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Theoretical predictions with hadrons in the initial state

Si(x1,Q2)

proton

Collinear factorization theorem:

do

1 1
— . 2) 2y o [ T
aPaV dor E : /T da:1/T dza fi (21, Q%) f; (22, Q )Czj($1$27yzpt7---1013104)

Q* dQQf'L x, Q Z/ — by z O‘S(Q )5 2))fj(§,Q2) < DGLAP evolution

o coefficient functions C;(z, y, pe, ..., as) (observable-dependent, perturbative)

o splitting functions Pj;(z, as, @) (universal, perturbative)

e proton’s parton distribution functions (PDFs) f;(x, Q%) (universal, nonperturbative)

Proton’s PDFs f;(x,Q3) at a reference scale Qo are fitted from data
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Theoretical predictions with leptons in the initial state

Cij(z,as)

Si(x:,Q2) i(x2,Q2)
p: z X1P1 Xz2P2 ﬁ - Pz
on parton i parton j muon
. . 2 ,
Collinear factorization theorem: T = QS y=Y — 1log o

do

1 1
W :Z/T da?l/T dz2 fi($17Q2)fj(3?27Q2) Cij(

Q* dQQf'L x, Q Z/ Py Z O‘S(Q )s 2))fj(§,Q2) < DGLAP evolution

s Ys Pty ey Osy
T1To

o coefficient functions Cy;(z, y, pt, ..., as) (observable-dependent, perturbative)
o splitting functions Pj;(z, as, @) (universal, perturbative)
@ muon's parton distribution functions (PDFs) f;(z, Q%) (universal, perturbative)

Muon's PDFs fi(ac,mi) can be computed perturbatively!
It describes (and resums) initial-state radiation in a convenient framework
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Muon's initial-state radiation

In the MS scheme, the muon's PDFs are

ful@,Q*) =6(1 — =)

f'y(msQ2) =0
.fi(wan):O i=ﬁ’€_’€+aq7<7,g
U
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Muon's initial-state radiation

In the MS scheme, the muon's PDFs are [Frixione 1909.03886]
a |14 z2 Q?
2y =46(1— — 1 -1
fu(z, Q%) ( $)+2n[1—w<ogmﬁ(l—m)2 N

14 (1—x)? 2
fv(msQ2)=0+ o1+ = (long%ﬁ_l)

27 x -

fi(w7Q2)=0+0 i=ﬁ,€_,€+aq7(7’g

u f
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Muon's initial-state radiation

In the MS scheme, the muon's PDFs are [Frixione 1909.03886]
a |14 z2 Q?
2y =46(1— — 1 -1
fu(z, Q%) ( a:)+2ﬂ_[1_w<ogmi(1_m)2 ++

fr@Q?) =04 22T A=) <1og sz —1) ..

2m T i:ﬁ
fi(waQ2)=0+0+--- i:ﬁ,e_,e+,q,¢7,g

Now computed also to NNLO in QED [Stahlhofen 2508.16964] [Schnubel,Szafron 2509.09618]

-<
L d-’::'\-\_

These represent the initial condition (typically at Q@ ~ m,,) for the evolution
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Evolution from the initial scale

DGLAP evolution

Q* s e Qz)—Z/ P @), 000 1522

Splitting functions P;;(z, as(Q?), a(Q?)) known up to
o NNLO (a?) and partial N3LO (a?) in QCD
o NLO (a2) in QED
o NLO (asa) in mixed QED-QCD

Evolution starts from the muon scale (m,, ~ 106MeV)

100 MeV 1.8 GeV
ms mq
1l (- I | -
1) | i |
my me mp m
106 MeV 1.5 GeV 4.5 GeV 173 GeV
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The strong coupling s at low scales

Evolution from Q ~ 100MeV to Q ~ 1GeV is in a non-perturbative regime of QCD

How to deal with this problem?

Step 1:
Extend the running of a5 to lower scales using known analytic extensions which add
a non-perturbative contribution

The simplest realization is

) 1 1] 1 1
as(Q%) = e [ + ]
A2

2 2 2
Bo log Bo | log % — %
which removes the Landau pole, and gives a monotonic behaviour which tends to

Cts(O) = 1//60

Taking into account some constraints from event shapes and structure functions,
one can modify the non-perturbative term to obtain a form which better agrees with
data [Webber 9805484]

This can be extended to higher order running, including flavour thresholds, and
adding variations as a measure of the uncertainty [Frixione, Stagnitto 2309.07516]
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The strong coupling s at low scales

Os

0 [ 1 | 1 1
0.01 0.1 1 10 100
p (GeV) [Frixione,Stagnitto 2309.07516]

Step 2:
Use perturbative computations with these values of a5 (and cross fingers!)

Note that o, reaches values as high as 0.7-0.9...

A rather different approach has been adopted in [Garosi,Marzocca, Trifinopoulos 2303.16964] and
[Han,Ma,Xie 2103.09844], where QCD is switched off below some scale, introducing an IR sensitivity
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The PDFs for a muon collider

After evolving the muon’s PDFs as

described, using LO QED+QCD N g
evolution, this plot is obtained at 100 £ ‘é,: """ o E
Q = 30GeV T b
10 <

The dominant PDFs at medium/small x RN 1
are the and the gluon.

0.1 A

0.01

N\
-4 35 -3 25 -2 15 -1 -05 O
log10(2)

[Frixione,Stagnitto 2309.07516]

A precise determination of the gluon PDF in the muon requires
the resummation of small-x logarithms

[MB, Frixione,Stagnitto (work in progress)]
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Kinematic reach of a 20 TeV muon collider

Typical values of @ contributing at different invariant masses and rapidities

M
0.2 2. 20. 200. 2000. 20000.

1.x10710  1.x108  1.x10°® 0.0001 0.01 1

T

For example, Higgs production at a 20 TeV muon collider needs x as small as
x ~ 4-107%, with typical values in the range * ~ 1074 = 103
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Small-z logarithms in gluon-gluon splitting function

P,,(x, o) splitting function
ag =020, ng=4, QyMS

0.4 T T T T T T 7
"""" LO I
0.35 - - - - NLO i
—. = NNLO f
03+ i
!
R 0.25 - t[_
X
B 02 b F
ﬂ; ______________________ ':;"_'.;...,/{'
0.15 [ T i
01F =T i
0.05 - .I,_,-"" 1
0 - 1 1 1 1 I |
107 10 10° 10* 10% 102 10! 1
X

Logarithms start to grow for z < 10~2 — perturbative instability
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Small-z logarithms in gluon-gluon splitting function

P,,(x, o) splitting function
ag =020, ng=4, QyMS

0.4 T T T T T T
------- LO
035 - - - NLO —
— = NNLO
0.3 ~——— NNLO+NLLx b
0.25 E
=
m%% 0.2 B
X
0.15 i
0.1 E
0.05 i

0 v 1 1 1 1 1 1
107 10 10° 10* 10% 102 10! 1

X

Logarithms start to grow for z < 10~2 — perturbative instability

Resummation obtained with my HELL public code  [MB,Marzani,Peraro EPJC 76(2016)11]
[MB,Marzani,Muselli JHEP 12(2017)117] [MB,Marzani JHEP 06(2018)145]

following works of [Altarelli,Ball,Forte] [Catani,Ciafaloni,Colferai,Hautmann,Salam,Stasto] [Thorne, White]
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Small-z resummation at large a

Problem: HELL 3.0 can only reach values of o as high as a; ~ 0.3
But now we need to reach g ~ 0.8 !!

First part of the solution:
Improving various parts of the code, both numerical and conceptual aspects

But there still is a problem:
One ingredient, 744, is not really resummed to all orders. The first coefficients of its
expansion have been computed long ago [Catani,Hautmann 9405388]

as 5a, 14 /as\? 82 as\3

’qu(asaN) = 37TR{1+§F+?<F) + |:871+2<3] (F)
+{122 254‘}(&5)4 [146+14C +2C}(a5)5+}
203 76 C\N) Tlret g2 (wv) T

More coefficients have been later computed numerically [Altarelli,Ball,Forte 0802.0032]

The HELL implementation is based on a finite number of these coefficients — so it's
not really all-order @
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The resummation of 744

“Yqg(rs, IN') can be extracted from the equation for the factorization of the quark

Green function [Catani,Hautmann 9405388]

G«S(;) (s, Ny €) = Gog(as, N, €) Tgg(cus, N, €) + Tgg(cus, N, €)
with (S, = e~ =¥ /ar)

1 (%% do
I'yg(as, N,€) = exp f/ — Ygg(a, N)
€ Jo (83
asSe doy
Lyo(as, Ny€) = ;/ 'yqq(a,N)I‘gg(a/S )
0

E () £ e

j=—k

G (s Nye) =

where dy; are complicated coefficients known recursively.

Requiring that Ggg (s, IN, €) is finite for € — 0 it is possible to solve the equation
order by order both for G4 (s, IN, €) and for ~,, (o, V).

But this is an order-by-order extraction, not a resummation!
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All-order expression for 7,4

The rational part of Yqg Was actually known to all orders [Catani,Hautmann 9405388]
. ( N) = 715 3 —_— —I— —— | + term ith C
Qg = ex ex erms wi
qg 89 3 R { P p 3N k
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All-order expression for 7,4

T'he rational part of Yqg Was actually known to all orders [Catani,Hautmann 9405388]
. ( N) 3 —_— —|— —— | + term ith ¢
Qg = ex ex erms wi
W 3 4 P P 3N k

We have been able to find a complete closed form for ~,,

Yag(ats, N) = %TR hag(gg(0ts;, IN))
hgg (M) = M [3 exp(zMF(M)) + exp(%MF(M))}

F (M) = a function that you will see once we will publish our paper ©)
X(M) = 2¢(1) — (M) — (1 — M) (BFKL kernel)

We also have analytic results for the coefficients, and a closed all-order form for G4
at O(e°)
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How does the resummed P, look like

n; =3, alphas =0.100
0.007 T T T T T T
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Previous HELL 3.0 implementation is good at small a, but it gets worse and worse
as «g increases
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How does the resummed P, look like

ng =3, alphas =0.200
0.09 T T T T T T
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X

Previous HELL 3.0 implementation is good at small o, but it gets worse and worse
as «g increases
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How does the resummed P, look like

n¢ =3, alphas = 0.300
0.45 T T T T T T

new qug _—
0.4~ HELL3 Pgg — -~ B

035 b
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025 | : ‘\a(ﬂ ]

o
-
2
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Previous HELL 3.0 implementation is good at small a, but it gets worse and worse
as «g increases
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How does the resummed P, look like

n; =3, alphas = 0.350

0.4 T T T T T T

x AP

03} , i

1

.4 l 1 1 1 1 1 1 1

108 107 106 108 104 1073 1072 1071 1040
X

Previous HELL 3.0 implementation is good at small a, but it gets worse and worse
as «g increases
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Effect of small-z resummation on muon’s PDFs

Preliminary results on the effect of small-& resummation on the gluon PDF in the
muon (no resummed matching conditions so far) [MB,Frixione Stagnitto (work in progress)]

1.8 T T T T
QCD LO
17 F QCD NLO —
QCD NNLO ——

16 QCD NNLO+NLL ——

gluon in muon PDF
Q=10 GeV

8 “a(\J

15

1.4

1.3

ratio to QCD LO

1.2

b Q(e

1

09 1 1 1 1
-6 5 -4 3 2 -1
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Do we need to worry about small-z logs in QED evolution?

There are small-z logs in QED splitting functions, appearing already at O(«) in Py
Are they enhanced?

Yes, but much less than in QCD

QCD: Single-log enhancement, due to QED: Half-log enhancement (one
non-abelian nature of strong extra power of the log every two
interactions powers of «), due to the abelian

nature of EM interactions

2000 000

Given also that o < a, their resummation is definitely not needed
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Conclusions

@ ISR for a muon collider can be efficiently described through PDFs in a collinear
factorisation framework

o These PDFs are perturbative, and they are computed from an initial condition
at the muon scale and evolved upwards with DGLAP

@ In doing so, evolution passes through low scales where QCD is non-perturbative
@ Analytic coupling allows to describe this region ...

o ... but still a5 gets large (a5 ~ 0.8) thus requiring a good control on
perturbative ingredients

o At small « the photon and gluon PDFs dominate, calling for the resummation
of small-x logarithms

o New analytic all-order results for the resummation of 44 ©
o Now resummed results with HELL (new v4) can reach high values of a

o Sizable impact on muon PDFs
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Low z at HERA

Deep-inelastic scattering (DIS) data from HERA extend down to £ ~ 3 X 10~% in

the “perturbative region” Q

2 > 2GeV?

Tension between HERA data at low @2 and low x with fixed-order theory

o

Q*=2.7GeV? Q*=35GeV? Q? =45 GeV?
B, B N
Q%.'
| . |
- ' ....... "«_ -
L \HHUJ \HHUJJ HH"M \HHUJ \HHUJJ HHHH‘ \HHUJ LI HHHH‘ \HHUJ L
o om0 P a e o

Also leads to a deterioration
when including low-Q? data

Marco Bonvini

of the x? of PDF fits

A FONLL-BNLO,F, O(c) A RTOPTNLO,F, O(c)

[0 FONLL-C NNLO,F, O(c?) 8 RTOPTNNLO,F, O(c) ]
| I I 1 I

5 10 15 202 252
Quin/GeV'
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The first PDF fits with small-z resummation

Small-z resummation available from the HELL code

NNPDF3.1sx [1710.05935] xFitter [1802.00064, see also 1902.11125]
NeuralNet parametrization of PDFs polynomial paramterization
MonteCarlo uncertainty Hessian uncertainty

charm PDF is fitted charm PDF perturbatively generated
DIS+tevatron+LHC (~ 4000 datapoints) only HERA data (~ 1200 datapoints)
NLO, NLO+NLLx, NNLO, NNLO+NLLx NNLO, NNLO+NLLx

The quality of the fit improves substantially including small-& resummation

NNPDF3.1sx, HERA inclusive structure functions

2 LI I I I B
X /Ndat NNLO NNLO—I—NLLw 1.14; --%-- NNLO NNLaq,_,?ll!'[yddig,;adlesdl;mole 7:
xFitter 1.23 1.17 112]] . NNLOSNLL ]
NNPDF3.1sx  1.130 1.100 e - ]

smaller! S P “ .
® 1.06:— ."".'" {
[ A~ ]
LY., * ¥ N * i 4 ]
Stable upon inclusion of low-z data — s M .
C Ball et al 17, xFitter 18 |
B T S ¥ AT -

4 36 38 4 42 4.4 4.6 4.8 52
mi
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Impact of small-z resummation on PDFs: the gluon

NNPDF31sx global, Q = 1.64 GeV

10
8\\
6

xg(x, @)
IS

Baeea NNLO

NNLO+NLLx

-2

107 10°° 10-*

9(x, Q%) / g(x, Q)[ref]

Dramatic effect of resummation on the gluon

NNPDF31sx global, Q = 100 GeV

~
—~ \i\
N

0.8
e

NNLO
NNLO+NLLx

0.7 L
107 1072

x

10°° 1074 1072

PDF at 2 <1073

10~

1

Significant impact expected for LHC and future high-energy collider phenomenology

At colliders min = Q*/s — small-z resummation more relevant at low invariant
masses and at higher collider energies
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Impact of small-z resummation at LHC and future colliders

g9 — H inclusive cross section ggH production cross section - effect of small-x resummation
— -
[MB EPJC 78(2018)10] 11t th e my =125 Gely
NALO+LLx, res PDFs FoPRTTH
1.08 [
g f.o. PDFs: NNPDF31sx_nnlo_as_0118
res PDFs: NNPDF31sx_nnlonlix_as_0118
1.06 [ 1
t mg band: PDF uncertainty
z
”””” H o 104 1
o
®
102 | o E
o
B 000
;
1
0.98 1
~ © o o ~ s
e ez & 8
Vs [TeV] -

ggH cross section at FCC-hh ~ 10% larger than fixed order!
At LHC 4+1% effect

sl —

Larger effect expected at differential level in certain .
kinematic regions e

Preliminary parton-level results for fully differential
Higgs production [Bernardini,MB,Silvetti (work in progress)]
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Fully differential small-x resummation: Heavy-quark pair production at LHC

Fully differential heavy-quark pair production at small x [MB,Silvetti EPJC 83(2023)4]

Heavy quark pair production at LHC 13 TeV, using NNPDF31sx

1x108 T
B S m=4.6GeV
. w ~——— LO+LL with FO PDFs Y=0
g @ —— NLO+LL with FO PDFs
g o’
o
g 99010000000 F——e—— §
3
. B 3
g
M ‘g 1xa0®
g Q
100000 L
1 10

pt [GeV]

At large p; a larger perturbative instability, cured by resummation of small-z logs

. - . 2 .
Induced by kinematic constraint z e3¥ < — 7 in C(z,y,p:,s)
1+ 5=
bb and c€ sensitive to very small & — can constrain PDFs! [Gauld,Rojo 1610.09373]
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Heavy-quark pair production at LHC

Pt = 2 GeV

Q2 doldY/dp? [pb]

Q2 doldY/dp? [pb]

6x107

5x107

ax107

3x107

2x107

1x107

6x107

5x107

4x107

3x107

2x107

1x107

Heavy quark pair production at LHC 13 TeV, using NNPDF31sx

m=456GeV
pi=2GeV

- 1o

--- NLO
LO=LL with FO PDFs

—— NLO+LL with FO PDFs
NLO+LL with FO PDFs (multiplicative matching)

Heavy quark pair production at LHC 13 TeV, using NNPDF31sx

S m=4.6GeV
L LO+LL with FO PDFs Pi=2GeV
—— NLO+LL with FO PDFs
e scale variation ot
2 4 6

Q2 do/dY/dp? [pb)

Q2 do/dY/dp? [pb)
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pr = 20 GeV

Heavy quark pair production at LHC 13 TeV, using NNPDF31sx

o -
RO m= 4.GGGev
—— LOsLL with FO PDFs P=20GeV
—— NLO+LL with FO PDFs

NLO+LL with FO PDFs (multplicative matching)

Heavy quark pair production at LHC 13 TeV, using NNPDF31sx

- h?o m=4.6GeV
~— LO+LL with FO PDFs P =20 GeV
— NLO+LL with FO PDFs
W scale variation

-6 -4 -2 0 2 4 6



How small can x be at pp colliders?

y=Y — 3log 2L
-
—_— d dzxz fi(w1, ) i\ Y Pty s Qs
dQ2dept Jz;q/ z1/ 2 fi(z1,Q%) fj(z2,Q°%) C g<zm Y, Dty )
Q2
The longitudinal variables =1, z2, z = can get as small as 7 = —
T1X2 S
T | Higgs | low mass Drell-Yan |  bb | cc
LHC (13 TeV) 10* ~107° ~107% | ~1077
FCC-hh (100 TeV) | 107° ~ 1078 ~107% | ~107°

FCC-hh probes two orders of magnitude smaller =

. . 1 . .
High-energy (small-z) logarithms log — become more relevant at low invariant
x
masses and at higher collider energies
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Parton luminosities at LHC

g lumi at Ecm = 13 TeV. qg lumi at Ecm = 13 TeV

13 T T T 13 T T
NNLO PDFs NNLO PDFs
NNLO+NLLx PDFs 12k \ NNLO+NLLx PDFs
o Q
= =
g g
gg: % qag: % — =
° °
= =
g g
08
07 L L L 07 . . .
10t 102 10° 10t 102 10°
M [GeV] M [GeV]

Difference more pronounced in differential distributions at large rapidity

gg lumi at Ecm = 13 TeV for M = 30 GeV/

qg lumi at Ecm = 13 TeV for M = 30 GeV'
16 T T

NNLO PDFs

NNLO PDFs
NNLO+NLLx PDFs

NNLO+NLLx PDFs

gg: qg:

ratio to NNLO
ratio to NNLO
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Parton luminosities at FCC-hh

gg lumi at Ecm = 100 TeV

T T T T

qg lumi at Ecm = 100 TeV

\ NNLO PDFs
\{\INLo»fNLLx PDFs —

\

\

gg: qg:

ratio to NNLO

0.9

ratio to NNLO

0.8

0.7

~ NNLO+NLLxPDFs
AN

NNLO PDFs

10!

102 10 10t
M [GeV]

Large effects also at the EW scale, especially at large rapidities

gg lumi at Ecm = 100 TeV for M = 100 GeV/

10°
M [GeV]

qg lumi at Ecm = 100 TeV for M = 100 GeV/

1.6 . . . . . . 16 . . . . .
NNLO PDFs NNLO PDFs
14 NNLO+NLLx PDFs NNLO+NLLx PDFs
0 9
%‘ 12 %’
g8 ¢ qg: =
21 £
g g
08
06
-6 -4 -2 0 2 4 6
Y
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Why is the effect of resummation mostly driven by the PDFs?

Let’s consider again the collinear factorization formula

= 1% o () )

The small z integration region, where logs in C' are large, is weighted by the PDFs

at large momentum fractions z =

Tetd

Since PDFs die fast at large x, especially the gluon, the small-z region is suppressed!

Rather, the large z region is enhanced by the gluon-gluon luminosity
In that region, the difference between fixed-order and resummed PDFs is large

x=1/z
10210°% 410" 210 10
300 T T
= * NNPDF31sx_nnlo_as_0118
~— NNPDF31sx_nnlonlix_as_0118
250
w 200
3
g
LHCI E’ 150 [ LHC
=4 Vs =13 TeV
N my =125 GeV
£ 100 [ H 1
P =myl2
50
gg luminosity
0 . . . .
0 0.2 0.4 0.6 0.8

FCC:

X=T/z
10 105 410s 210°
4500 T
N NNPDF31sx nnlo_as_0118
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Higgs production: parton-level results
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Parton luminosities for gg H
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Towards N3LO evolution

Recent impressive progress towards N3LO splitting functions
[Davies,Vogt,Ruijl,Ueda,Vermaseren 1610.07477] [Moch,Ruijl,Ueda,Vermaseren,Vogt 1707.08315]

At small x, approximate predictions from NLLx resummation  [MB,Marzani 1805.06460]
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Large uncertainties from subleading logs

N3LO splitting functions are much more unstable at small z — need resummation!
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http://arxiv.org/abs/1610.07477
http://arxiv.org/abs/1707.08315
http://arxiv.org/abs/1805.06460

Fit results: description of the HERA data
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The better description mostly comes from a larger resummed F7,
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Matching conditions at the charm threshold

Evolution and matching at NNLO, x=10"* 25 Evolution and matching at NNLO + NLLx, x=10"*
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The perturbatively generated charm PDF is much less dependent on the matching
scale when small-z resummation is included!
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