Small-x resummation for muon colliders

Marco Bonvini

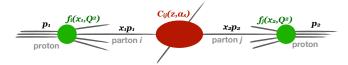
INFN, Sezione di Roma

Resummation, Evolution, Factorization (REF 2025) 16 Oct 2025, Milano, Italy

Based on a work in progress with Stefano Frixione and Giovanni Stagnitto

Sezione di ROMA

Theoretical predictions with hadrons in the initial state



Collinear factorization theorem:

$$\tau = \frac{Q^2}{s} \quad y = Y - \frac{1}{2} \log \frac{x_1}{x_2}$$

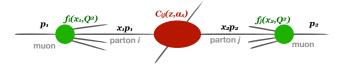
$$\frac{d\sigma}{dQ^2dYdp_t...} = \sum_{i,j} \int_{\tau}^1 dx_1 \int_{\tau}^1 dx_2 \, f_i\!\left(x_1,Q^2\right) f_j\!\left(x_2,Q^2\right) C_{ij}\!\left(\frac{\tau}{x_1x_2},y,p_t,...,\alpha_s,\alpha\right)$$

$$Q^2 \frac{d}{dQ^2} f_i(x,Q^2) = \sum_i \int_x^1 \frac{dz}{z} \frac{P_{ij} \left(z, \alpha_{\mathcal{S}}(Q^2), \alpha(Q^2)\right) f_j \left(\frac{x}{z}, Q^2\right) \\ \qquad \leftarrow \text{DGLAP evolution}$$

- ullet coefficient functions $C_{ij}(x,y,p_t,...,lpha_s)$ (observable-dependent, perturbative)
- ullet splitting functions $P_{ij}(x,lpha_s,lpha)$ (universal, perturbative)
- ullet proton's parton distribution functions (PDFs) $f_i(x,Q^2)$ (universal, nonperturbative)

Proton's PDFs $f_i(x, Q_0^2)$ at a reference scale Q_0 are fitted from data

Theoretical predictions with leptons in the initial state



Collinear factorization theorem:

$$\tau = \frac{Q^2}{s} \quad y = Y - \frac{1}{2} \log \frac{x_1}{x_2}$$

$$\frac{d\sigma}{dQ^2dYdp_t...} = \sum_{i,j} \int_{\tau}^1 dx_1 \int_{\tau}^1 dx_2 \, f_i\!\left(x_1,Q^2\right) f_j\!\left(x_2,Q^2\right) C_{ij}\!\left(\frac{\tau}{x_1x_2},y,p_t,...,\alpha_s,\alpha\right)$$

$$Q^2 \frac{d}{dQ^2} f_i(x,Q^2) = \sum_i \int_x^1 \frac{dz}{z} \frac{P_{ij} \left(z, \alpha_{\mathcal{S}}(Q^2), \alpha(Q^2)\right) f_j \left(\frac{x}{z}, Q^2\right) \\ \qquad \leftarrow \mathsf{DGLAP} \ \ \mathsf{evolution}$$

- ullet coefficient functions $C_{ij}(x,y,p_t,...,lpha_s)$ (observable-dependent, perturbative)
- splitting functions $P_{ij}(x, \alpha_s, \alpha)$ (universal, perturbative)
- muon's parton distribution functions (PDFs) $f_i(x,Q^2)$ (universal, perturbative)

Muon's PDFs $f_i(x, m_\mu^2)$ can be computed perturbatively! It describes (and resums) initial-state radiation in a convenient framework

Muon's initial-state radiation

In the $\overline{\text{MS}}$ scheme, the muon's PDFs are

$$f_{\mu}(x,Q^2) = \delta(1-x)$$

$$f_{\gamma}(x,Q^2) = 0$$

$$f_i(x, Q^2) = 0$$

$$i = \bar{\mu}, e^-, e^+, q, \bar{q}, g$$

Muon's initial-state radiation

In the $\overline{\text{MS}}$ scheme, the muon's PDFs are

[Frixione 1909.03886]

$$\begin{split} f_{\mu}(x,Q^2) &= \delta(1-x) + \frac{\alpha}{2\pi} \left[\frac{1+x^2}{1-x} \left(\log \frac{Q^2}{m_{\mu}^2 (1-x)^2} - 1 \right) \right]_+ \\ f_{\gamma}(x,Q^2) &= 0 + \frac{\alpha}{2\pi} \frac{1+(1-x)^2}{x} \left(\log \frac{Q^2}{m_{\mu}^2 x^2} - 1 \right) \\ f_i(x,Q^2) &= 0 + 0 \end{split}$$

$$i = \bar{\mu}, e^-, e^+, q, \bar{q}, g$$

Muon's initial-state radiation

In the $\overline{\text{MS}}$ scheme, the muon's PDFs are

[Frixione 1909.03886]

$$\begin{split} f_{\mu}(x,Q^2) &= \delta(1-x) + \frac{\alpha}{2\pi} \left[\frac{1+x^2}{1-x} \left(\log \frac{Q^2}{m_{\mu}^2 (1-x)^2} - 1 \right) \right]_+ + \dots \\ f_{\gamma}(x,Q^2) &= 0 + \frac{\alpha}{2\pi} \frac{1+(1-x)^2}{x} \left(\log \frac{Q^2}{m_{\mu}^2 x^2} - 1 \right) + \dots \\ f_{i}(x,Q^2) &= 0 + 0 + \dots \\ &\qquad \qquad i = \bar{\mu}, e^-, e^+, q, \bar{q}, g \end{split}$$

Now computed also to NNLO in QED [Stahlhofen 2508.16964] [Schnubel, Szafron 2509.09618]

These represent the initial condition (typically at $Q\sim m_{\mu}$) for the evolution

Evolution from the initial scale

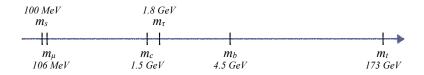
DGLAP evolution

$$Q^2 \frac{d}{dQ^2} f_i(x, Q^2) = \sum_j \int_x^1 \frac{dz}{z} P_{ij}(z, \alpha_s(Q^2), \alpha(Q^2)) f_j\left(\frac{x}{z}, Q^2\right)$$

Splitting functions $P_{ij}(z, lpha_s(Q^2), lpha(Q^2))$ known up to

- \bullet NNLO (α_s^3) and partial N³LO (α_s^4) in QCD
- NLO (α^2) in QED
- ullet NLO $(lpha_slpha)$ in mixed QED-QCD

Evolution starts from the muon scale $(m_{\mu} \sim 106 {
m MeV})$



The strong coupling α_s at low scales

Evolution from $Q\sim 100 {
m MeV}$ to $Q\sim 1 {
m GeV}$ is in a non-perturbative regime of QCD How to deal with this problem?

Step 1:

Extend the running of α_s to lower scales using known analytic extensions which add a non-perturbative contribution

The simplest realization is

$$\alpha_s(Q^2) = \frac{1}{\beta_0 \log \frac{Q^2}{\Lambda^2}} \quad \rightarrow \quad \frac{1}{\beta_0} \left[\frac{1}{\log \frac{Q^2}{\Lambda^2}} + \frac{1}{1 - \frac{Q^2}{\Lambda^2}} \right]$$

which removes the Landau pole, and gives a monotonic behaviour which tends to $lpha_s(0)=1/eta_0$

Taking into account some constraints from event shapes and structure functions, one can modify the non-perturbative term to obtain a form which better agrees with data

[Webber 9805484]

This can be extended to higher order running, including flavour thresholds, and adding variations as a measure of the uncertainty [Frixione, Stagnitto 2309.07516]

The strong coupling α_s at low scales



Step 2: Use perturbative computations with these values of α_s (and cross fingers!)

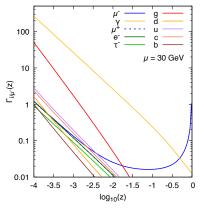
Note that α_s reaches values as high as 0.7-0.9...

A rather different approach has been adopted in [Garosi,Marzocca,Trifinopoulos 2303.16964] and [Han,Ma,Xie 2103.09844], where QCD is switched off below some scale, introducing an IR sensitivity

The PDFs for a muon collider

After evolving the muon's PDFs as described, using LO QED+QCD evolution, this plot is obtained at $Q=30{
m GeV}$

The dominant PDFs at medium/small \boldsymbol{x} are the photon and the gluon.



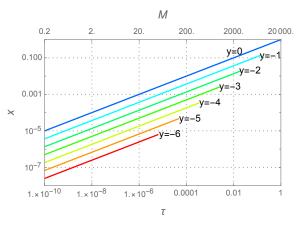
[Frixione, Stagnitto 2309.07516]

A precise determination of the gluon PDF in the muon requires the resummation of small-x logarithms

[MB,Frixione,Stagnitto (work in progress)]

Kinematic reach of a 20 TeV muon collider

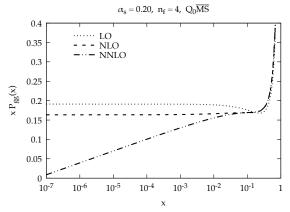
Typical values of x contributing at different invariant masses and rapidities



For example, Higgs production at a 20 TeV muon collider needs x as small as $x \sim 4 \cdot 10^{-5}$, with typical values in the range $x \sim 10^{-4} \div 10^{-3}$

Small-x logarithms in gluon-gluon splitting function

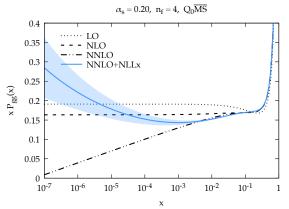
$P_{gg}(x, \alpha_s)$ splitting function



Logarithms start to grow for $x \lesssim 10^{-2} o { t perturbative}$ instability

Small-x logarithms in gluon-gluon splitting function

 $P_{qq}(x,\alpha_s)$ splitting function



Logarithms start to grow for $x \lesssim 10^{-2} o \mathsf{perturbative}$ instability

Resummation obtained with my HELL public code [MB,Marzani,Peraro EPJC 76(2016)11] [MB,Marzani,Muselli JHEP 12(2017)117] [MB,Marzani JHEP 06(2018)145]

following works of [Altarelli,Ball,Forte] [Catani,Ciafaloni,Colferai,Hautmann,Salam,Stasto] [Thorne,White]

Small-x resummation at large α_s

Problem: HELL 3.0 can only reach values of α_s as high as $\alpha_s\sim 0.3$ But now we need to reach $\alpha_s\sim 0.8$!!

First part of the solution:

Improving various parts of the code, both numerical and conceptual aspects

But there still is a problem:

One ingredient, γ_{qg} , is not really resummed to all orders. The first coefficients of its expansion have been computed long ago [Catani, Hautmann 9405388]

$$\begin{split} \gamma_{qg}(\alpha_s,N) &= \frac{\alpha_s}{3\pi} T_R \bigg\{ 1 + \frac{5}{3} \frac{\bar{\alpha}_s}{N} + \frac{14}{9} \bigg(\frac{\bar{\alpha}_s}{N} \bigg)^2 + \bigg[\frac{82}{81} + 2\,\zeta_3 \bigg] \bigg(\frac{\bar{\alpha}_s}{N} \bigg)^3 \\ &+ \bigg[\frac{122}{243} + \frac{25}{6}\,\zeta_3 \bigg] \bigg(\frac{\bar{\alpha}_s}{N} \bigg)^4 + \bigg[\frac{146}{729} + \frac{14}{3}\,\zeta_3 + 2\,\zeta_5 \bigg] \bigg(\frac{\bar{\alpha}_s}{N} \bigg)^5 + \ldots \bigg\} \end{split}$$

More coefficients have been later computed numerically [Altarelli,Ball,Forte 0802.0032]

The HELL implementation is based on a finite number of these coefficients \rightarrow so it's not really all-order $\stackrel{\hookleftarrow}{\bigcirc}$

The resummation of γ_{aa}

 $\gamma_{qg}(\alpha_s,N)$ can be extracted from the equation for the factorization of the quark Green function [Catani,Hautmann 9405388]

$$G_{qg}^{(0)}(\alpha_s,N,\epsilon) = G_{qg}(\alpha_s,N,\epsilon) \Gamma_{gg}(\alpha_s,N,\epsilon) + \Gamma_{qg}(\alpha_s,N,\epsilon)$$

with $(S_{\epsilon} = e^{-\epsilon \psi(1)}/4\pi)$

$$egin{aligned} \Gamma_{gg}(lpha_s,N,\epsilon) &= \expigg(rac{1}{\epsilon}\int_0^{lpha_s S_\epsilon}rac{dlpha}{lpha}\,\gamma_{gg}(lpha,N)igg) \ \Gamma_{qg}(lpha_s,N,\epsilon) &= rac{1}{\epsilon}\int_0^{lpha_s S_\epsilon}rac{dlpha}{lpha}\,\gamma_{qg}(lpha,N)\Gamma_{gg}(lpha/S_\epsilon) \ G_{qg}^{(0)}(lpha_s,N,\epsilon) &= rac{lpha_s S_\epsilon}{3\pi\epsilon}T_R\sum_{k=0}^\inftyigg(rac{arlpha_s S_\epsilon}{N}igg)^k\sum_{i=-k}^\infty d_{kj}\epsilon^j \end{aligned}$$

where d_{kj} are complicated coefficients known recursively.

Requiring that $G_{qg}(\alpha_s, N, \epsilon)$ is finite for $\epsilon \to 0$ it is possible to solve the equation order by order both for $G_{qg}(\alpha_s, N, \epsilon)$ and for $\gamma_{qg}(\alpha_s, N)$.

But this is an order-by-order extraction, not a resummation!

All-order expression for γ_{qg}

The rational part of γ_{qg} was actually known to all orders [Catani, Hautmann 9405388]

$$egin{aligned} oldsymbol{\gamma_{qg}}(lpha_s,N) &= rac{lpha_s}{3\pi}T_R\,rac{1}{4}iggl[3\exprac{2ar{lpha}_s}{N} + \exprac{2ar{lpha}_s}{3N} iggr] + ext{terms with } \zeta_k \end{aligned}$$

All-order expression for γ_{qg}

The rational part of γ_{qg} was actually known to all orders [Catani, Hautmann 9405388]

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} 2ar{lpha}_s \\ \hline \end{pmatrix} \end{aligned} + egin{aligned} egin{aligned\\ egin{aligned} egin{alig$$

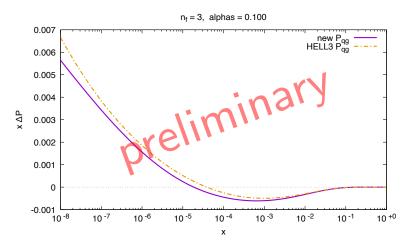
We have been able to find a complete closed form for γ_{qq}

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

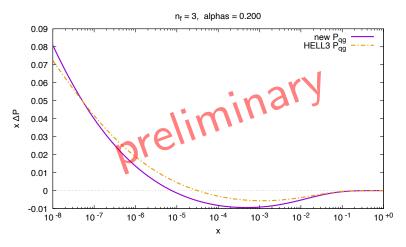
F(M)= a function that you will see once we will publish our paper \odot

$$\chi(M) = 2\psi(1) - \psi(M) - \psi(1-M)$$
 (BFKL kernel)

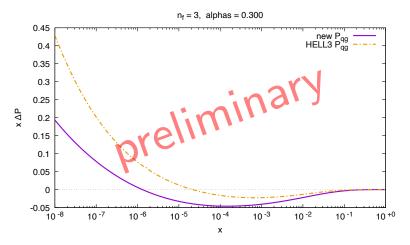
We also have analytic results for the coefficients, and a closed all-order form for G_{qg} at $\mathcal{O}(\epsilon^0)$



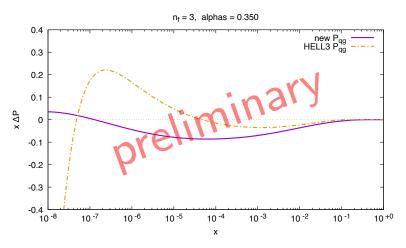
Previous HELL 3.0 implementation is good at small α_s , but it gets worse and worse as α_s increases



Previous HELL 3.0 implementation is good at small α_s , but it gets worse and worse as α_s increases



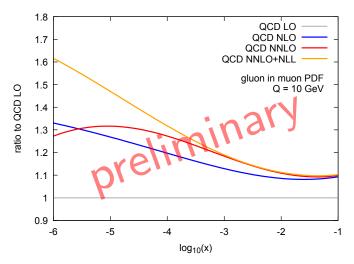
Previous HELL 3.0 implementation is good at small α_s , but it gets worse and worse as α_s increases



Previous HELL 3.0 implementation is good at small α_s , but it gets worse and worse as α_s increases

Effect of small-x resummation on muon's PDFs

Preliminary results on the effect of small-x resummation on the gluon PDF in the muon (no resummed matching conditions so far) [MB,Frixione,Stagnitto (work in progress)]

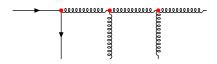


Do we need to worry about small-x logs in QED evolution?

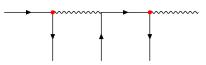
There are small-x logs in QED splitting functions, appearing already at $\mathcal{O}(\alpha)$ in $P_{\gamma f}$ Are they enhanced?

Yes, but much less than in QCD

QCD: Single-log enhancement, due to non-abelian nature of strong interactions



QED: Half-log enhancement (one extra power of the log every two powers of α), due to the abelian nature of EM interactions



Given also that $\alpha \ll \alpha_s$, their resummation is definitely not needed

Conclusions

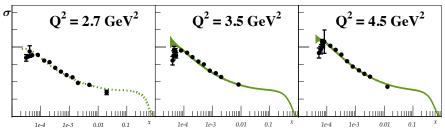
- ISR for a muon collider can be efficiently described through PDFs in a collinear factorisation framework
- These PDFs are perturbative, and they are computed from an initial condition at the muon scale and evolved upwards with DGLAP
- In doing so, evolution passes through low scales where QCD is non-perturbative
- Analytic coupling allows to describe this region ...
- ... but still $lpha_s$ gets large $(lpha_s\sim 0.8)$ thus requiring a good control on perturbative ingredients
- ullet At small x the photon and gluon PDFs dominate, calling for the resummation of small-x logarithms
- ullet New analytic all-order results for the resummation of γ_{qg}
- ullet Now resummed results with HELL (new v4) can reach high values of $lpha_s$
- Sizable impact on muon PDFs

Backup slides

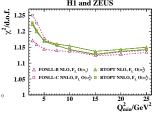
Low x at HERA

Deep-inelastic scattering (DIS) data from HERA extend down to $x\sim 3\times 10^{-5}$ in the "perturbative region" $Q^2>2~{\rm GeV}^2$

Tension between HERA data at low $Q^{\mathbf{2}}$ and low x with fixed-order theory



Also leads to a deterioration of the χ^2 of PDF fits when including low- Q^2 data



The first PDF fits with small-x resummation

Small-x resummation available from the HELL code

NNPDF3.1sx [1710.05935]

NeuralNet parametrization of PDFs MonteCarlo uncertainty charm PDF is fitted DIS+tevatron+LHC (~ 4000 datapoints)

NLO, NLO+NLLx, NNLO, NNLO+NLLx

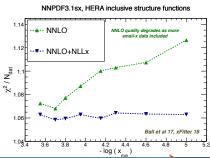
xFitter [1802.00064, see also 1902.11125]

polynomial paramterization Hessian uncertainty charm PDF perturbatively generated only HERA data (~ 1200 datapoints) NNLO, NNLO+NLLx

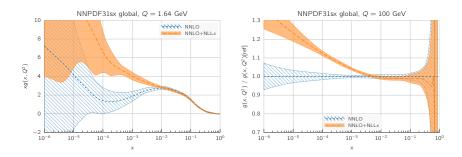
The quality of the fit improves substantially including small- $\!x$ resummation

$\chi^2/N_{ m dat}$	NNLO	NNLO + NLL x
×Fitter	1.23	1.17
NNPDF3.1sx	1.130	1.100
		smallerl

Stable upon inclusion of low-x data \rightarrow



Impact of small-x resummation on PDFs: the gluon



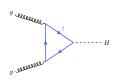
Dramatic effect of resummation on the gluon PDF at $x \lesssim 10^{-3}$

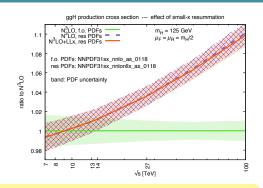
Significant impact expected for LHC and future high-energy collider phenomenology

At colliders $x_{\min}=Q^2/s \to \text{small-}x$ resummation more relevant at low invariant masses and at higher collider energies

Impact of small-x resummation at LHC and future colliders

gg
ightarrow H inclusive cross section [MB EPJC 78(2018)10]



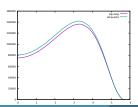


ggH cross section at FCC-hh $\sim 10\%$ larger than fixed order!

At LHC +1% effect

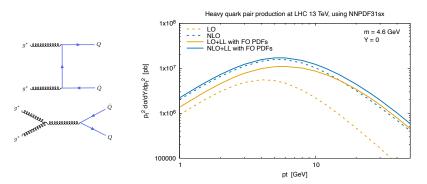
Larger effect expected at differential level in certain kinematic regions

Preliminary parton-level results for fully differential Higgs production [Bernardini,MB,Silvetti (work in progress)]



Fully differential small-x resummation: Heavy-quark pair production at LHC

Fully differential heavy-quark pair production at small x [MB,Silvetti EPJC 83(2023)4]



At large p_t a larger perturbative instability, cured by resummation of small-x logs

Induced by kinematic constraint $x \, e^{2|y|} \leq rac{1}{1 + rac{p_t^2}{m^2}}$ in $C(x,y,p_t,lpha_s)$

 $b\bar{b}$ and $c\bar{c}$ sensitive to very small x o can constrain PDFs!

[Gauld,Rojo 1610.09373]

Heavy-quark pair production at LHC

$$p_t = 2 \text{ GeV}$$

$$p_t = 20 \text{$$

How small can x be at pp colliders?

$$y = Y - \frac{1}{2} \log \frac{x_1}{x_2}$$

$$\frac{d\sigma}{dQ^{2}dYdp_{t}...} = \sum_{i,j=g,q} \int_{\tau}^{1} dx_{1} \int_{\tau}^{1} dx_{2} \, f_{i}\!\left(x_{1},Q^{2}\right) f_{j}\!\left(x_{2},Q^{2}\right) C_{ij}\!\left(\frac{\tau}{x_{1}x_{2}},y,p_{t},...,\alpha_{s}\right)$$

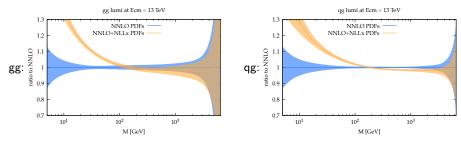
The longitudinal variables $x_1, x_2, x = \frac{\tau}{x_1 x_2}$ can get as small as $\tau = \frac{Q^2}{s}$

au	Higgs	low mass Drell-Yan	$b\bar{b}$	$c\bar{c}$
	$ 10^{-4} $	$\sim 10^{-6}$	$\sim 10^{-6}$	$\sim 10^{-7}$
FCC-hh (100 TeV)	10^{-6}	$\sim 10^{-8}$	$\sim 10^{-8}$	$\sim 10^{-9}$

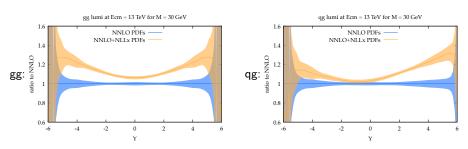
FCC-hh probes two orders of magnitude smaller x

High-energy (small-x) logarithms $\log \frac{1}{x}$ become more relevant at **low invariant** masses and at higher collider energies

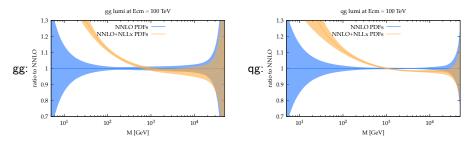
Parton luminosities at LHC



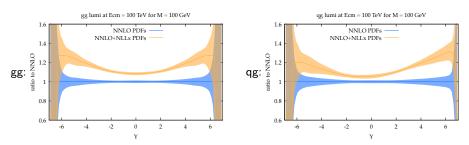
Difference more pronounced in differential distributions at large rapidity



Parton luminosities at FCC-hh



Large effects also at the EW scale, especially at large rapidities



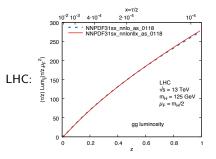
Why is the effect of resummation mostly driven by the PDFs?

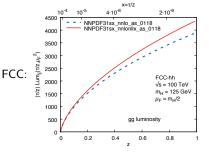
Let's consider again the collinear factorization formula

$$\frac{d\sigma}{dQ^2dY...} = \int_{\tau}^{1} \frac{dz}{z} \int d\hat{y} f_i \left(\sqrt{\frac{\tau}{z}} e^{\hat{y}}, Q^2 \right) f_j \left(\sqrt{\frac{\tau}{z}} e^{-\hat{y}}, Q^2 \right) \frac{dC_{ij}}{dy...} (z, Y - \hat{y}, ..., \alpha_s)$$

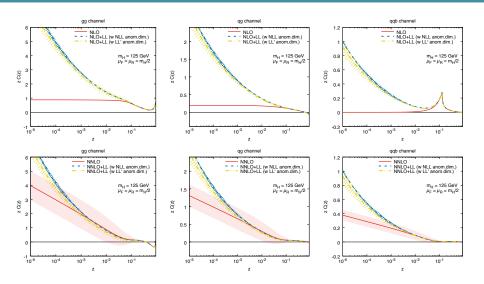
The small z integration region, where logs in C are large, is weighted by the PDFs at large momentum fractions $x=\sqrt{\frac{\tau}{z}}e^{\pm \hat{y}}$ Since PDFs die fast at large x, especially the gluon, the small-z region is suppressed!

Rather, the large z region is enhanced by the gluon-gluon luminosity In that region, the difference between fixed-order and resummed PDFs is large

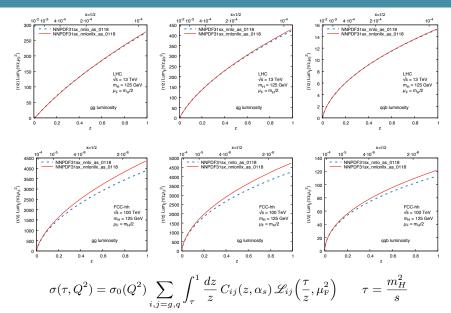




Higgs production: parton-level results



Parton luminosities for ggH

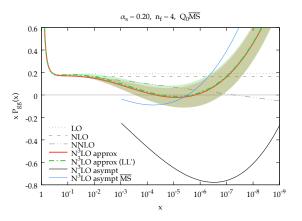


Towards N³LO evolution

Recent impressive progress towards N³LO splitting functions

[Davies,Vogt,Ruijl,Ueda,Vermaseren 1610.07477] [Moch,Ruijl,Ueda,Vermaseren,Vogt 1707.08315]

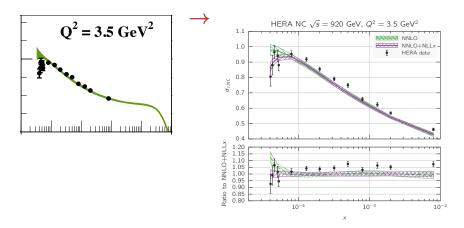
At small x, approximate predictions from NLLx resummation [MB,Marzani 1805.06460]



Large uncertainties from subleading logs

 N^3LO splitting functions are much more unstable at small $x \to \text{need resummation!}$

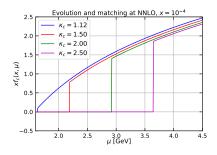
Fit results: description of the HERA data

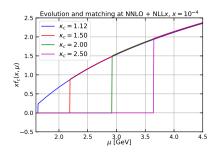


The better description mostly comes from a larger resummed F_L

$$\sigma_{r,NC} = F_2(x_{Bj}, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x_{Bj}, Q^2)$$
 $y = \frac{Q^2}{x_{Bj}s}$

Matching conditions at the charm threshold





The perturbatively generated charm PDF is much less dependent on the matching scale when small-x resummation is included!