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Particles acceleration at 
astrophysical shocks
Exercises 



• We want to derive the spectrum of particle accelerated at a plane parallel shock 
using the distribution function in momentum





• Derivation of the transport equation 


We can use the Liuville’s theorem because we can neglect collisions (otherwise we 
should use the Boltzman equation)


      Vlasov equation


        Lorentz force
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Particle spectrum from the distribution function

Exercise n.1

∂f
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+ ⃗u ·∇x f = ∇[Dxx ∇f] +
p
3

∇ ⋅ ⃗u
∂f
∂p

+ Q(x, p) See e.g. Vietri’s book sec. 4.3

Definition

Dxx is the spatial diffusion coefficient



• Step 1: plane parallel (1D) stationary system:     ,  





• Note: assume D spatially constant upstream and downstream


• Velocity profile:


      


• Injection occurs only at the shock discontinuity:


      


• Questions: derive the distribution function in the whole region (upstream, downstream and at the 
shock)


• use the boundary condition: 


• assume that a fraction  of the shock bulk pressure is converted into CR energy
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Particle spectrum from the distribution function

Exercise n.1

Shock reference frame
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−u2

Downstream Upstream



• Hint 1: start solving the equation upstream/downstream using the boundary 
condition f(x=0,p)=f0(p)





• Hint 2: solve equation for f0(p) by integrating across the shock discontinuity





• Hint 3: the normalisation is obtained from 
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Particle spectrum from the distribution function

Exercise n.1
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• Solution:














f0(p) =
3 ξcr ρ0 u2

sh

4π (mc)4c Λ ( p
mc )

−s

s =
3u1

u1 − u2

f1(x, p) = f0(p) e−u1x/D1

f2(x, p) = f0(p)

Particle spectrum from the distribution function

Exercise n.1



Determine the CR spectrum escaping from a SNR shock during the Sedov-Taylor 
phase, assuming that, during this phase, the shock converts a constant fraction of 
energy in escaping CR and the maximum energy decreases as a power low in time.

CR spectrum escaping from a SNR

Exercise n.2



Determine the CR spectrum escaping from a SNR shock during the Sedov-Taylor 
phase, assuming that, during this phase, the shock converts a constant fraction of 
energy in escaping CR and the maximum energy decreases as a power low in time.

CR spectrum escaping from a SNR

Exercise n.2

Solution


• Energy flux escaping the SNR shock:      


• Maximum energy in time:     


•
Evolution during the Sedov-Taylor phase 


• Total released spectrum:    
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NOT RELATED TO 
FERMI 

ACCELERATION!!!

Additional question: how we can get a spectrum steeper that p-4?



• Estimate the amplification of magnetic field due to the streaming of CR particles 
upstream of a plane parallel shock assuming that  is the fraction of shock kinetic 
energy converted into CR energy


• Hint: use the idea that particles upstream are fully isotropized after travelling a 
diffusion length


ξcr

Magnetic field amplification

Exercise n.3

v1 ∼ c v2 ∼ vA

Shock upstream

Alfvén speed: 


Momentum of Alfvén waves 
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• Assume that the momentum lost by particles goes into magnetic field


Initial momentum ; final momentum 


Momentum of Alfvén waves 


p1 ≃ ncrγmv1 p2 ≃ ncrγmv2
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1
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4π

Magnetic field amplification

Exercise n.3 - solution
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