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The LHC produces top-antitop pairs at a rate of the order of tens per secons, and has
now accumulated nearly a billion of such events.
In the May-June issue of the CERNCOURIER an article regarding a CMS publication
(arXiv:2503.22382, March 28 2025) has appeared.
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From the CERNCOURIER, statement by John Ellis:

“The signal reported by CMS, if confirmed, could be due either to a
quasi-bound top–antitop meson, commonly called ‘toponium’, or possibly
an elementary spin-zero boson such as appears in models with additional
Higgs bosons, or conceivably even a combination of the two,”
says theorist John Ellis of King’s College London.
“The mass of the lowest-lying toponium state can be calculated quite
accurately in QCD, and is expected to lie just below the nominal
top–antitop threshold. However, this threshold is smeared out by the
short lifetime of the top quark, as well as the mass resolution of an LHC
detector, so toponium would appear spread out as a broad excess of
events in the final states with leptons and jets that generally appear in
top decays.”

Later confirmed by ATLAS: ATLAS-CONF-2025-008, (7 July 2025).
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Threshold production of tt̄ and spin correlations

▶ Focus upon the decay t → e+νb.
▶ The positron direction coincides with the direction of the top spin.
▶ Threshold production is S-wave dominated. Thus the angular

momentum of the tt̄ pair is determined exclusively by the spins, and
can be zero (singlet) or one (triplet).

At LHC and for threshold production the singlet is dominant∗

| ↑↓⟩ − | ↓↑⟩

The singlet state is a maximally entangled state.

(∗) Gluon fusion is dominant at the LHC, and the Landau-Yang theorem,
that forbids an angular momentum 1 for pairs of photons, also holds at
tree-level for gg → QQ̄.
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The interest in the study of spin correlations in tt̄ pairs is also motivated
by the search of pseudoscalar that couple to tt̄ pairs:

Search for heavy pseudoscalar and scalar bosons decaying to a top quark
pair in proton-proton collisions at

√
S = 13 TeV

CMS Collaboration, (Jul 7, 2025), e-Print:2507.05119 [hep-ex].
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Spin correlations in tt̄ a LHC

(Novembre 2023)
ATLAS: “Observation of quantum entanglement with top quarks ...”
D = −0.537 ± 0.002(stat.)± 0.019(syst.) for 340GeV < mtt̄ < 380GeV.

D < −1/3 signals the presence of quantum correlations;
Dexp. stands for the theoretical result.
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Spin correlations in tt̄ a LHC

In the dileptonic tt̄ events one defines the observable

chel = ℓ⃗+ · ℓ⃗− .

where the lepton directions ℓ⃗± are defined starting from a frame in the tt̄
CM system, that is boosted in turn to the t and t̄ rest frame.
For a (non-relativistic) tt̄ pair in a spin singlet state, by simple Quantum
Mechanics we find that chel is distributed as

1
σ

dσ
dchel

=
1 + chel

2

(observe that it vanishes when the top spins are aligned)
We also obtain immediately

⟨chel⟩ =
1
3

and introduces the quantity D = −3⟨chel⟩, that equals -1 for a pure spin
singlet state. (D < −1/3 signals quantum entanglement.)
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▶ To ease the tension, theoretical models obtained by adding an ηt
bound state to the SM production mechanism have been proposed
by [Maltoni,Severy,Vryonidou,2024]

▶ Some authors are improving MC generator by including full
treatment of threshold-enhanced contributions to tt̄ production in
the non-relativistic approximation [Fuks,Hagiwara,Ma,Zheng,2024].

▶ Susequent CMS and ATLAS results on a Pseudoscalar excess near
threshold seem to support these approaches ...
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Lots of attention in the literature:

2003.02280 Entanglement and quantum tomography with top quarks at the LHC
2102.11883 Testing Bell Inequalities at the LHC with Top-Quark Pairs
2110.10112 Quantum tops at the LHC: from entanglement to Bell inequalities
2203.05582 Quantum information with top quarks in QCD
2203.05619 Quantum SMEFT tomography: Top quark pair production at the LHC
2205.00542 Improved tests of entanglement and Bell inequalities with LHC tops
2208.11723 Constraining new physics in entangled two-qubit systems: top-quark ...
2210.09330 Quantum entanglement and top spin correlations in SMEFT
2305.07075 Entanglement and Bell inequalities with boosted ttbar
2307.06991 Postdecay quantum entanglement in top pair production
2401.08751 Quantum detection of new physics in top-quark pair production ...
2401.10988 A closer look at post-decay ttbar entanglement
2407.01672 Optimizing entanglement and Bell inequality violation in top antitop ...
2402.07972 Quantum entanglement and Bell inequality violation at colliders
2403.14757 New physics in spin entanglement

entanglement sells ...
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Radiative corrections and threshold enhancement

▶ At Born level, the tt̄ pair can be produced in a color singlet or
octect state, in a ratio of 2 to 5 near threshold. Coulomb exchange
yields enhanced corrections near threshold, proportional to the
corresponding color factor: CF for singlet, −1/(2NC ) for the octet.
The singlet prevails:[

2 × 4
3
+ 5 ×

(
−1

6

)]
=

[
8
3
− 5

6

]
> 0

▶ Corrections of order (a/v)n, where a = αS×color factor, arise at all
orders in perturbation theory.

▶ Since gg at threshold leads to a spin singlet state, the αS/v
correction leads to an enhancement of the correlation.

▶ Event generators for tt̄ production accurate at NLO order do exist,
so they should fairly represent these a/v corrections. Generators also
exist at NNLO order, that include also (a/v)2 corrections. No
NNNLO generator yet ...
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Threshold enhancement: Bound States

The tt̄ pair near threshold can form a bound Coulombic system.

Bound Coulombic systems have the following characteristics:
▶ The velocity of the quark in the CM system is of order as : v ≈ as .

(as/v)
k terms are all of the same order, and must be resummed.

▶ The quark momentum is ≈ asm; the size of the state is ≈ 1/(mas).
▶ The relevant scale for the coupling constant is mas ; so we must have

mas(µ) ≈ µ that leads to as(µ) ≈ 0.16.
▶ The time to sweep an orbit is size/v ≈ 1/(ma2

s ).
▶ The typical bound state energy is of order ma2

s

▶ The wave function at the origin is of order 1/size3 ≈ m3a3
s

▶ Time to sweep an orbit (or the inverse of the binding energy)
dangerously close to the top lifetime. No narrow bound state! But
“lucky” top pairs that live much longer than their average lifetime
will be able to make a few orbits, so, given enough resolution, a little
“bump” should be visible in the cross section.
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Threshold enhancement: Bound States

Examine now the contribution of a bound state to the cross section:

▶ Must be proportional to

σ(E ) ∝ δ(E − 2m)|ψ(0)|2α2
S

where α2
S accounts for the hard production.

▶ By dimensional reasoning

σ(E ) ≈ 1
m4 δ(E − 2m)|ψ(0)|2α2

S

▶ Estimating |ψ(0)|2 ≈ 1/r3
b ≈ (asm)3 we get

σ(E ) ≈ 1
m
δ(E − 2m)α2

S a
3
s

corresponding to an NNNLO correction.
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Threshold enhancement

The integral of the cross section near threshold up to NNLO goes like∫
dEσ(E ) ∝

∫
mdv2α

2
S v

m2

(
1,

as
v
,
a2
s

v2

)
≈ α2

S v
3
cut

m

(
1,

as
vcut

,
a2
s

v2
cut

)
At higher orders as/v singularities only come with even powers, so
(as/v)

3 is missing. However a bound state contributes to the integrated
cross section as∫

dE
α2

S a
3
s

m2 δ(E − 2m) ≈ α2
S a

3
s

m2 =
α2

S v
3
cut

m2

(
a3
s

v3
cut

)
in line with the NLO and NNLO contributions;

But this term cannot arise in perturbation theory, since it vanishes for
negative αS (bound states exist only for positive as).

What is going on? What about higher orders? The next term is (as/v)
4,

and is not integrable ... Do we still get an (as/vcut)
4 contribution to the

cross section?
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Motivation of our work

▶ The experiments do not measure exactly the distribution of mtt̄ , but
rather a smeared distribution, since che top mass resolution is of the
order of 15 GeV. In fact the experimental results are quoted for mass
bins that go from threshold ( 340 GeV) up to 360, 380, 400 GeV.

▶ Smearing, by the uncertainty principle, mean that the result is
sensitive to times of the order of the inverse bin size. Bound state
formation takes place in longer times. So, part of the cross section
goes into bound state formation, part in open production, but the
experimental result should be insensitive to the exact proportion of
the two contributions.

In order to better understand what goes on we considered a simple
quantum mechanical example: the single particle in a delta-function
potential in one dimension.
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Toy model for the production of a bound state

Schrödinger equation

− 1
2m

d2

dx2ψ − λ δ(x)ψ = Eψ.

Eigenstates (k > 0):

ψ0(x) = θ(λ)
√
mλ
[
eλmxθ(−x) + e−λmxθ(x)

]
, E0 = −mλ2

2
;

ψk(x) =

√
2

L(1 + λ2/v2
k )

[
cos(kx)− x

|x |
λ

vk
sin(kx)

]
, vk =

k

m
;Ek =

k2

2m

ψ̂k(x) =

√
2
L
sin(kx) (decoupled, irrilevant)

where L is the dimension of the systema.
Holds independently of the sign of λ.
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Density of states:

ρ(E ) = θ(λ)λm δ

(
E +

1
2
mλ2

)
+

1
π

m

kE

1
1 + λ2/v2

E

proportional to the probability that starting from a state concentrated at
x = 0 one reaches a final state of energy E (kE =

√
2mE 2, vE = kE/m).

This expression does not seem to have a power expansion in the coupling
λ. The first term contains θ(λ). The second one has a divergent
expansion for vE < λ.

Expanding in powers of λ for E > 0 we get

ρ(E ) =
1
π

1
vE

[
1 − λ2

v2
E

+ . . .

]
that has singularities in powers of λ/v , non integrable in the energy.
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Consider the integral of the density of states from the threshold up to a
given value E ′. We get∫ E ′

dEρ(E ) = θ(λ)mλ+
1
π

[
k ′ −mλ arctan

k ′

mλ

]
=

1
π
k ′ +m

[
λθ(λ)− |λ|

2

]
+

mλ2

π

m

k ′ + . . .

▶ We see that the non-analytic term arising from the bound state
combines with a non-analytic term arising from the continuum and
form an analytic term.[

λθ(λ)− |λ|
2

]
=

[
λ+ |λ|

2
− |λ|

2

]
=
λ

2
.

▶ The term of order λ2 in the expansion of ρ has yielded a finite term
of order 1/v ′ term. i.e. we should have interpreted it as a
distribution.
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Full result for the toy model

With a little more work we get

ρ(E ) = θ(λ)λmδ

(
E +

1
2
mλ2

)
+

1
π

m

kE

1
1 + λ2/v2

E

=⇒ λm

2
δ

(
E +

1
2
mλ2

)
+

1
π

m

kE

(
1

1 + λ2/v2
E

)
+

where the + sign indicates that the expression should be
Taylor-expanded, and each term should be regularized according to the
analytic regularization prescription.

Also the δ function can be Taylor-expanded in terms its derivatives. Thus
ρ has a well-defined perturbative expansion with coefficients that are
distributions, and its product with functions that are regular near
threshold yieds integrable functions.
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The tt̄ case

Is equivalent to the Hydrogen atom problem. It leads to

ρl(E) =
θ(al)m

3a3
l

8π

∞∑
n=1

1
n3 δ(E − El,n) +

(m)3/2

4π2

√
E F (πalv

−1),

El,n = −ma2
l

4n2 , F (z) =
z

1 − exp(−z)

where E = E − 2m, l = 1(8) for color singlet (octet), a1 = CFαS ,
a8 = −αS/(2NC ).
The factor F (πalv−1) is known as Sommerfeld factor. Reasoning as in
the toy model example, we reach the same conclusions

ρl(E) →
m3a3

l

16π

∞∑
n=1

1
n3 δ(E − El,n) +

(m)3/2

4π2

√
E F+(πalv

−1),

where F+ rappresents the Taylor expansion of F , with the coefficients
interpreted as (analytically regulated) distributions. If we also expand
δ(E − El,n), we get the full perturbative expansion of ρ.
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Keeping only the first three perturbative orders we get

ρl(E) →
(m)2

4π2

(
v +

πal
2

+
π2a2

l

12v
+
πζ(3)a3

l

4
mδ(E)

)
Among state of the art calculations used for this process, some include
the first correction (NLO calculations), some up to the second one
(NNLO), none includes the third term, which is however very small.
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Comparison with data

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

ATLAS

CMS

ATLAS: Mtt<380 GeV
CMS: Mtt<400 GeV,

 βz<0.9

hvq
hvq+thr(≤3)

bb4l
bb4l+thr(≤3)

ATLAS 2311.07288
CMS 2406.03976

D

▶ There is also a dependence upon the generator one uses... to be
better understood.

▶ The tension with data disappears.
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The pseudoscalar excess

The tension with the new CMS and ATLAS measurements remains.

what is the meaning of that 8.8pb?
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(As I understand it)
▶ A sample is generated using POWHEG-hvq.
▶ The sample is reweighted so that the mtt̄ distribution and an

angular variable as obtained by MATRIX (NNL).
▶ An additional component of the cross section, correspondig to the

production of an ηt is added to the cross section
▶ The normalization of the ηt component is fitted to the data, yielding

the 8.8pb.
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If we compute the threshold enhanced contributions to the cross section
in the first bin mtt̄ < 360 GeV we get:
▶ 3.36pb from the a/v term, after subtracting what is already included

at NLO.
▶ 4.43pb from the (a/v)2 term
▶ 1.56pb from the delta term
▶ (1.56pb)/2 is the contribution of all bound states.

The total is 9pb. But CMS should have already included at least a good
part of the 3.36pb (correction to the a/v) term, and 4.43pb from the
(a/v)2 term, since MATRIX includes that.
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Conclusions

▶ We have re-re-learned a lesson about why NOT to include bound
state effects in inclusive cross sections.

▶ The comparison with data for the pseudoscalar excess has many
obscure points.

▶ We eagerly wait for unfolded cross sections from CMS and ATLAS.
We believe this is needed in order to really understand if the excess
is comptible with the Standard Model.

▶ There are also other possible explanation of the excess, due to
limitations in current MC generators (not discussed in this talk for
brevity).
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Previous literature

It turns out that our findings were not new ...

While completing our work, we learned from Beneke that he had already
worked on this issue, in the framework of threshold resummation for top
production at hadron colliders. His work was inspired by a paper of Kirill
Melnikov on the calculation of g − 2, as also Kirill pointed out to us.

Interesting enough, Kirill also rediscovered this issue by himself, but he
was informed by the referee that in fact the solution of the problem dates
back to a paper by Michail Braun (father of Volodia) in 1968. For some
reasons, in spite of these previous references, people seem to stumble on
it every so often ...
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Previous literature

Melnikov,Vainshtein,Voloshin 2014
“Remarks on the effect of bound states and threshold in g-2”

In the very high-order computation of the g − 2 for the electron, diagrams with

photon self energy come up and some authors
(Mishima,2013, Fael,Passera,2014) could not resist the temptation to add
positronium contributions to the electron blob (it enters at order α5).
Melnikov etal show that you should not do that.
In the same paper they criticise in passing work by Kniehl,Kuhn and Stuart,
1988, Kniehl,Sirlin, 1993 and Yndurain,1994, that advocated adding the
toponium bound state contribution in top loops affecting Electroweak precision
calculations (again, you should not).

At the beginning of Melnikov’s paper:
These questions were analyzed long ago in Ref. [Braun]. However, that paper
is, perhaps, not as well-known as it should be.
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Other Instances of the problem

Eides,2014
"Recent ideas on the calculation of lepton anomalous magnetic moments"

Same motivation and conclusions as in Melnikov’s paper.
Interesting to quote:

Nothing we will say below is new and not contained in [Braun], but the
claims made in [Mishima,Fael] show that the old arguments deserve to be
repeated.
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Other Instances of the problem

Beneke,2006
Same as our result for the case of the totallly inclusive cross section, in
the framework of the resummation of threshold effects. Inspired by the
previous work of Melnikov.
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Backup
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THE ISSUE

Consider the squared amplitude for the
production of a tt̄ pair near threshold.
▶ Small black blob size: 1/m.
▶ Dominant corrections near threshold:

Coulomb exchange, leading to (αS/v)
n

singularities, where v is the top velocity in the
tt̄ rest frame.

The corresponding non-relativistic reduced problem
corresponds to the imaginary part of the forward
Resolvent R(E , 0, 0).
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A brief reminder: the solution of the quantum mechanical problem is
encoded in the Green’s function G , that satisfies the Schrödinger
equation [

i
∂

∂t
− H

]
G (t, x⃗ , 0, x⃗0) = iδ(t)δ3(x⃗ − x⃗0)

where G gives the amplitude for the (reduced) particle to be created at
point x⃗0 at time 0 and to be found at point x⃗ at time t.

Its Fourier transform, assuming that G vanishes for negative t satisfies

(E + iϵ− H)R(E , x⃗ , x⃗0) = δ3(x⃗ − x⃗0),

where R (the Resolvent) is the time Fourier transform of G .

The imaginary part of the forward resolvent is the total cross section (by
the optical theorem), that in our case is equal to the differential cross
section, since near threshold only the s wave contribution counts.
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The resolvent has the operator expression

R =
1

E − H

that makes it clear that R is analytic in the complex plane except for
points on the spectrum of H.

By analyticity its integral from the threshold up to
a cut Ecut is equal to a contour integral on a circle
of radius Ecut. This should also account for con-
tributions arising from bound states below the 2m
threshold.
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The Resolvent
R(E ) =

1
E − H

,

is defined for complex E . Since we know the spectrum, we can write

R(E , x1, x2) =
ψ0(x1)ψ0(x2)

E − E0
+

[∑
k

=
L

2π

∫
dk

]
ψk(x1)ψk(x2)

E − Ek
,

and obtain immediately the forward resolvent

R(E , 0, 0) = θ(λ)
k0

E − E0
+

1
π

∫
dk

1
1 + ξ2k

1
E − Ek

.
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We have Im(R(E , 0, 0)) = 2πρ(E ), where ρ is the spectral density

ρ(E ) = θ(λ)k0δ(E0 − E ) +
1
π

∫
dk

1
1 + ξ2k

δ(Ek − E )

= θ(λ)k0δ(E − E0) +
1
π

m

kE

1
1 + ξ2k

that is proportional to the cross section for producing a final state of
energy E , and kE =

√
2mE 2.

Expanding in powers of λ for E > 0 we obtain

ρ(E ) =
1
π

m

kE
− λ2

π

(
m

kE

)3

+ . . .

showing the well-known λ/v singularities.

This naive perturbative expansion of ρ is not integrable in dE at
threshold ... (and furthermore it is blind to bound states)
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Using directly perturbation theory:

R(E ) =
1

H0 + V − E
=

1
H0 − E

− 1
H0 − E

V
1

H0 − E
+ . . .

R(E , 0, 0) =
∑
k

|ψ(0)
k (0)|2

Ek − E
− λ

∑
k

∑
k′

|ψ(0)
k (0)|2|ψ(0)

k′ (0)|2

(Ek − E )(Ek′ − E )

=
∑
k

|ψ(0)
k (0)|2

Ek − E
− λ

(∑
k

|ψ(0)
k (0)|2

(Ek − E )

)2

=

√
− m

2E
+ λ

m

2E
Its imaginary part above the real axis is

R(E + iϵ, 0, 0) = iθ(E )

√
m

2E
+ iπ

λm

2
δ(E )

leading to

ρ(E ) = θ(E )
m

πk
+
λm

2
δ(E ).∫ E

−∞
dE ′ρ(E ′) =

kE
π

+
λm

2
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Results

We consider the tt̄ production cross section as a function of a cut M on
the invariant mass of the pair. To begin with, we show the results
obtained at the Born level, when including the αS/v term, when including
both the αS/v and (αS/v)

2 term, and when including also the δ term.

Care should be used in the choice of the scale at which αS is evaluated.
The Born term always includes to powers of αS evaluated at a hard scale
of order m. The powers of αS associated with the threshold corrections
should instead be evaluated at a scale of the order of the top momentum
in the tt̄ rest frame when mtt̄ = M, according to the analyticity
argument presented earlier.
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The cross section as a function of the mass cut shows the strong
enhancement when we approach the threshold, that increases with the
order of the included threshold corrections. As we approach realistic cuts
(i.e. 380 GeV) the inclusion of the third order term gives a tiny
contribution.
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We see a large enhancement of the correlation (the D parameter turning
more negative) as we add threshold corrections up to first, second and
third order.

On the right plot, the coupling in the threshold correction has been kept
the same as in the hard process, which is what happens in typical
NLO+PS and NNLO+PS generator. We see that this choice
underestimate the threshold corrections.
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Nominal Monte Carlo results
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Prediction for the cross section and for the D observable as a function of
an invariant mass cut. The generators are:
▶ POWHEG-hvq Frixione,Ridolfi,P.N., 2007
▶ POWHEG-ttb_NLO_dec, Campbell,Ellis,Re,PN
▶ POWHEG-b_bbar_4l Ježo,Lindert,Oleari,Pozzorini,P.N.,2016
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▶ We find important differences depending upon which generator we
are using.

▶ The generator differs in the way they implement spin correlation in
decays, with hvq being the least accurate and bb4l the most accurate

▶ hvq uses its own implementation of the algorithm of Frixione etal,
2007 (also implemented in the MadSpin code Artoisenet etal,2013).

▶ Using instead hvq+MadSpin the “D” plot is very close to the
ttbNLOdec one.

▶ There is a strong temptation to privilege the bb4l code. However,
we have been unable to pinpoint the causes of the differences, so
that more studies are needed in this direction.
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PREDICTIONS

▶ Our best prediction is obtained using an NLO+PS generator (hvq or
bb4l), and adding to it the threshold corrections that are not already
present at the NLO level.

▶ The second and third order corrections can be added without
problems.

▶ The first order correction can be added as long as we subtract what
the NLO calculation already provides, i.e. a term σl(−al/v), but
with the coupling al evaluated at the hard scale of the generator.
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Predictions
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▶ On the right plot: βZ is the longitudinal velocity of the tt̄ system
(cut used by CMS to reduce the qq̄ contribution).

▶ The fist order correction somewhat reduced because of the
overcounting subtraction.

▶ First and second order terms much larger than the third order term,
which includes bound state effects. 43 / 43


