_tsl/tsl/platform/default/casts.h, line 58.

Possible solutions:
1. Re-install another tenosorflow version (you may have to experiment with a few different versions):

conda remove -n tf --all # delete existing tf environment from conda
conda create -n tf tensorflow=2.16 # install a specific tensorflow version (e.g. 2.16 ubuntu, or 2.15 for MacOs)

2. Mask out your GPU*:
export CUDA_VISIBLE_DEVICES=""

 — these are few typical problems I
encountered myself … Unfortunately there
might be more, but normally with the slight
help of google, chatgpt, stackoverflow and
a little prayer — things will work ;-)

* If you you have an Nvidia GPU and the the solution 1 (re-installing different tensorflow versions) do not help, try forcing tensorflow NOT to
use the GPU (it is OK for the sake of this tutorial; in the future you may tweak your software setup to fully profit of your nice GPU hardware)

Where to get the code ...

• Go to: https://gitlab.cern.ch/andrii/mlregressioncalo/-/tree/tutorial

• You will see the instructions and code slide-by-slide in your browser:

https://gitlab.cern.ch/andrii/mlregressioncalo/-/tree/tutorial

