Particles acceleration at
astrophysical shocks

Exercises




Exercise n.l

Particle spectrum from the distribution function

® We want fo derive the spectrum of particle accelerated at a plane parallel shock
using the distribution function in momentum
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Definition  f(¢, X, p) =

® Derivation of the fransport equation

We can use the Liuville's theorem because we can neglect collisions (otherwise we
should use the Boltzman equation)
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See e.qg. Vietri’s book sec. 4.3




Exercise n.l

Particle spectrum from the distribution function

e Step l: plane parallel (1D) stationary system:

u@_f_ 0 [ 5f] p du of
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® Note: assume D spatially constant upstream and downstream Shock reference frame
Downstream Upstream

® Velocity profile:
u(x) = — uy + (uy — uy)0(x)

® Injection occurs only at the shock discontinuity:
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® Questions: derive the distribution function in the whole region (upstream, downstream and at the
shock)

® use the boundary condition: f(x = 4+ c0) =0

® assume that a fraction £, ~ 0.1 of the shock bulk pressure is converted into CR energy



Exercise n.l

Particle spectrum from the distribution function

® Hint 1: start solving the equation upstream/downstream using the boundary

condition f(x=0,p)=Ffo(p)
0 0 0
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® Hint 2: solve equation for fo(p) by integrating across the shock discontinuity
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e Hint 3: the normalisation is obtained from P = §CRp1u12
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Exercise n.l

Particle spectrum from the distribution function

® Solution:
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Exercise n.2

CR spectrum escaping from a SNR

Determine the CR spectrum escaping from a SNR shock during the Sedov-Taylor
phase, assuming that, during this phase, the shock converts a constant fraction of
energy in escaping CR and the maximum energy decreases as a power low in time.



Exercise n.2

CR spectrum escaping from a SNR

Determine the CR spectrum escaping from a SNR shock during the Sedov-Taylor
phase, assuming that, during this phase, the shock converts a constant fraction of
energy in escaping CR and the maximum energy decreases as a power low in time.

Solution

1
e Energy flux escaping the SNR shock: 4np*dp Q...(p) pc = £, (D) EPOVSh 4JZ'R82h dt

dpmax — _5 pmax
dt t

; 2/5
Rsh = RST ( )
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e Maximum energy in time: p_. () =pM(t/tST)_5 =

f

Evolution during the Sedov-Taylor phase 1 = vy R; 17!

° _dRy _ 2 ot =
vSh — dt - 5 VST tST
2\ po . , , | NOT RELATED TO
e lotal released spectrum: | Q..(p) =06 <§> 7RST Vot Eesc (P x & (D) P~ FERMI
ACCELERATION!!!

Additional question: how we can get a spectrum steeper that p-4?



Exercise n.3
Magnetic field amplification

® Estimate the amplification of magnetic field due to the streaming of CR particles

upstream of a plane parallel shock assuming that &_. is the fraction of shock kinetic
energy converted into CR energy

® Hint: use the idea that particles upstream are fully isotropized after travelling a
diffusion length

Shock upstream
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Exercise n.3 - solution
Magnetic field amplification

® Assume that the momentum lost by particles goes into magnetic field

Initial momentum p; ~ n_ymv,; final momentum p, ~ n_ymv,
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