

Physics of Air Showers

Ralph Engel

Karlsruhe Institute of Technology

(F. Schmidt & J. Knapp)

Cosmic ray flux and interaction energies

Air showers

1. Simulations

Proton 10 ¹⁴ eV 21311 m

Simulation of shower development (i)

Realistic simulation with CORSIKA

Proton shower of low energy (knee region)

Simulation of shower development (ii)

Simulation of air shower tracks (i)

hadrons muons electrs neutrs

Proton 10¹⁴ eV

Particles of an iron shower

muons

electrs

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

hadrons neutrs

Iron 10¹³ eV

Particles of an proton shower

muons

electrs

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

hadrons neutrs

Proton 10¹³ eV

Particles of a gamma-ray shower

electrs

muons

© J.Oehlschlaeger, R.Engel, FZKarlsruhe

hadrons neutrs

Gamma 10¹³ eV

Time structure of shower disk

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Iron 10¹⁴ eV

Time structure of shower disk

Curvature of shower front sensitive to early muons

Cross section, interaction rate, interaction length

Molecular atmosphere of Earth

(B. Keilhauer)

<u>m²</u>							ity ')
						1	

The Earth's atmosphere

Altitude	Local density
(km)	(10^{-3} g/cm^3)
40	3.8×10^{-3}
30	1.8×10^{-2}
20	8.8×10^{-2}
15	0.19
10	0.42
5	0.74
3	0.91
1.5	1.06
0.5	1.17
0	1.23

Atmospheric **slant depth** (integral taken along shower axis)

 $\int \rho_{\rm air} \, \mathrm{d}l = X$

The Earth's atmosphere in numbers

altitude (km)	vertical depth (g/cm^2)	local density $(10^{-3} \mathrm{g/cm^3})$	Molière unit (m)	Cherenkov threshold (MeV)	Cherenkov angle ($^{\circ}$)
40	3	3.8×10^{-3}	2.4×10^4	386	0.076
30	11.8	1.8×10^{-2}	5.1×10^3	176	0.17
20	55.8	8.8×10^{-2}	1.0×10^3	80	0.36
15	123	0.19	478	54	0.54
10	269	0.42	223	37	0.79
5	550	0.74	126	28	1.05
3	715	0.91	102	25	1.17
1.5	862	1.06	88	23	1.26
0.5	974	1.17	79	22	1.33
0	1032	1.23	76	21	1.36

$$X_v = X_0 e^{-h/h_0}$$

In reality the temperature and hence the scale height decrease with increasing altitude until the tropopause (12-16 km). At sea level $h_0 \approx 8.4$ km, and for $40 < X_v < 200 \text{ g/cm}^2$, where production of secondary particles peaks, $h_0 \approx 6.4$ km. A useful parametrization⁵ of the relation between altitude and vertical depth (due to M. Shibata) is

Compact parametrization of depth-altitude relation (US Standard Atmosphere)

$$h_v(\mathrm{km}) = \begin{cases} 47.05 - 6.9 \ln X_v + 0.299 \ln^2 \frac{X_v}{10}, & X_v < 25 \,\mathrm{g/cm}^2 \\ 45.5 - 6.34 \ln X_v, & 25 < X_v < 230 \,\mathrm{g/cm}^2 \\ 44.34 - 11.861(X_v)^{0.19}, & X_v > 230 \,\mathrm{g/cm}^2. \end{cases}$$

3. Electromagnetic Showers

Qualitative approach: Heitler model

Shower maximum: $E = E_c$

 $N_{\rm max} = E_0/E_c$ $X_{\rm max} \sim \lambda_{\rm em} \ln(E_0/E_c)$

Bethe-Heitler pair production (i)

$$\frac{\mathrm{d}\sigma_{\mathrm{pair}}}{\mathrm{d}u} = 4\alpha_{\mathrm{em}}r_e^2 Z(Z+1) \left\{ \left[u^2 + (1-u)^2 + \frac{2}{3}u(1-u) \right] \ln(183Z^{-1/3}) - \frac{1}{9}u(1-u) \right\}$$

$$\sigma_{\text{pair,tot}} = \int \frac{d\sigma_{\text{pair}}}{du} \, du = 4\alpha_{\text{em}} r_e^2 Z(Z+1) \left[\frac{7}{9} \ln(183Z^{-1/3}) - \frac{1}{54} \right]$$

$$u = E_e/E_{\gamma}$$

High-energy limit

Electron bremsstrahlung

QED

$$\frac{\mathrm{d}\sigma_{\mathrm{brem}}}{\mathrm{d}v} = 4\alpha_{\mathrm{em}}r_e^2 Z(Z+1)\frac{1}{v}\left\{\left[1+(1-v^2)-\frac{2}{3}(1-v)\right]\ln(183Z^{-1/3})+\frac{1}{9}(1-v)\right\}$$

$$\sigma_{\rm brem,tot} = \int \frac{d\sigma_{\rm brem}}{dv} \, dv \to \infty$$

Cross section divergent (infrared catastrophe)

Ionization energy loss of charged particles

Ionization energy loss: Bethe-Bloch formula

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Symbol	Definition	Units or Value
α	Fine structure constant	1/137.03599911(46)
	$(e^2/4\pi\epsilon_0\hbar c)$	
M	Incident particle mass	MeV/c^2
E	Incident part. energy γMc^2	MeV
T	Kinetic energy	${ m MeV}$
$m_e c^2$	Electron mass $\times c^2$	$0.510998918(44){ m MeV}$
r_e	Classical electron radius	2.817940325(28) fm
	$e^2/4\pi\epsilon_0 m_e c^2$	
N_A	Avogadro's number	$6.0221415(10) \times 10^{23} \text{ mol}^{-1}$
ze	Charge of incident particle	
Z	Atomic number of absorber	
A	Atomic mass of absorber	$g \text{ mol}^{-1}$
K/A	$4\pi N_A r_e^2 m_e c^2 / A$	$0.307075 \text{ MeV g}^{-1} \text{ cm}^2$
·		for $A = 1 \text{ g mol}^{-1}$
Ι	Mean excitation energy	eV (Nota bene!)
$\delta(eta\gamma)$	Density effect correction to i	onization energy loss

Total energy loss of charged particles

Bethe-Heitler pair production (ii)

QED

Cascade equations

Energy loss $\frac{\mathrm{d}E}{\mathrm{d}X} = -\alpha - \frac{E}{X_0}$

Cascade equations

Bruno Rossi

(Rossi & Greisen, Rev. Mod. Phys. 13 (1940) 240)

Critical energy: $E_c = \alpha X_0 \sim 85 \,\mathrm{MeV}$ Radiation length: $X_0 \sim 36 \,\mathrm{g/cm^2}$

$$(+\int_{E}^{\infty} \frac{\sigma_{e}}{\langle m_{\rm air} \rangle} \Phi_{e}(\tilde{E}) P_{e \to e}(\tilde{E}, E) \mathrm{d}\tilde{E}$$

$$P_{\gamma}(\tilde{E})P_{\gamma \to e}(\tilde{E},E)\mathrm{d}\tilde{E} + \alpha \frac{\partial \Phi_e(E)}{\partial E}$$

$$n\left(\frac{E_0}{E_c}\right) \qquad \qquad N_{\max} \approx \frac{0.31}{\sqrt{\ln(E_0/E_c) - 0.33}} \frac{E_0}{E_c}$$

Shower age and Greisen formula

Longitudinal profile

$$N_e(X) \approx \frac{0.31}{\left[\ln E_0/E_c\right]^{1/2}} \exp\left\{\frac{X}{X_0} \left(1 - \frac{3}{2}\ln s\right)\right\}$$

Shower age

$$s = \frac{3X}{X + 2X_{\max}}$$

Energy spectrum particles

Number of electrons and positrons 10^{6} 10^{6} 10^{5} 10^{4} 10^{2} 10^{2} 10^{2} 10^{1}

(Greisen 1956, see also Lipari PRD 2009)

Mean longitudinal shower profile

Calculation with cascade Eqs.

Photons

- Pair production
- Compton scattering

Electrons

- Bremsstrahlung
- Moller scattering

Positrons

- Bremsstrahlung
- Bhabha scattering

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Energy spectra of secondary particles

Number of photons divergent, energy threshold applied in calculation

- Typical energy of electrons and positrons E_c ~ 80 MeV
- Electron excess of 20 30%
- Pair production symmetric
- Excess of electrons in target

(Bergmann et al., Astropart.Phys. 26 (2007) 420)

Lateral distribution of shower particles

$$\frac{\mathrm{d}N_e}{\mathrm{d}E} \sim \frac{E_c}{E^{1+s}}$$

 $\frac{\mathrm{d}N_e}{r\,\mathrm{d}r} \sim \left(\frac{r}{r_1}\right)^{s-2} \left(1+\frac{r}{r_1}\right)^{s-4.5}$

$$\left(\frac{E_s}{E}\right)^2 \frac{1}{\sin^4 \theta/2}$$

$$E_s \approx 21 \,\mathrm{MeV}$$

$$\langle \theta^2 \rangle \sim \left(\frac{E_s}{E} \right)^2$$

$$r_1 = r_M = \left(\frac{E_s}{E_c}\right) \frac{X_0}{\rho_{\rm air}}$$

Moliere unit (78 m at sea level)

Nishimura-Kamata-Greisen (NKG) **lateral distribution function**

4. Hadronic Showers

Expectation from simulations

(bulk of particles measured)

core distance (km)

Cosmic ray flux and interaction energies

Interaction cross sections with air as target

Competing processes of interaction and decay

$$\lambda_{\pi} \approx \lambda_{K} \approx 120 \,\mathrm{g/cm^{2}}$$

Decay length

Air at altitude of 8 km

Charged pions interact E > 30 GeV

Neutral pions always decay

Hadron-induced showers

Charged pions interact E > 30 GeV

Neutral pions always decay

Qualitative approach: Heitler-Matthews model

Assumptions:

- cascade stops at $E_{\text{part}} = E_{\text{dec}}$
- each hadron produces one muon

(Matthews, Astropart. Phys. 22, 2005)

Primary particle proton

 π^0 decay immediately

 Π^{\pm} initiate new cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.82\dots0.95$$

Superposition model

Proton-induced shower

Nucleus

$$N_{\rm max} \sim E_0/E_c$$

$$X_{\text{max}} \sim \lambda_{\text{eff}} \ln(E_0)$$
$$\alpha \approx 0.9$$
$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$

Assumption: nucleus of mass A and energy E₀ corresponds to A nucleons (protons) of energy $E_n = E_0/A$

$$X_{\text{max}}^{A} \sim \lambda_{\text{eff}} \ln(E_0/A)$$
$$N_{\mu}^{A} = A \left(\frac{E_0}{AE_{\text{dec}}}\right)^{\alpha} = A^{1-\alpha} N_{\mu}$$

Superposition model: correct prediction of mean values

iron nucleus

Glauber approximation (unitarity)

$$n_{\text{part}} = rac{\sigma_{\text{Fe}-\text{air}}}{\sigma_{\text{p}-\text{air}}}$$

Used in Sibyll interaction model

(J. Engel et al. PRD D46, 1992)

Superposition and semi-superposition models applicable to inclusive (averaged) observables

Electromagnetic energy and energy transfer

 E_0

Hadronic energy

After n generations ...

 $n = 5, E_{had} \sim 12\%$ $n = 6, E_{had} \sim 8\%$ Electromagnetic energy

 $\frac{1}{3}E_0 + \frac{1}{3}\left(\frac{2}{3}E_0\right)$

- 0
- 0 0
- 0

$$E_{\rm em} = \left[1 - \left(\frac{2}{3}\right)^n\right] E_0$$

Energy transferred to electromagnetic component

 $E_{\rm inv} = E_{\rm tot} - E_{\rm em}$

At high energy: model dependence of correction to obtain total energy small

(RE, Pierog, Heck, ARNPS 2011)

Ratio of em. to total shower energy

Detailed Monte Carlo simulation with CONEX

Muons as tracers of the hadronic core

Effect of air density (number of generations)

Pion decay energy depends on air density, low density corresponds to large E_{dec}

Electromagnetic showers are independent of air density, hadronic showers not

Mean depth of shower maximum

Heitler model

$$N_{\rm max} = E_0/E_c$$
$$X_{\rm max} \sim D_{\rm e} \ln(E_0/E_c)$$

Superposition model:

$$X_{\rm max}^A \sim D_e \ln(E_0/AE_c)$$

Note: old data and model predictions (just for clarity)

(RE, Pierog, Heck, ARNPS 2011)

Different slopes for em. and hadronic showers

$$D_{10} = \frac{\Delta \langle X_{\text{max}} \rangle}{\Delta \log_{10} E}$$

$$D_e = \frac{\Delta \langle X_{\text{max}} \rangle}{\Delta \ln E}$$

$$D_{10} = \log(10) D_e$$

(RE, Pierog, Heck, ARNPS 2011)

Universality features of high-energy shower profiles

Simulated shower profiles

Depth of first interaction X_1 and X_{max} strongly correlated, use X_{max} for analysis

Profiles shifted in depth

Universality features of muon production

(Cazon, Epiphany Conference 2022)

Muon production at large lateral distance

Muon observed at 1000 m from core

(Maris et al. ICRC 2009)

Importance of hadronic interactions at different energies

(Ulrich APS 2010)

Shower particles produced in 100 interactions of highest energy

Electrons/photons: high-energy interactions

Muons/hadrons: low-energy interactions

Muons: 8 – 12 generations, majority of muons produced in ~30 GeV interactions

