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Summary

‣Relevance of Factorization in general

‣Parton Model and PDF factorization (mass singularities)

‣Effect on cross-sections at the LHC (N3LO and N4LO…)

‣Conclusions

‣Splitting amplitudes and factorization breaking (1 and 2 loops)
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Factorization in high school

Nicer, simpler, more elegant results 😀
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Factorization in life

‣Really relevant : Church and State, keep them separate

‣Work and Holidays : need strict factorization!

‣ Italian food : pizza and pineapple, always factorized !

‣ Italian football in World Cups : glory in the museum, players on holidays 
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particle 
physics

nuclear 
physics

quantum 
physics

chemistry

biology

medicine

engineering

geology

cosmology

Identify relevant scale, degrees of freedom and effective theory to provide the best description of the 
process in the simplest way.  Also allows to simplify complex problems into manageable pieces that can 
later be recombined.

science relies on factorization

Factorization in Science (general)
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engineering
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cosmology

Identify relevant scale, degrees of freedom and effective theory to provide the best description of the 
process in the simplest way.  Also allows to simplify complex problems into manageable pieces that can 
later be recombined.

When the car breaks, goes to the mechanic, not to the quantum mechanic… relevance

science relies on factorization

Factorization in Science (general)
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(some) Factorization in QCD

‣Not a full discussion about factorization in QCD

‣ PDF factorization (a very rough sketch of factorization of mass singularities)

‣ “Origin" of PDF factorization from collinear factorization of amplitudes

‣ Strict collinear factorization and breaking at higher orders (most of the talk)

‣What other people did on the subject and I still don’t understand…
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perturbative partonic cross-section

non-perturbative parton distributions

d� =
X

ab

Z
dxa

Z
dxb fa(xa, µ

2
F )fb(xb, µ

2
F ) ⇥ d�̂ab(xa, xb, Q

2,↵s(µ
2
R)) +O

✓✓
⇤

Q

◆m◆

d�̂ = ↵n
s d�̂(0) + ↵n+1

s d�̂(1) + ...Partonic cross-section: expansion in ↵s(µ
2
R) ⌧ 1

‣ In the LHC era, QCD is everywhere and factorization essential!

a

b

H, �, Z,W

jet

‣parton distributions obtained from global fits thanks to UNIVERSALITY (FACTORIZATION)
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σ(ep→ eX) =
∫ 1

0
dz

∑

i

fi(z) σ̂(eqi → eX)

 Probability to find parton “i” with momentum fraction z in proton

        =“partonic” cross section          computed perturbatively

 Parton distributions (PDF) from experiments :  universal

σ̂

zp

qγ

p

Parton Model
Factorization

large 
distances

small 
distances

F2(x,Q2) =
∑

q

e2
q x fq(x) Bjorken scaling

hard interaction time

tHard ∼
1
Q

≪ tsoft ∼
1

ΛQCD

soft interaction time
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and result is divergent … kT → 0 ℳγ*q→q g
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≃
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Regularize the divergence with a cut-off
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q(x, µ2
F ) = q(x) +

αs

2π
log

(
µ2

F

µ2
0

) ∫ 1

x
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y
Pqq(y) q

(
x

y

)
Factorization IR equivalent to UV renormalization (DR and fact. scheme)

Cross section (structure function) finite in terms of UNIVERSAL factorized PDFs
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Altarelli-Parisi equation : SPLITTING FUNCTIONS  (RGE like: resummation of collinear logs)

∂q(x, µ2
F )

∂ log(µ2
F )

=
αs

2π
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+
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x/y x/y

x x

x x

Probabilistic
interpretation

Increase “resolution” scale: resolve more details of “partonic structure”
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Origin of pdf factorization: Strict factorization at the amplitude level
n n
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1-2 collinear n-1 particle amplitude
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Kinematical details
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a2((1 − z)P)

a
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In the kinematical configuration where the parton momenta p1 and p2 become collinear,
their invariant mass s12 vanishes, and the matrix element M(p1, p2, . . . , pn) becomes sin-
gular. To precisely define the collinear limit, we rescale the transverse momenta k⊥i in
Eq. (2) by an overall factor λ (namely, k⊥i → λ k⊥i with i = 1, 2), and then we perform the
limit λ→ 0. In this limit, the behaviour of the matrix element M(p1, p2, . . . , pn) is propor-
tional to 1/λ. We are interested in explicitly evaluating the matrix element contribution
that controls this singular behaviour order by order in the perturbative expansion. More
precisely, in d = 4− 2ε dimensions, the four-dimensional scaling behaviour in the collinear
limit is modified by powers of (λ2)−ε. Since we work with fixed ε, we treat the powers of
(λ2)−ε as contributions of order unity in the collinear limit.

In summary, considering the limit s12 → 0, we are interested in the singular behaviour:

M(p1, p2, . . . , pn) ∼
1

√
s12

mod (lnk s12)
[
1 +O(

√
s12 )

]
, (6)

where the logarithmic contributions lnk s12 (k = 0, 1, 2, . . . ) eventually comes from the
power series expansion in ε of terms such as (s12)−ε. These logarithmic contributions are
taken into account in our calculation, while the corrections of relative order O(

√
s12 ) are

systematically neglected.

As is well known [16, 17], the singular behaviour of tree-level scattering amplitudes
in the collinear limit is universal (process independent) and factorized. The factorization
structure is usually presented at the level of colour subamplitudes [17], in a colour-stripped
form. In Ref. [26], we proposed a formulation of collinear factorization that is valid directly
in colour space. Here, we follow this colour space formulation, which turns out to be
particularly suitable to the main purpose of the present paper, namely, the general study
of the SL collinear limit at one-loop and higher-loop orders.

To directly work in colour space, we use the notation of Ref. [29] (see also Ref. [1]). The
scattering amplitude M depends on the colour indeces {c1, c2, . . . } and on the spin (e.g.
helicity) indeces {s1, s2, . . . } of the external QCD partons; we write

Mc1,c2,...,cn;s1,s2,...,sn(p1, p2, . . . , pn) . (7)

We formally treat the colour and spin structures by introducing an orthonormal basis
{|c1, c2, . . . , cn〉 ⊗ |s1, s2, . . . , sn〉} in colour + spin space. The scattering amplitude in
Eq. (7) can be written as

Mc1,c2,...;s1,s2,...(p1, p2, . . . ) ≡
(
〈c1, c2, . . .|⊗ 〈s1, s2, . . .|

)
|M(p1, p2, . . . )〉 . (8)

Thus |M(p1, p2, . . . , pn)〉 is a vector in colour + spin (helicity) space.

As stated at the beginning of this section, we define the external momenta pi’s as
outgoing momenta. The colour indeces {c1, c2, . . . cn} are consistently treated as outgoing
colour indeces: ci is the colour index of the parton Ai with outgoing momentum pi (if pi
has negative energy, ci is the colour index of the physical parton Ai that collides in the
initial state). An analogous comment applies to spin indeces.

Having introduced our notation, we can write down the colour-space factorization for-
mula [26] for the collinear limit of the tree-level amplitude M(0). We have

|M(0)(p1, p2, . . . , pn)〉 ) Sp(0)(p1, p2; P̃ ) |M(0)(P̃ , . . . , pn)〉 , (9)

5
matrix in color+spin space: no dependence 
on color of non-collinear partons (identity in that space)

Collinear limit

scattering amplitude in 
color+spin space (vector)
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splitting amplitudes

is obtained from (154) by directly using Eq. (162) (note that sign(s1j) = − sign(s2j) in the
SL collinear region, since s12 < 0).

7 Square amplitudes and cross sections

The perturbative QCD computation of cross sections (and related physical observables)
requires the evaluation of the square of the matrix element M(p1, p2, . . . , pn) and its in-
tegration over the phase space of the final-state partons. In this section we consider the
collinear limit of square amplitudes. In particular, we are interested in the implications of
violation of strict collinear factorization at the level of square amplitudes and, possibly, of
cross sections.

7.1 The collinear behaviour of square amplitudes

We consider the square matrix element, |M|2, summed over the colours and spins of the
external QCD partons (see Eq. (7)):

|M(p1, p2, . . . )|2 ≡
∑

{ci}

∑

{si}

[
Mc1,c2,...;s1,s2,...(p1, p2, . . . )

]†
Mc1,c2,...;s1,s2,...(p1, p2, . . . ) .

(164)
Using the notation in colour+spin space (see Eq. (8)), |M|2 can be written as

|M(p1, p2, . . . , pn)|2 = 〈M(p1, p2, . . . , pn) |M(p1, p2, . . . , pn) 〉 . (165)

The all-order singular behaviour of |M|2, in a generic kinematical configuration of
m collinear partons with momenta {p1, . . . , pm}, is obtained by squaring the generalized
factorization formula in Eq. (78). We have

|M|2 % 〈M| P(p1, . . . , pm; P̃ ; pm+1, . . . , pn) |M〉 , (166)

where the matrix P is the square of the all-order splitting matrix Sp :

P ≡ [Sp ]† Sp . (167)

The loop expansion of the square splitting matrix P is

P = P(0,R) +P(1,R) +P(2,R) + . . . , (168)

where P(k,R) (with k = 0, 1, 2, . . . ) are the renormalized perturbative contributions. Insert-
ing Eq. (83) in Eq. (167), we obtain the expression of P(k,R) in terms of the perturbative
contributions to Sp :

P(0,R) =
(
Sp(0,R)

)†
Sp(0,R) , (169)

P(1,R) =
(
Sp(0,R)

)†
Sp(1,R) + h.c. , (170)

50

“AP kernel”

ℳa1,a2,… (p1, p2, p3…)
2

≃
2

s12
4πμ2ϵαS

̂P (z; ϵ) ℳa,… (P, p3…)
2

“almost” the AP kernel at this order
not true at higher orders (just a part)



Factorization 14

splitting amplitudes

PDFs (parton model) factorization direct result from strict factorization of amplitudes

is obtained from (154) by directly using Eq. (162) (note that sign(s1j) = − sign(s2j) in the
SL collinear region, since s12 < 0).

7 Square amplitudes and cross sections

The perturbative QCD computation of cross sections (and related physical observables)
requires the evaluation of the square of the matrix element M(p1, p2, . . . , pn) and its in-
tegration over the phase space of the final-state partons. In this section we consider the
collinear limit of square amplitudes. In particular, we are interested in the implications of
violation of strict collinear factorization at the level of square amplitudes and, possibly, of
cross sections.

7.1 The collinear behaviour of square amplitudes

We consider the square matrix element, |M|2, summed over the colours and spins of the
external QCD partons (see Eq. (7)):

|M(p1, p2, . . . )|2 ≡
∑

{ci}

∑

{si}

[
Mc1,c2,...;s1,s2,...(p1, p2, . . . )

]†
Mc1,c2,...;s1,s2,...(p1, p2, . . . ) .

(164)
Using the notation in colour+spin space (see Eq. (8)), |M|2 can be written as

|M(p1, p2, . . . , pn)|2 = 〈M(p1, p2, . . . , pn) |M(p1, p2, . . . , pn) 〉 . (165)

The all-order singular behaviour of |M|2, in a generic kinematical configuration of
m collinear partons with momenta {p1, . . . , pm}, is obtained by squaring the generalized
factorization formula in Eq. (78). We have

|M|2 % 〈M| P(p1, . . . , pm; P̃ ; pm+1, . . . , pn) |M〉 , (166)

where the matrix P is the square of the all-order splitting matrix Sp :

P ≡ [Sp ]† Sp . (167)

The loop expansion of the square splitting matrix P is

P = P(0,R) +P(1,R) +P(2,R) + . . . , (168)

where P(k,R) (with k = 0, 1, 2, . . . ) are the renormalized perturbative contributions. Insert-
ing Eq. (83) in Eq. (167), we obtain the expression of P(k,R) in terms of the perturbative
contributions to Sp :

P(0,R) =
(
Sp(0,R)

)†
Sp(0,R) , (169)

P(1,R) =
(
Sp(0,R)

)†
Sp(1,R) + h.c. , (170)

50

“AP kernel”

ℳa1,a2,… (p1, p2, p3…)
2

≃
2

s12
4πμ2ϵαS

̂P (z; ϵ) ℳa,… (P, p3…)
2

“almost” the AP kernel at this order
not true at higher orders (just a part)



Factorization 14
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PDFs (parton model) factorization direct result from strict factorization of amplitudes

The key point for factorization is that splitting 
functions do not depend on non-collinear partons

is obtained from (154) by directly using Eq. (162) (note that sign(s1j) = − sign(s2j) in the
SL collinear region, since s12 < 0).

7 Square amplitudes and cross sections

The perturbative QCD computation of cross sections (and related physical observables)
requires the evaluation of the square of the matrix element M(p1, p2, . . . , pn) and its in-
tegration over the phase space of the final-state partons. In this section we consider the
collinear limit of square amplitudes. In particular, we are interested in the implications of
violation of strict collinear factorization at the level of square amplitudes and, possibly, of
cross sections.

7.1 The collinear behaviour of square amplitudes

We consider the square matrix element, |M|2, summed over the colours and spins of the
external QCD partons (see Eq. (7)):

|M(p1, p2, . . . )|2 ≡
∑

{ci}

∑

{si}

[
Mc1,c2,...;s1,s2,...(p1, p2, . . . )

]†
Mc1,c2,...;s1,s2,...(p1, p2, . . . ) .

(164)
Using the notation in colour+spin space (see Eq. (8)), |M|2 can be written as

|M(p1, p2, . . . , pn)|2 = 〈M(p1, p2, . . . , pn) |M(p1, p2, . . . , pn) 〉 . (165)

The all-order singular behaviour of |M|2, in a generic kinematical configuration of
m collinear partons with momenta {p1, . . . , pm}, is obtained by squaring the generalized
factorization formula in Eq. (78). We have

|M|2 % 〈M| P(p1, . . . , pm; P̃ ; pm+1, . . . , pn) |M〉 , (166)

where the matrix P is the square of the all-order splitting matrix Sp :

P ≡ [Sp ]† Sp . (167)

The loop expansion of the square splitting matrix P is

P = P(0,R) +P(1,R) +P(2,R) + . . . , (168)

where P(k,R) (with k = 0, 1, 2, . . . ) are the renormalized perturbative contributions. Insert-
ing Eq. (83) in Eq. (167), we obtain the expression of P(k,R) in terms of the perturbative
contributions to Sp :

P(0,R) =
(
Sp(0,R)

)†
Sp(0,R) , (169)

P(1,R) =
(
Sp(0,R)

)†
Sp(1,R) + h.c. , (170)

50

“AP kernel”

ℳa1,a2,… (p1, p2, p3…)
2

≃
2

s12
4πμ2ϵαS

̂P (z; ϵ) ℳa,… (P, p3…)
2

“almost” the AP kernel at this order
not true at higher orders (just a part)



Factorization 14

splitting amplitudes

PDFs (parton model) factorization direct result from strict factorization of amplitudes

The key point for factorization is that splitting 
functions do not depend on non-collinear partons Not true at higher orders…
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‣ Factorization at the lowest order can be understood in terms of different scales

n

1

2

3

when partons 1 and 2 become almost collinear 
there are two very different scale regimes

‣ invariant mass  is much smaller than  ,  and  with s12 s1j s2j sij i, j = 3,4,...n

Factorization : interactions between collinear partons take place at large space-time distances 
while interactions between non-collinear and collinear with non-collinear take place a small distances
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‣ Factorization at the lowest order can be understood in terms of different scales

n

1

2

3

when partons 1 and 2 become almost collinear 
there are two very different scale regimes

‣ invariant mass  is much smaller than  ,  and  with s12 s1j s2j sij i, j = 3,4,...n

Factorization : interactions between collinear partons take place at large space-time distances 
while interactions between non-collinear and collinear with non-collinear take place a small distances

‣The situation can be different when there are loops : a soft wide-angle gluon 
can produce pairwise interactions between collinear and non-collinear 
partons (proportional to ) and DO spoil factorization Ti ⋅ Tj

• Factorization can be recovered (in some cases) due to color coherence and causality
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‣Collinear limit at one loop (TIME LIKE - final state singularity)

expressions in Eqs. (12)–(15) refer to the TL region where the energies of p1, p2 and P̃ are
positive. The corresponding expressions in other kinematical regions are straightforwardly
obtained by applying crossing symmetry. If the energy of the momentum P (P = p1, p2
or P̃ ) is negative, the crossing relation simply amounts to the usual replacement of the
corresponding wave function (i.e., u(P ) ↔ v(−P ) and ε(P ) ↔ ε∗(−P )).

3 One-loop amplitudes: time-like collinear limit

In this section we consider the collinear behaviour of the one-loop QCD amplitudes M(1)

in Eq. (1). We use the same general notation as in Sect. 2. However, we anticipate that
the results are valid only in the case of the TL collinear splitting (i.e., s12 > 0).

The singular behaviour of M(1)(p1, p2, . . . , pn) in the region where the two momenta p1
and p2 become collinear is also described by a factorization formula. The extension of the
tree-level colour-space formula (9) to one-loop amplitudes is [26]

|M(1)(p1, p2, . . . , pn)〉 $ Sp(1)(p1, p2; P̃ ) |M(0)(P̃ , . . . , pn)〉
+ Sp(0)(p1, p2; P̃ ) |M(1)(P̃ , . . . , pn)〉 . (21)

The ‘reduced’ matrix elements on the right-hand side are obtained from M(p1, p2, . . . , pn)
by replacing the two collinear partons A1 and A2 (with momentum p1 and p2, respectively)
with their parent parton A, with momentum P̃ . The two contributions on the right-
hand side are proportional to the reduced matrix element at the tree-level and at the
one-loop order, respectively. The splitting matrix Sp(0) is exactly the tree-level splitting
matrix that enters Eq. (9). The one-loop splitting matrix Sp(1)(p1, p2; P̃ ) encodes new (one-
loop) information on the collinear splitting process A → A1A2. Analogously to Sp(0), the
one-loop factor Sp(1)(p1, p2; P̃ ) is a universal (process-independent) matrix in colour+spin
space, and it only depends on the momenta and quantum numbers of the partons involved
in the collinear splitting subprocess.

Within the colour subamplitude formulation, the collinear limit of two partons at the
one-loop level was first discussed in Ref. [23] by introducing one-loop splitting amplitudes
Split(1)(p1, p2; P̃ ), which are the one-loop analogues of the tree-level splitting amplitudes
mentioned in Sect. 2. A proof of collinear factorization of one-loop colour subamplitudes
was presented in Ref. [24]. The explicit results of the splitting amplitudes Split(1) in
d = 4 − 2ε dimensions (or, equivalently, the results to all orders in the ε expansion) were
obtained in Refs. [12, 25].

The relation between the one-loop factorization formula (21) and its colour subampli-
tude version is exactly the same as the relation at the tree level (see also the Appendix A).
The main point is that the one-loop splitting matrix Sp(1)(p1, p2; P̃ ) involves a single colour
structure (more precisely, there is a single colour structure for each flavour configuration
of the splitting processes A → A1A2), and this colour structure is the same structure that
occurs in the tree-level splitting matrix Sp(0)(p1, p2; P̃ ). In other words, the proportion-
ality relation in Eq. (16) is valid also at the one-loop level: we can simply perform the
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loop) information on the collinear splitting process A → A1A2. Analogously to Sp(0), the
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Within the colour subamplitude formulation, the collinear limit of two partons at the
one-loop level was first discussed in Ref. [23] by introducing one-loop splitting amplitudes
Split(1)(p1, p2; P̃ ), which are the one-loop analogues of the tree-level splitting amplitudes
mentioned in Sect. 2. A proof of collinear factorization of one-loop colour subamplitudes
was presented in Ref. [24]. The explicit results of the splitting amplitudes Split(1) in
d = 4 − 2ε dimensions (or, equivalently, the results to all orders in the ε expansion) were
obtained in Refs. [12, 25].

The relation between the one-loop factorization formula (21) and its colour subampli-
tude version is exactly the same as the relation at the tree level (see also the Appendix A).
The main point is that the one-loop splitting matrix Sp(1)(p1, p2; P̃ ) involves a single colour
structure (more precisely, there is a single colour structure for each flavour configuration
of the splitting processes A → A1A2), and this colour structure is the same structure that
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n n n

1
2 P̃

1||2

1

2

P̃
1

2
+

1 loop splitting 1 loop reduced
amplitude

Splitting amplitudes in the time-like (final state) region are known up to 3 loops !

Sp(2) (p1, p2; P̃ )
Sp(3) (p1, p2; P̃ )

Bern, Dixon, Kosower (2004)
Badger, Glover (2004)

Guan, Herzog, Ma, Mistlberger, Suresh (2024)

Born reduced
amplitude

splitting LO

Not the AP kernel (just 
one configuration)
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1

2P*

1

2

P*
z

1 − z

Timelike (final state) Spacelike (initial state)crossing

p1 → − p1

z →
1
z

> 0

1 − z → 1 −
1
z

< 0

E1 > 0
E2 > 0
s12 > 0

E1 < 0
E2 > 0
s12 < 0

s12 → − s12



Factorization 17

1

2P*

1

2

P*
z

1 − z

Timelike (final state) Spacelike (initial state)crossing

p1 → − p1

z →
1
z

> 0

1 − z → 1 −
1
z

< 0

E1 > 0
E2 > 0
s12 > 0

E1 < 0
E2 > 0
s12 < 0

s12 → − s12

Signs of  are relevant : Splitting functions include transcendental functions (logs and Polylogs)z1, z2 . s12

‣Well known feature for timelike (fragmentation functions) and space like (parton distribution) evolution 
kernels : not a problem as long as they are process independent (same for DIS and pp, in SL case)

Drell-Yan-Levy relation
for AP kernels

Drell, Levy, Yan (1969)
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TL
rational
and finite

transcendental
and all divergences

usual prescription

need i0 prescription… not trivial.. we obtain it from explicit calculation of SL and TL collinear limit

usual Casimir and color factors

Bern, Del Duca, Schmidt (1998)
Bern, Del Duca, Kilgore, Schmidt (1999)
Kosower, Uwer (1999)

d = 4 − 2ϵ
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The general expression for all TL and SL collinear limits (assume z1 > 0 for simplicity)

dependence on NON-COLLINEAR partons

The factorization-breaking term (pole and notice non-trivial “kinematical” dependence on  i0 prescription)

branch-cut singularity on z2<0

z2 = 1 − z → 1 −
1
z

< 0when
function evaluated above or below branch depending on kinematics
of non-collinear partons (sign of  depends parton incoming/outgoing)sj2



Factorization 20

Color Coherence : non-collinear partons act coherently as a single parton, whose color charge is equal 
to the total charge of the non-collinear partons. Owing to colour conservation, this color charge is equal 
(modulo the overall sign) to the color charge of the parent (off-shell P*=1+2) parton

Why not appearing in simpler TL case? : z2 is positive (no need for prescription) and color conservation 

color conservation

δ (p1, p2; p3, …, pn) = +
2
ϵ

n

∑
j=3

T2 ⋅ Tj f (ϵ; z2 − i0sj2) = +
2
ϵ

T2 f (ϵ; z2)
n

∑
j=3

Tj

δ (p1, p2; p3, …, pn) = −
1
ϵ (C12 + C2 − C1) f (ϵ; z2)TL Case factorizes

casimir factors
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‣ in general, DIS has only one parton in initial state
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‣There are interactions between 2 and the non-collinear 
partons that are separately not factorized 

‣ But, since all non-collinear partons are in the final state sj2 

are all positive and imaginary parts combine coherently to 
mimic single effective interaction with parent parton P

Effective strict factorization in DIS

δ (p1, p2; p3, …, pn) = +
2
ϵ

n

∑
j=3

T2 ⋅ Tj f (ϵ; z2 − i0sj2) = +
2
ϵ

T2 f (ϵ; z2 − i0)
n

∑
j=3

Tj



Factorization 22

‣ in pp collisions there is different partonic environment:  two partons in initial state

δ (p1, p2; p3, …, pn) = +
2
ϵ

n

∑
j=3

T2 ⋅ Tj f (ϵ; z2 − i0sj2)
can not factorize the color structure because of
parton 3 with different sign contribution

imaginary part  …π

IS collinear splitting in pp collisions with  partons
involves color correlations with non-collinear and 

explicit factorization breaking

n ≥ 4

antihermitian contribution



Factorization 23

‣ But one loop amplitudes with collinear divergences enter in every NNLO calculation at the LHC

‣Does it mean that NNLO calculations are wrong and there is no factorization?

‣ Breaking of factorization appears at the amplitude level…but cross section involves squared amplitudes



Factorization 23

‣ But one loop amplitudes with collinear divergences enter in every NNLO calculation at the LHC

‣Does it mean that NNLO calculations are wrong and there is no factorization?

‣ Breaking of factorization appears at the amplitude level…but cross section involves squared amplitudes

lowest order strictly factorized

‣The collinear limit relevant at NNLO (interference between 1 loop and Born) is

is factorized because factorization breaking term 
in the splitting amplitude is antihermitian

†
n

1

2

n
1

2

3

*( (2 Re

1||2



Factorization 24

‣ 1 loop splitting amplitudes violate strict collinear factorization, but effect is antihermitian

In summary (one-loop)

‣ cancels at the level of cross sections (squared amplitudes) NNLO calculations at LHC are safe

‣What about higher orders? : we will see that there are hermitian and antihermitian contributions 

• splitting amplitudes used for subtraction methods 



Factorization 24

‣ 1 loop splitting amplitudes violate strict collinear factorization, but effect is antihermitian

In summary (one-loop)

‣ cancels at the level of cross sections (squared amplitudes) NNLO calculations at LHC are safe

‣What about higher orders? : we will see that there are hermitian and antihermitian contributions 

‣ collinear limit up to two loops

renormalized quantities 

• splitting amplitudes used for subtraction methods 



Factorization 25

‣The two-loop splitting matrix can be decomposed as in terms of the known 1-loop results…

finite (not computed here)1 loop, both
break fact.

2 loop

several terms violating factorization involving two-
parton color correlations  from 1-loopTi ⋅ Tj

new 2-loop operator includes
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‣The two-loop splitting matrix can be decomposed as in terms of the known 1-loop results…

finite (not computed here)1 loop, both
break fact.

2 loop

several terms violating factorization involving two-
parton color correlations  from 1-loopTi ⋅ Tj

new 2-loop operator includes

‣New structure appears: involves three-part color correlations (double and single poles)

cancels for TL (z>0)

requires SL + non-collinear 
parton in initial and final 
state : cancels for DIS 



Factorization 25

‣The two-loop splitting matrix can be decomposed as in terms of the known 1-loop results…

finite (not computed here)1 loop, both
break fact.

2 loop

several terms violating factorization involving two-
parton color correlations  from 1-loopTi ⋅ Tj

new 2-loop operator includes

‣New structure appears: involves three-part color correlations (double and single poles)

cancels for TL (z>0)

requires SL + non-collinear 
parton in initial and final 
state : cancels for DIS 

‣Contains both hermitian (depends on momenta) and non-hermitian contributions (only on signs)

‣ Finite part (not-computed) also contains factorization breaking terms with same color correlations



Factorization 26

‣Now we take the square and see what remains!
iteration of 1-loop, factorized (antihermitian)

finite, not computed but 
factorization breaking

divergent, factorization 
breaking (from hermitian part) 

‣Non abelian, only for SL, vanishing in DIS

‣ Because of color conservation it requires 5 QCD partons: 2 collinear, 1 extra incoming, 2 extra final



Factorization 27

‣ Simplest case, two loop (times Born) for parton + parton → 3 partons (2 jet at LHC at N3LO)

with 1(IS) and 2 (FS) collinear
parton 2 with very small qT

‣There is a clear factorization term, non-vanishing, in the splitting function
‣ Involves correlations between collinear and non-collinear partons including kinematical dependence

‣Multiple collinear factorization also discussed Catani, DdeF,  Rodrigo (2012)

Duhr, Venkata, Zhang (2025)
Cieri, Dhani, Rodrigo (2024)



Factorization 28

One more step needed to get the contribution to the N3LO cross section :  ⟨ℳ ℳ⟩

the N3LO contribution involves Born level amplitude

In the same basis  is antisymmetric Δ̃ (2)
p (ϵ)Forshaw, Seymour, Siódmok (2012)

In a color basis where  is real the pure QCD amplitude is also real and symmetricTi ⋅ Tj ℳ(0)⟩⟨ℳ(0)

using that ⟨ℳ(0) A ℳ(0)⟩ = Tr [ ℳ(0)⟩⟨ℳ(0) A] = 0
antisymmetricsymmetric

factorization breaking terms (IR part) vanish in pure QCD for cross-section

expectation value



Factorization 29

‣ Formally involves only the IR part of the 2-loop contribution, finite part is not known in QCD

Henn, Ma, Xu, Yan, Zhang, Zhu (2024) compute full result (including finite part) in  Super-Yang-Mills𝒩 = 4
same three-part color correlations that cancel with the same argument : conjecture for QCD 
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‣ Formally involves only the IR part of the 2-loop contribution, finite part is not known in QCD

Henn, Ma, Xu, Yan, Zhang, Zhu (2024) compute full result (including finite part) in  Super-Yang-Mills𝒩 = 4
same three-part color correlations that cancel with the same argument : conjecture for QCD 

‣The splitting matrix still violates strict collinear factorization and the “vanishing” does not occur if the 
Born level amplitude includes phases : Electroweak boson exchange, finite width, (polarization?)



Factorization 29

‣ Formally involves only the IR part of the 2-loop contribution, finite part is not known in QCD

Henn, Ma, Xu, Yan, Zhang, Zhu (2024) compute full result (including finite part) in  Super-Yang-Mills𝒩 = 4
same three-part color correlations that cancel with the same argument : conjecture for QCD 

‣The splitting matrix still violates strict collinear factorization and the “vanishing” does not occur if the 
Born level amplitude includes phases : Electroweak boson exchange, finite width, (polarization?)

‣The “vanishing” only occurs at N3LO, at higher order one finds 
2 loop vanishing

3 loop result involves 1-loop amplitude with extra phases



Factorization 30

‣ 2loop splitting amplitudes violate strict collinear factorization, effect is antihermitian and hermitian

In summary (two-loops and more)

‣ effect survives at the level of (squared) splitting matrix

appear at N3LO  parton + parton → 3 partons (2 jet at LHC

‣Cancels at N3LO if only pure QCD (not in case of EW, finite width)

‣ For sure there is a contribution starting at N4LO even for pure QCD  

• splitting amplitudes use for subtraction methods problematic 
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‣ 2loop splitting amplitudes violate strict collinear factorization, effect is antihermitian and hermitian

In summary (two-loops and more)

‣ effect survives at the level of (squared) splitting matrix

appear at N3LO  parton + parton → 3 partons (2 jet at LHC

‣Cancels at N3LO if only pure QCD (not in case of EW, finite width)

‣ For sure there is a contribution starting at N4LO even for pure QCD  

• splitting amplitudes use for subtraction methods problematic 

‣ in any case, strict factorization guarantees mass singularities cancellation but not the other way around

still mass factorization can be the result of cancellation between different configurations
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1 loop  parton parton → parton parton + 1 collinear parton + 1 soft parton

original 2 loop
same diagram with different cut
same color structure and kinematics
in the soft limit of real gluon

‣Many configurations contribute at N3LO,  this one has similar structure
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1 loop  parton parton → parton parton + 1 collinear parton + 1 soft parton

original 2 loop
same diagram with different cut
same color structure and kinematics
in the soft limit of real gluon

‣ soft and collinear factorization recently discussed 
Cieri, Dhani, Rodrigo (2024)

Proof of a cancellation requieres a dedicated computation! 

book-keeping of terms very complicated for subtraction method 

‣Many configurations contribute at N3LO,  this one has similar structure
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‣ Even if there is cancellation, effects remain in observables : super-leading logs in large rapidity gaps 
  generated by breaking of strict collinear factorization at higher orders

assuming that collinear radiation logs can be absorbed 
into parton distributions (evolution) expects 

but larger logs appear
starting at 4th order

Dasgupta, Salam (2001)
Forshaw, Kyrieleis, Seymour (2006)

Q

Q

Q0 < kTY
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‣ Even if there is cancellation, effects remain in observables : super-leading logs in large rapidity gaps 
  generated by breaking of strict collinear factorization at higher orders

assuming that collinear radiation logs can be absorbed 
into parton distributions (evolution) expects 

but larger logs appear
starting at 4th order

Dasgupta, Salam (2001)
Forshaw, Kyrieleis, Seymour (2006)

Q

Q

Q0 < kTY

‣ double Logs generated by exchange of Coulomb/Glauber gluons : how to reconcile this with the single 
logarithmic evolution implied by PDF factorization?

Becher, Hager, Jaskiewicz, Neubert, Schwienbacher (2024)

‣ Find intricate mechanism to cancel double log by Glauber gluons: 
  interplay of space-like collinear and soft gluon emission restores
  factorization for non-global large rapidly gap cross section (jet-veto)
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Conclusions
‣Strict collinear factorization is breaking in the SL region

‣1 loop effects are “imaginary” and disappear in cross-section 

‣2 loop effects include real contributions, requiere 5 QCD partons
vanish if pure QCD Born amplitude

‣3 loop effects are there : N4LO 

‣Even in that case, there are remnants of “partial” cancellation : super leading logs

‣There must be an intricate cancellation with collinear+soft to restore PDF factorization
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Without Factorization

With Factorization
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backup slides



Factorization 37

splitting amplitudes
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Altarelli-Parisi Splitting functions
in d-dimensions

with spin correlations 
(factorization is not complete at 
the squared matrix elements due to spin)

after average of polarizations of parton 
usual Splitting functions

a

ℳa1,a2,… (p1, p2, p3…)
2

≃
2

s12
4πμ2ϵαS

̂P (z; ϵ) ℳa,… (P, p3…)
2

Universal factorization

PDFs (parton model) factorization direct result
from collinear factorization (roughly speaking)
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‣Real and virtual contributions : separately divergent

1 loop

1 extra parton
IR in soft/collinear configurations

dimensional regularization 1

✏2

�1

(p� k)2
=

1

2 p · k =
1

2EqEg(1� cos ✓)

p kk

Z
dk

Z 1

0
dk

UV

IR

✏ = d� 4

+

Parton model with QCD corrections: problems…

soft divergences cancel but collinear divergence remains in partonic cross section…

factorization of mass singularities KLN theorem
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why color coherence in TL and DIS and NOT in PP ?

−
i
ϵ

π Tj ⋅ T2

the absorptive contribution when a slightly off-shell gluon (non-abelian Coulomb or 
Glauber gluon) is exchanged and depends in the “energy sign” (both initial or both 
final state) : causal origin!   t → ± ∞

Color coherence still valid in loops for TL, everything happens at , no distinction between large 
space and time

t → + ∞

Color coherence not valid in loops for SL, collinear process involves IS 
and FS , gauge theories generate interactions between  and  

 (distinction between large space and time)
t → − ∞
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Figure
2:

Generic
diagrams

describing
neutralHiggs-boson

pair
production

in
gluon–

gluon
collisions(φ,φi=

h,H
,A).

whereθisthescattering
anglein

thepartonicc.m.system
with

invariantmassQ,and

λ(x,y,z)=
(x−

y−
z)
2−

4yz.

(13)

Theintegration
limits

t̂±
=
−
1

2

[
Q
2−

m
2
1−

m
2
2∓
√λ(Q

2,m
2
1,m

2
2)
]

(14)

in
Eq.(11)correspond

tocosθ=
±1.Thescaleparameterµ

istherenormalization
scale.

ThecompletedependenceonthefermionmassesiscontainedinthefunctionsF△
,F

✷,and

G
✷.Thefullexpressionsoftheform

factorsF△
,F

✷,G
✷,includingtheexactdependence

on
thefermion

masses,can
befound

in
Ref.[10].

ThecouplingsC
△

and
C

✷

and
theform

factorsF△
,F

✷,G
✷

in
theheavy-quark

limit

aregiven
by:

(i)
SM

:
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M
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ŝ−
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2
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H
ΓH

,
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✷

=
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2
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−
2

3
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G
✷

→
0,

(15)

with
thetrilinearcoupling

λH
H

H
=

3M
2
H
/M

2
Z
.

(ii)
M

SSM
:

The
couplings

for
the

processes
gg

→
φ1φ2

are
generically

defined
as

(φ,φi
=

h,H
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where
φ

denotesthe
Higgsparticlesofthe

s-channelcontributions.
The

trilinear

couplingsλφ1φ2φ
and

thenormalized
Yukawacouplingsg

φ
t
can

befound
in

Ref.[10].

Theindividualexpressionsin
theheavy-quark

limitcan
besummarized

as:
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ŝ−
M

2
φ
+

iM
φΓφ

g
φ
t,

C
✷

=
g
φ1

t
g
φ2

t
,

(16)

where
φ

denotesthe
Higgsparticlesofthe

s-channelcontributions.
The

trilinear

couplingsλφ1φ2φ
and

thenormalized
Yukawacouplingsg

φ
t
can

befound
in

Ref.[10].

Theindividualexpressionsin
theheavy-quark

limitcan
besummarized

as:

7



Factorization 41

‣ given that the non-factorizable term appears in the single pole, there is a simple way to compute it
we know the IR structure of one and two-loop amplitudes

‣ Formulae is valid for both the original amplitude 
with n partons and the reduced with n-1

the IR divergente part is

just apply collinear limit

+ factorizable terms

n-1 n n-1

very useful for 2-loops!
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‣ look only at the IR structure (poles) at the two loop order

‣ Formulae is valid for both the original amplitude with n partons and the reduced with n-1 and we 
know exactly the one-loop splitting amplitude SP

(1,R)

just apply collinear limit
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‣The two-loop splitting matrix can be decomposed as in terms of the known 1-loop results…

finite (not computed here)1 loop, both
break fact.

2 loop

several terms violating 
factorization involving two-
parton color correlations 

 from 1-loopTi ⋅ Tj

+ new 2-loop operator
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‣The two-loop splitting matrix can be decomposed as in terms of the known 1-loop results…

finite (not computed here)1 loop, both
break fact.

2 loop

several terms violating 
factorization involving two-
parton color correlations 

 from 1-loopTi ⋅ Tj

+ new 2-loop operator

‣New structure appears: involves three-part color correlations (double and single poles)

cancels for TL (z>0)

requires SL + non-collinear 
parton in initial and final 
state : cancels for DIS 
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 typically contributes to the SL collinear limit in hadron–hadron hard-scattering processes 
with at least 4 QCD partons 
Δ̃ (2)

C (ϵ)

‣ Factorization breaking depends also on the momenta (not only on sign of the energies as 1-loop)

‣Contains both hermitian (depends on momenta) and non-hermitian contributions (only on signs)

1||2

‣ Finite part (not-computed) also contains factorization breaking terms with same color correlations
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‣Now we take the square and see what remains!
iteration of 1-loop, factorized (antihermitian)

finite, not computed but 
factorization breaking

divergent, factorization 
breaking (from hermitian part) 

‣Non abelian, only for SL, vanishing in DIS

‣ Because of color conservation it requires 5 QCD partons: 2 collinear, 1 extra incoming, 2 extra final
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Simplest case: only 3 QCD partons (color sum closed) 

−
CA

ϵ
log(z2) + ⋯

−
CA

ϵ [log( |z2 | ) + iπ] + ⋯

−
CA

ϵ [log( |z2 | ) − iπ] + ⋯

just pole structure
differ only in imaginary part 
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‣ in any case, strict factorization guarantees mass singularities cancellation but not the other way around

still mass factorization can be the result of cancellation between different configurations

‣ Back to the simplest example  at N3LOpp → 2jet parton parton → parton parton at LO

‣Many configurations contribute, some of them are

3 loop  parton parton → parton parton
2 loop  parton parton → parton parton + soft parton

“wrong” kinematics can cancel
 only  contributionsδ(1 − z)

1 loop  parton parton → parton parton + 2 collinear partons triple collinear, either factorizes or
involves two color correlations 

Born parton parton → parton parton + 3 collinear partons quadruple collinear, Born level.
strict factorization

1 loop  parton parton → parton parton + 1 collinear parton + 1 soft parton
this one could make it!


