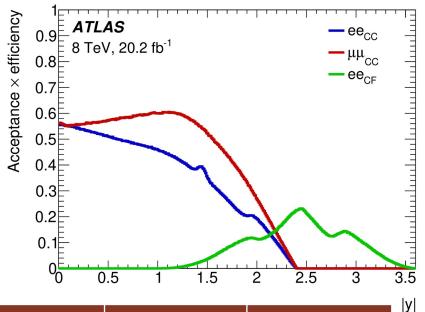
Ideas on possible Drell-Yan future measurements

Francesco Giuli

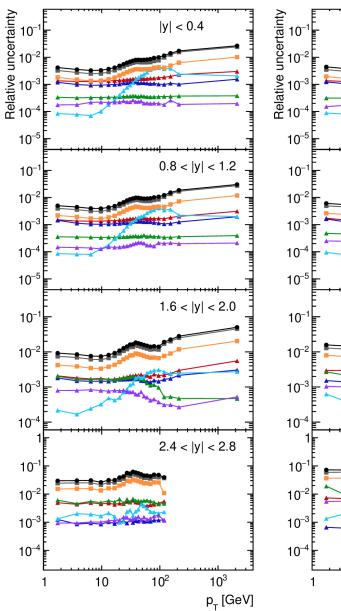
REF 2025 (Milan, IT) 14/10/2025

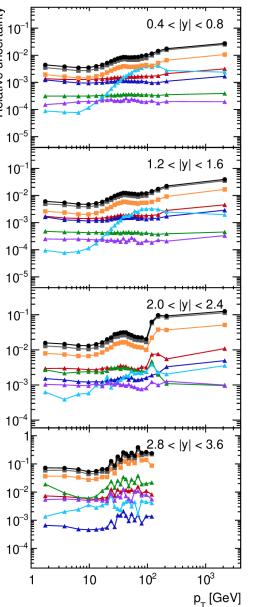
Main ideas


- Cross section measurement in full lepton phase space EPJ C84 (2024) 315
- Low mass Drell-Yan work in progress

Event selection

- > 3 channels:
 - ightharpoonup ee_{cc}: 2 electrons with $p_T > 20$ GeV, $|\eta| < 2.4$
 - $\mu\mu_{CC}$: 2 muons with $p_T > 20$ GeV, $|\eta| < 2.4$
 - ▶ **ee_{CF}**: central electron with $p_T > 25$ GeV, $|\eta| < 2.4$, forward electron with $p_T > 20$ GeV, $2.5 < |\eta| < 4.9$


Channel	Events
ee _{CC}	6.2 M
$\mu\mu_{CC}$	7.8 M
ee _{CF}	1.3 M
Total	15.3 M


- $\sim \sqrt{s} = 8 \text{ TeV}, L = 20.2 \text{ fb}^{-1}$
- > 80 < m_{\parallel} < 100 GeV
- \triangleright Double differential p_T , y cross section
 - > 8 y bins over | y | < 3.6
 - $ightharpoonup 23 \ p_T$ bins between $0.0 < p_T < 4000$ GeV

	UA1/UA2	LEP	Tevatron 1.96 TeV	LHC 8 TeV	LHC 13 TeV
$Z \rightarrow II$ events	200	500 K	300 K	15 M	150 M

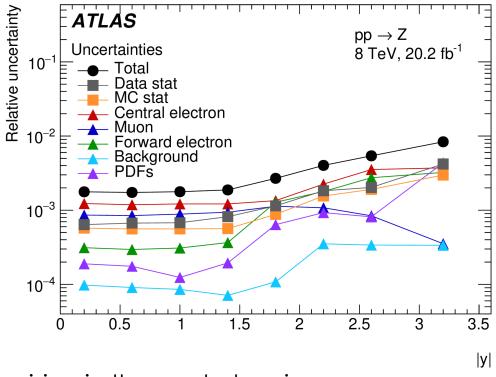
$d^2\sigma/dydp_T$ measurement uncertainties

ATLAS

 $pp \rightarrow Z$ 8 TeV. 20.2 fb⁻¹

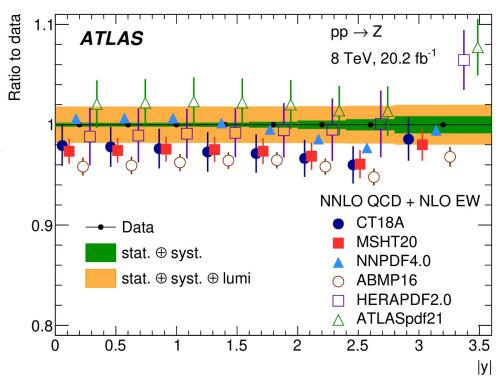
Uncertainties on $\frac{d\sigma}{d\rho}$

- Total
- Data stat
- MC stat
- Central electron
- <u>→</u> Muon
- Forward electron
- Background
- --- PDFs

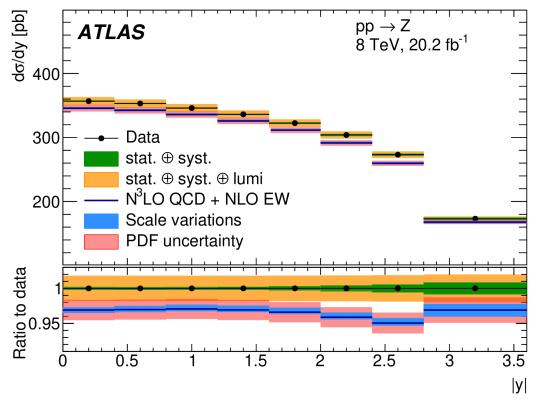

Statistically dominated

 Largest experimental systematic uncertainties from lepton calibration

Negligible theory uncertainties

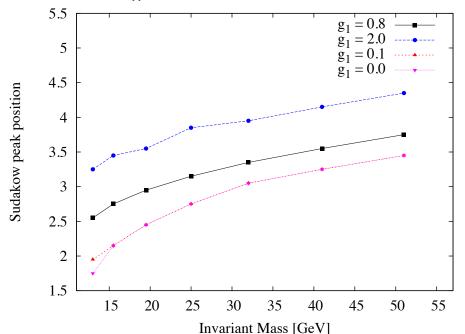

- PDFs are at the level of 0.1-1 per-mille
- Other theory uncertainties even smaller

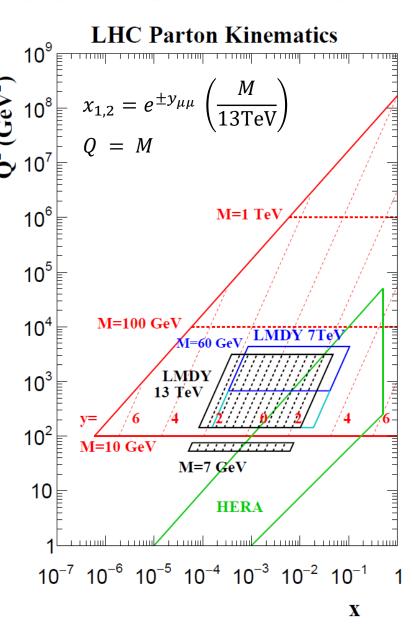
$d\sigma/dy$ measurement uncertainties


- > Per-mille level precision in the central region
- > Sub-percent uncertainties up to |y| < 3.6 (x2 improvement in the forward region wrt previous measurement)
- > Dominant uncertainties from lepton calibration
- Small/negligible theory uncertainties (mostly PDFs)

- Full-lepton phase space rapidity cross section enables precise and unambiguous PDF interpretation
- Measured cross sections agree with FO predictions within PDFs/luminosity uncertainty
- Measurement precision provides strong PDF sensitivity
- NLO EW corrections included in the comparison (-0.4%)

Data	$ \sigma_Z \text{ (pb)} \\ 1055 \pm 19 $
$MSHT20aN^3LO$ [60]	$1023^{+6}_{-4} \text{ (scale) } \pm 15 \text{ (PDF)}$
CT18A [61] MSHT20 [62] NNPDF4.0 [63] ABMP16 [64] HERAPDF2.0 [65] ATLASpdf21 [66]	1028 ± 19 1027 ± 13 1054 ± 4 1014 ± 9 1058 ± 25 1084 ± 25


	PDF set	Total χ^2 / d.o.f.	χ^2 p-value	Pull on luminosity
_	$MSHT20aN^3LO$ [60]	13/8	0.11	1.2 ± 0.6
_	CT18A [61]	12/8	0.17	0.9 ± 0.7
	MSHT20 [62]	10/8	0.26	0.9 ± 0.6
	NNPDF4.0 [63]	30/8	0.0002	0.0 ± 0.2
	ABMP16 [64]	30/8	0.0002	1.8 ± 0.4
	HERAPDF2.0 [65]	22/8	0.005	-1.3 ± 0.8
	ATLASpdf21 [66]	20/8	0.01	-1.1 ± 0.8



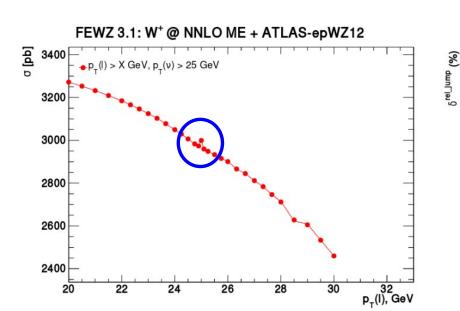
- > First comparison to N³LO QCD predictions
- ➤ Enables precise and unambiguous PDF interpretation with QCD scale uncertainties now smaller than PDF ones
- Ideal measurement to be included in the current and upcoming N3LO PDF fits

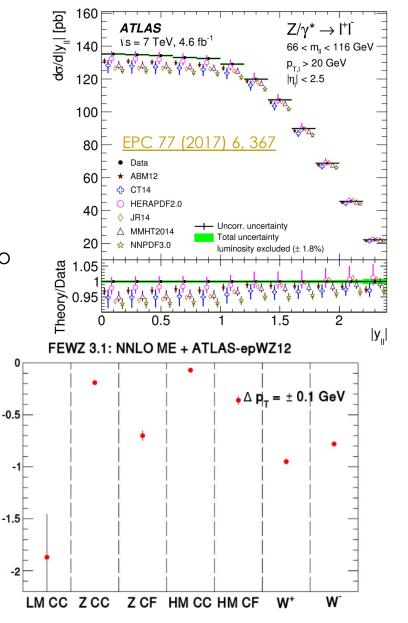
Low mass DY - theoretical motivations

- Previous <u>7 TeV ATLAS ImDY</u> measurement
- $\succ d^2\sigma/dm_{\mu\mu}d|y_{\mu\mu}|$ and $d^2\sigma/dm_{\mu\mu}dp_{T,\mu\mu}$
- Advance our knowledge of the PDFs
- > Sensitive to **small-x resummation** effects
- ightharpoonup Constrain the **NP part** of the **Z** p_T modelling for future m_W determination

Low mass DY – major challenges

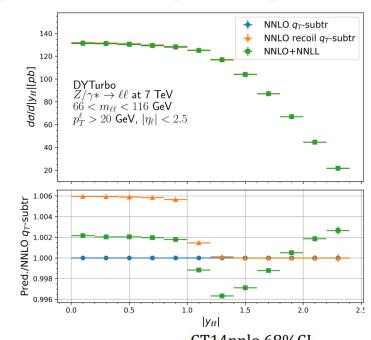
- Main challenges in this measurement:
 - QCD multijet background estimation
 - Isolation for low-p_T and low-mass muon
 - Trigger efficiencies


Strongly reduced if low- μ runs


- Pinning down trigger efficiencies might be challenging
- ➤ Possible solution → lower L1 thresholds
- > Fully open Barrel L1 eta trigger window in low pile-up runs
- \blacktriangleright Unfortunately missing the endcaps we can not go very low in x i.e. endcap thresholds are not efficient at low p_T
- Trigger-level analyses at HL-LHC?

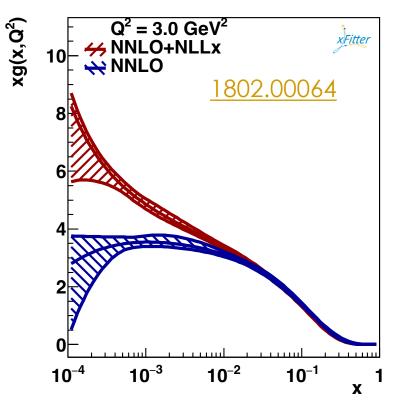
Backup Slides

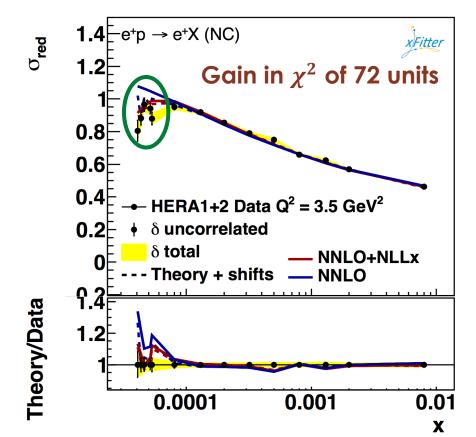
- Interpretation of fiducial cross sections hampered by breakdown of fixed order (FO) perturbation theory
 - Fiducial cuts lead to unphysical FO predictions
 - ightharpoonup When approaching the limit of $p_T^2 o p_T^1$ FO becomes unreliable
 - The issue is more critical when p_T is closer to m_{\parallel} and at forward rapidities



- Large attention to the problem, and several solutions proposed:
 - Local-subtraction scheme for FO predictions 2104.02400
 - Change the definition of fiducial cuts -2106.08329
 - Use A_i theory predictions to extrapolate measured cross sections - 2001.02933
 - Include resummation corrections into predictions 2006.11382, 2209.13535

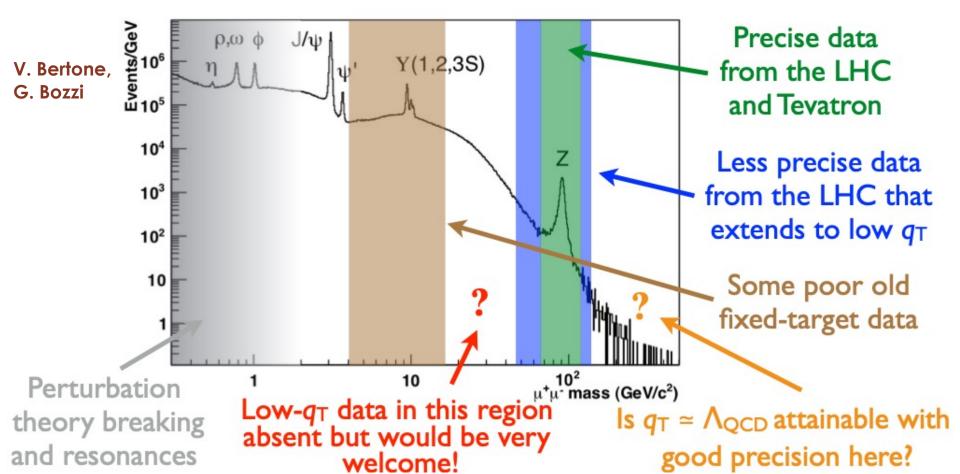
> A_i – based elegant solution:


- Fiducial cuts removed by analytic integration of $(\cos \theta, \phi)$ in the full phase space of the decay leptons through the measured A_i coefficients
- With only Run 1 8 TeV data, few permille total uncertainties for $d\sigma/dy$ and negligible theoretical uncertainties for all measurements



	C114nnio 68%CL			
Dataset	NNLO q_T -subtr.	NNLO recoil q_T -subtr.	NNLO+ NNLL	
ATLAS W+ lepton rapidity	9.4 / 11	8.8 / 11	8.8 / 11	
ATLAS W- lepton rapidity	8.2 / 11	8.7 / 11	8.2 / 11	
ATLAS low mass Z rapidity	11/6	7.2 / 6	7.5 / 6	
ATLAS peak CC Z rapidity	15 / 12	10 / 12	7.7 / 12	
ATLAS peak CF Z rapidity	9.6/9	5.3 / 9	6.4/9	
ATLAS high mass CC Z rapidity	6.0 / 6	6.5 / 6	5.8 / 6	
ATLAS high mass CF Z rapidity	5.2 / 6	5.6 / 6	5.3 / 6	
Correlated χ^2	39>	40>	32	
Log penalty χ^2	-4.33	-3.39	-4.20	
Total χ^2 / dof	99 / 61	88 / 61	77 / 61	
χ^2 p-value	0.00	0.01	0.08	

Small-x resummation


- \triangleright Resummation formalism based on k_T -factorization and BFKL
- Developed in the 90s-00s
- Recent developments: 1607.02153, 1708.07510
 - > Resummation matched to NNLO, allowing NNLO+NLLx phenomenology
 - Public code: HELL

TMDs

- \triangleright TMD factorisation applies for $q_T \ll Q$
- ightharpoonup The region $q_T \simeq \Lambda_{QCD}$ is relevant for hadron structure, no matter how large Q
- \triangleright As Q increases, the cross section drops and low q_T becomes hard to access

