Measurements of Drell-Yan Processes at LHCb

Menglin Xu

CERN

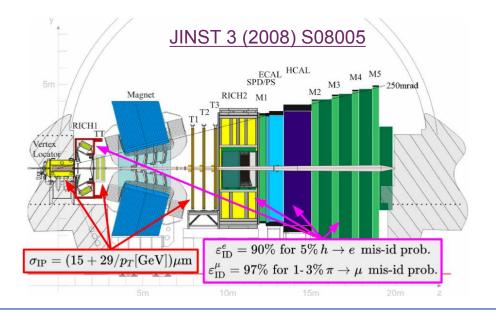
REF 2025, 14 October 2025, Milan

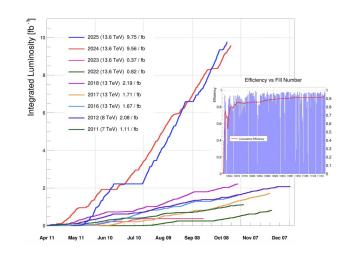
General information on the LHCb experiment

• Small angle spectrometer, covering the forward region, $2 < \eta < 5$

Integrated luminosity

2012: 2.0 fb-1 2015: 0.30 fb-1

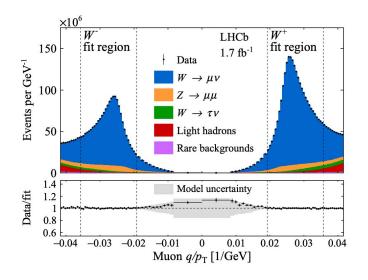

2011: 1.0 fb-1


2016: 1.6 fb-1

2017: 1.7 fb-1 2018: 2.1 fb-1

- Momentum resolution is ~1%
- Trigger efficiencies
 - □ ~90% for dimuon channels in Run2
 - nearly 100% in Run 3 due to the fully software-based trigger system

20 fb-1 collected in Run 3





Drell-Yan process at LHCb

- In LHCb, Drell-Yan measurements usually refer to the μ channel
 - muon reconstruction and momentum measurement are very precise
 - high purity
- High $p_{\rm T}$ (EW scale) electrons are limited by E-Cal cell saturation, not allowing for precision reconstruction of electronic modes of gauge boson decays
 - the E-Cal saturates at $E_{\rm T} \approx 10~{\rm GeV} \, {\rm per/chain} \, {\rm el}^{2\%}$

full shopping list

So far

- $Z \rightarrow e^+e^-$ production cross-section measurement at 7 and 8 TeV [1]: y^Z , ϕ^*
- $Z \rightarrow \mu^+\mu^-$ production cross-section measurement at 5.02, 7, 8 and 13 TeV [2]
 - the 13 TeV paper reports $p_T^Z y^Z$ double differential cross-section
- Inclusive low mas Drell-Yan production measurement at 7 TeV [3]: y^Z , M
- $Z \to \mu^+ \mu^-$ angular coefficient measurement at 13 TeV [4], $p_{\rm T}^Z$, y^Z
 - \neg A_2 values in low p_T region (<20 GeV) at different mass regions
- The effective weak mixing angle measurement with Run1 and Run2 dataset [5]
- Z-boson mass measurement with 2016 dataset [6]
- W-boson mass measurement with 2016 dataset [7]
- W-boson cross-section measurement at 5.02 TeV, 7TeV and 8TeV [8]
 - [1] JHEP 01 (2013) 111, JHEP 05 (2015) 109
 - [2] JHEP 08 (2015) 039, JHEP 01 (2016) 155, JHEP 07 (2022) 26, JHEP 02 (2024) 070
 - [3] LHCb-CONF-2012-013 [4] Phys. Rev. Lett. 129 (2022) 091801
 - [5] JHEP 11 (2015) 190, JHEP 12 (2024) 026 [6] arXiv:2505.15582 [7] JHEP 01 (2022) 036
 - [8] arXiv:2509.18817, JHEP 12 (2014) 079, JHEP 01 (2016) 155

Cross section measurement

- The measured quantity is the cross-section defined from the muon kinematics after QED radiation
- The reported results include an additional correction for QED final-state radiation (except for the W xsec measurement at 5.02 TeV)
- The FSR correction is evaluated either as
 - the average of the values determined using Herwig++ and Pythia 8 (and Photos)
 - or the difference between ResBos predictions with and without the implementation of PHOTOS
 - > the mean correction is \sim 2% for muons and 5% for electrons
 - by the strongest variation is seen as a function of p_T^Z , where the correction varies over the distribution by about 10% fiducial region:

$$p_{\rm T}^l > 20 \; {\rm GeV} \; (28 < p_{\rm T}^l < 52 \; {\rm GeV} \; {\rm for} \; W)$$

 $2.0 \; (2.2) < \eta^l < 4.5 \; (4.4)$
 $60 < M_H \; (Z) < 120 \; {\rm GeV}$

From $W \to \mu \nu$ cross section to m_W measurement

- Fit $d\sigma/dp_{\rm T}^{\mu}$ with a semi-arbitrary model to extract m_W
 - inputs: 24 $d\sigma/dp_T^{\mu}$ values (without FSR correction) and one 24 × 24 covariance matrix
 - fit can be performed with any model
- External analysts can use the cross section result to perform their own extraction of m_W using different theoretical predictions

Table 2: Results of the differential cross-section fits, where the first and second uncertainties are statistical and systematic, respectively.

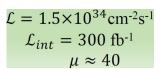
Interval in $p_{\rm T}$	$\mathrm{d}\sigma/\mathrm{d}p_\mathrm{T}~\mathrm{[pb/GeV]}$		
[GeV]	$W^+ o \mu^+ u_\mu$	$W^- o \mu^- \overline{ u}_\mu$	
28-30	$11.93 \pm 0.44 \pm 0.36$	$14.81 \pm 0.47 \pm 0.35$	
30 – 32	$14.36 \pm 0.46 \pm 0.29$	$15.70 \pm 0.48 \pm 0.26$	
32 – 34	$17.66 \pm 0.48 \pm 0.31$	$15.59 \pm 0.48 \pm 0.24$	
34 – 36	$18.87 \pm 0.51 \pm 0.31$	$16.09 \pm 0.48 \pm 0.29$	
36 – 38	$22.73 \pm 0.56 \pm 0.36$	$16.53 \pm 0.49 \pm 0.24$	
38 – 40	$23.50 \pm 0.58 \pm 0.31$	$14.57 \pm 0.48 \pm 0.32$	
40 – 42	$17.16 \pm 0.53 \pm 0.31$	$10.26 \pm 0.42 \pm 0.24$	
42 - 44	$10.45 \pm 0.43 \pm 0.30$	$6.13 \pm 0.35 \pm 0.18$	
44 - 46	$6.01 \pm 0.35 \pm 0.17$	$3.28 \pm 0.28 \pm 0.23$	
46 - 48	$3.46 \pm 0.30 \pm 0.14$	$2.41 \pm 0.24 \pm 0.14$	
48 – 50	$2.59 \pm 0.26 \pm 0.13$	$1.65 \pm 0.22 \pm 0.15$	
50 – 52	$1.75 \pm 0.21 \pm 0.14$	$1.42 \pm 0.18 \pm 0.11$	

arXiv: 2509.18817

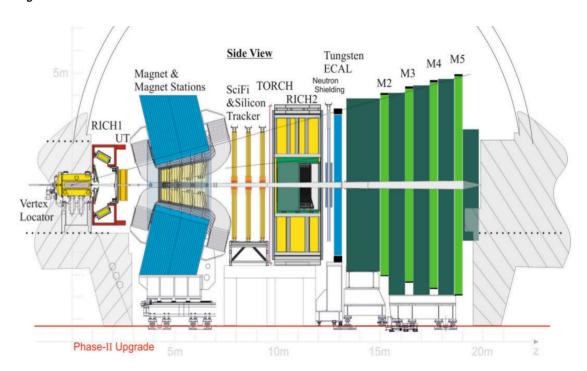
Appendix

A Total covariance matrix

The total covariance matrix (statistical + systematic) used to fit m_W , as demonstrated in Sec. 7, is given in Listing 1.


Listing 1: Full 24×24 covariance matrix of the measurement.

```
Row 1: 0.3192, -0.0252, 0.0287, 0.0302, 0.0696, 0.0258, 0.0048, -0.0028, -0.0022, 0.0057, 0.0089, -0.0050, 0.0644, 0.0592, 0.0113, 0.0273, 0.0114, 0.0369, 0.0145, 0.0241, 0.0085, 0.0113, 0.0022, 0.0114


Row 2: -0.0252, 0.2915, 0.0282, 0.0816, 0.0403, 0.0529, 0.0213, -0.0106, 0.0045, -0.0002, 0.0015, 0.0020, -0.0114, 0.0001, 0.0381, 0.0029, 0.0381, 0.0154, 0.0314, 0.0140, 0.0197, -0.0010, 0.0031, 0.0040
```


The LHCb upgrade II detector

- Upgrade II E-Cal is expected to allow similar reconstruction precision of high- $p_{\rm T}$ electrons as current muon reconstruction
- Availability of electronic channels at the EW scale, along with a significant increase in luminosity will allow some considerable future studies at LHCb

LHCb-TDR-023

LHC Run Year	Integrated luminosity fb^{-1}		
${\rm cm}^{-1} {\rm s}^{-1}$	1.0×10^{34}	1.5×10^{34}	2.0×10^{34}
Run 1-4	50	50	50
LS4	ş—	_	_
Run 5 Year 1	21	25	26
Run 5 Year 2	43	50	51
Run 5 Year 3	43	50	51
LS5	· -	_	-
Run 6 Year 1	43	50	51
Run 6 Year 2	43	50	51
Run 6 Year 3	43	50	51
Total	284	325	331

