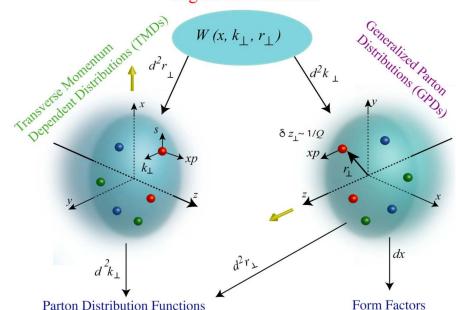
RadISH with TMD non-perturbative effect DI TORINO

Yiyu Zhou University of Turin

in collaboration with: E. Boglione L. Rottoli, A. Signori and P. Torrielli

UNIVERSITÀ DEGLI STUDI DI MILANO


DIPARTIMENTO DI FISICA "ALDO PONTREMOLI"

Structures in the transverse direction

- TMD (transverse momentum dependent) distributions
- GPDs (generalized parton distributions)

Wigner Distributions

TMD Handbook

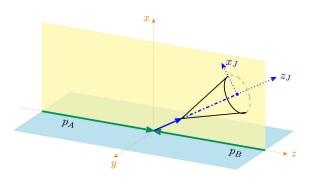
A modern introduction to the physics of Transverse Momentum Dependent distributions

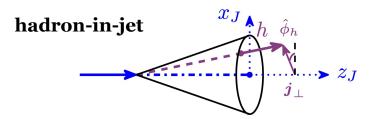
Matthias Burkardt Martha Constantinou William Detmold Markus Ebert Michael Engelhardt Sean Fleming Leonard Gamberg Xiangdong Ji Zhong-Bo Kang Christopher Lee Keh-Fei Liu Simonetta Liuti Thomas Mehen ' Andreas Metz John Negele Daniel Pitonvak Alexei Prokudin Jian-Wei Qiu Abha Raian Marc Schlegel Phiala Shanahan Peter Schweitzer Iain W. Stewart * Andrey Tarasov Raju Venugopalan Ivan Vitev Feng Yuan Yong Zhao

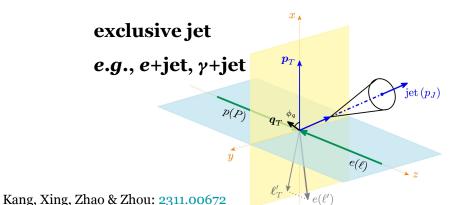
Renaud Boussarie

* - Editors

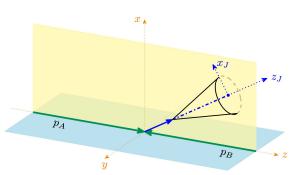
TMD sensitive processes


Quark sensitive:


- Drell-Yan
- Semi-inclusive deep inelastic scattering (SIDIS)
- e^+e^- annihilation


Gluon sensitive:

- Higgs production in hadronic collisions
- Quarkonium production (e.g., η_c , η_b) in hadronic collisions



2

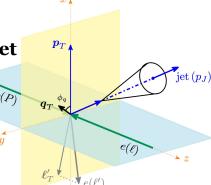
TMD sensitive processes

jets

Quark sensitive:

- Drell-Yan
- Semi-inclusive deep inelastic scattering (SIDIS)
- e^+e^- annihilation

Global fits (unpolarized)


Gluon sensitive:

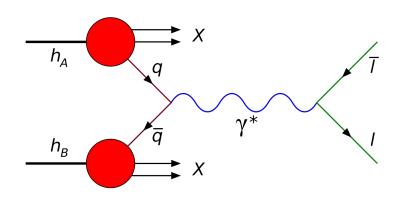
- Higgs production in hadronic collisions
- Quarkonium production (e.g., η_c , η_b) in hadronic collisions

exclusive jet

hadron-in-jet

e.g., e+jet, $\gamma+jet$

 $m{j}_{\perp}$


Kang, Xing, Zhao & Zhou: <u>2311.00672</u>

TMD factorization (Drell-Yan)

$$rac{\mathrm{d}^3\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_T^2} = \sum_q H_{q\overline{q}}^{\mathrm{DY}}\left(Q,\mu
ight)\widetilde{f}_{1,q}\left(x_a,oldsymbol{k}_{a,T},\mu,rac{\zeta}{
u^2}
ight)\widetilde{f}_{1,\overline{q}}\left(x_b,oldsymbol{k}_{b,T},\mu,rac{\zeta}{
u^2}
ight)\delta^{(2)}\left(oldsymbol{q}_T-oldsymbol{k}_{a,T}-oldsymbol{k}_{b,T}
ight)$$

- ullet Observed transverse momentum $oldsymbol{q}_{\scriptscriptstyle T}$: sensitive to parton transverse momentum
- Parton transverse momentum:
 - radiative (perturbative)
 - o intrinsic (non-perturbative, NP)
- Renormalization: regulates divergences

Wikipedia

QCD evolution of TMD PDFs

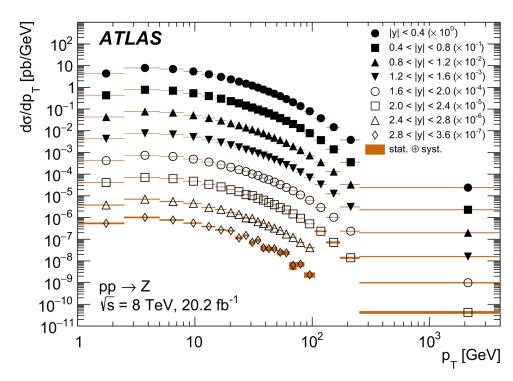
$$F_{i}\left(x,b,\mu,\zeta
ight)=F_{i}\left(x,b,\mu_{0},\zeta_{0}
ight)$$

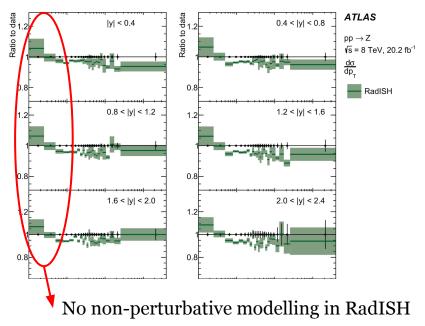
TMD distribution at initial scale

Calculable in pQCD

$$imes \exp\left(\int_{\mu_0}^{\mu} rac{\mathrm{d}\mu'}{\mu'} \gamma_F\left(lpha_s\left(\mu'
ight), rac{\zeta}{\mu'^2}
ight)
ight) \; ext{evolution in }\mu$$

$$<\left(rac{\zeta}{\zeta_0}
ight)^{-D(b\mu)}$$


evolution in ζ


Non-perturbative correction at large *b*

See also: book of J.C., 2003.07453 and many other references

$$F_{i}\left(x,b,\mu_{0},\zeta_{0}
ight)=\sum_{i}C_{i\leftarrow j}\left(x,b,\mu_{0}
ight)\otimes f_{j/p}\left(x,\mu_{0}
ight)\!F_{\mathrm{NP}}\left(b,\lambda
ight)$$

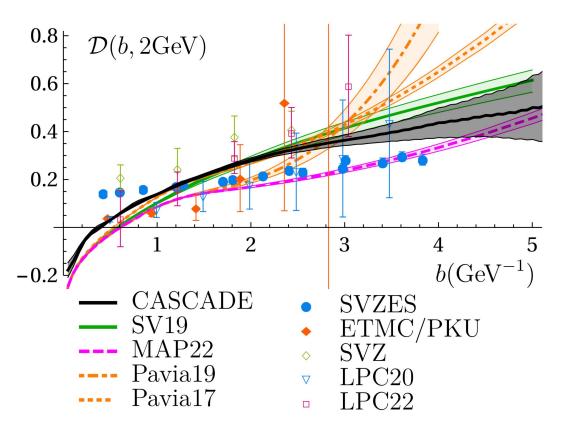
High precision DY measurement at ATLAS

$$imes \left(rac{\zeta}{\zeta_0}
ight)^{-D(b\mu_0,lpha_s(\mu_0))+rac{oldsymbol{g}_K(b,\lambda)}{g_K(b,\lambda)}}$$

ATLAS: 2309.09318

RadISH in a nutshell

- RadISH performs resummation in direct space, with control on formal accuracy
- Formula can be evaluated with Monte Carlo methods
- Dependence on ϵ vanishes
- Result formally equivalent to b-space formulation (<u>1705.09127</u>)


$$\Sigma(v) = \sigma^{(0)} \int \frac{dk_{t1}}{k_{t1}} \int_{0}^{2\pi} \frac{d\phi_{1}}{2\pi} e^{-R(\epsilon k_{t1})} \sum_{\ell_{1}=1,2} R'_{\ell_{1}}(k_{t1}) \times$$

$$\times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \int_{0}^{2\pi} \frac{d\phi_{i}}{2\pi} \sum_{\ell_{i}=1,2} R'_{\ell_{i}}(\zeta_{i}k_{t1}) \Theta\left(v - V(\{\tilde{p}\}, k_{1}, \dots, k_{n+1})\right)$$

Behaviour of NP kernels

Collins-Soper (CS) kernel fitted and calculated on the lattice

- Fits parameterized in *b*-space
- Large-*b* behaviour is log-like

Implement NP kernel in k_T space

With inspiration from $\frac{\text{hep-ph/9504219}}{\text{ph/9504219}}$, we devise the modelling for the NP kernel:

Separates pert. and NP regions

Coupling at k = 0, to be determined via fits

Effective coupling of soft origin

10

hard-collinear origin

Implement NP kernel in k_T space

Demand the NP part to contribution only below μ_{r} , and cancel its perturbative part with R':

$$R'\left(k
ight) = egin{aligned} oldsymbol{\Theta}(M-k)oldsymbol{\Theta}(k-\mu_I) \ oldsymbol{Q} \end{aligned} egin{aligned} rac{A_1}{2\pi}lpha_s^{ ext{s,pert}}(k)\ln(M/k) + rac{B_1}{2\pi}lpha_s^{ ext{c,pert}}(k) \end{aligned}$$

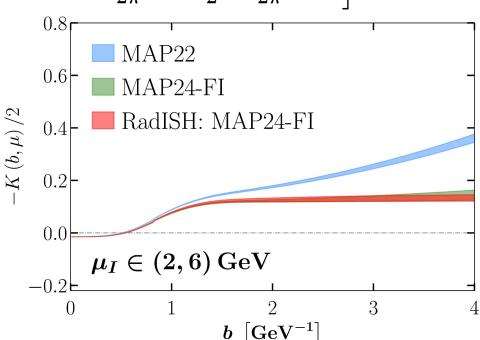
R' contributes only at $k > \mu_I$

$$R_{ ext{NP}}'$$
 contributes at $k < \mu_I$ $R_{ ext{NP}}'(k) = \Theta\left(\mu_I - k
ight) \left[rac{A_1}{2\pi}lpha_s^{ ext{s}}(0) \ln(M/k) + rac{B_1}{2\pi}lpha_s^{ ext{c}}(0)
ight]$

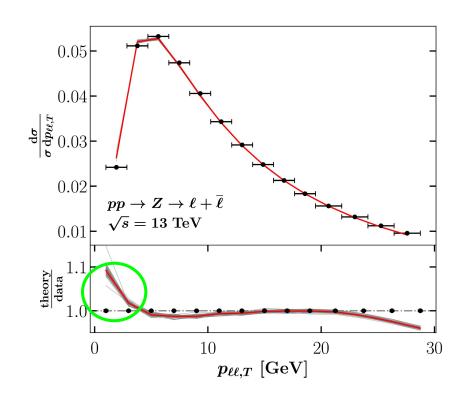
 $R_{ ext{NP}} = \int_{0}^{M} rac{\mathrm{d}k}{k} [1 - J_0\left(bk
ight)] R_{ ext{NP}}'$

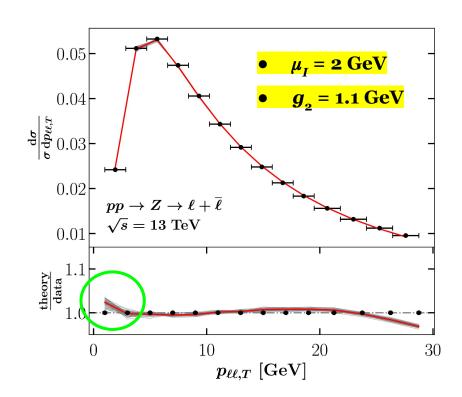
Match with NP kernel in literature

$$R_{ ext{NP}}^{(1)} = rac{b^2 \mu_I^2}{8} iggl[rac{A_1}{2\pi} lpha_s^{ ext{s}}(0) \ln(M/\mu_I) + rac{A_1}{2\pi} lpha_s^{ ext{s}}(0) rac{1}{2} + rac{B_1}{2\pi} lpha_s^{ ext{c}}(0) iggr]$$

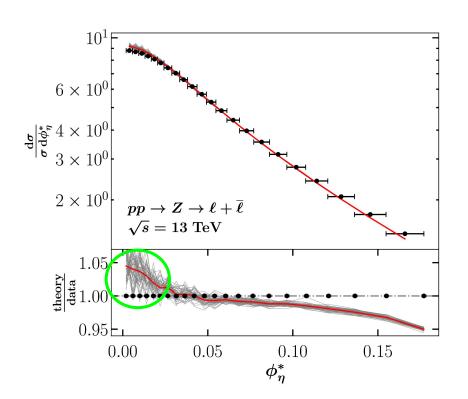

$$R_{ ext{NP}}^{ ext{lit}} = rac{1}{2} b^2 g_2^2 \ln(M/Q_0) = \left[rac{1}{2} b^2 g_2^2 \ln(M/\mu_I) + rac{1}{2} b^2 g_2^2 \ln(\mu_I/Q_0)
ight]$$

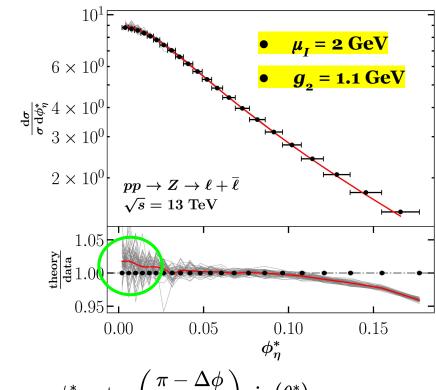
MAP: <u>2206.07598</u>


Implement NP kernel in k_T space

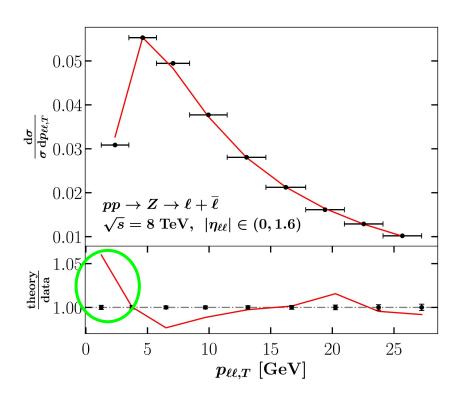

$$R_{ ext{NP}}^{(1)} = rac{b^2 \mu_I^2}{8} igg[rac{A_1}{2\pi} lpha_s^{ ext{s}}(0) \ln(M/\mu_I) + rac{A_1}{2\pi} lpha_s^{ ext{s}}(0) rac{1}{2} + rac{B_1}{2\pi} lpha_s^{ ext{c}}(0) igg]$$

- Excellent match is seen between the CS kernels from MAP and RadISH implementation
- In practice μ_I and g_2 can be adjusted
- g_2 value taken from MAP <u>2405.13833</u>



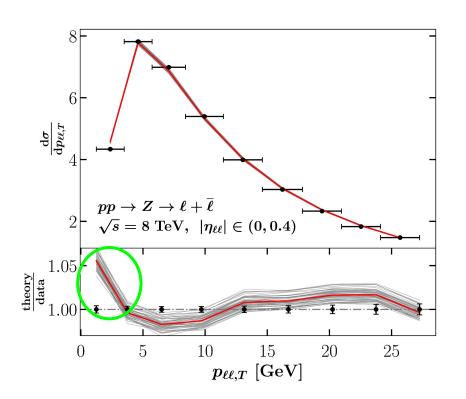

Phenomenology at 13 TeV

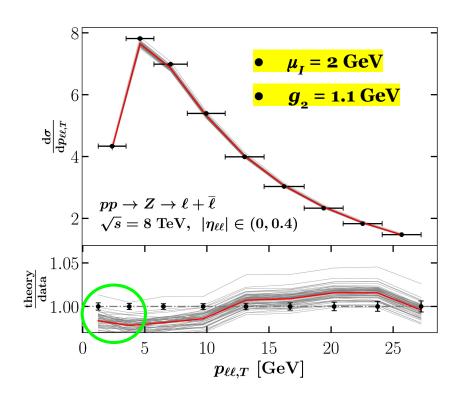
Phenomenology at 13 TeV




Data from <u>1912.02844</u>

~2% improvement!


$$\phi_{\eta}^* \equiv an\!\left(rac{\pi-\Delta\phi}{2}
ight) \sin\!\left(heta_{\eta}^*
ight)$$


Phenomenology at 8 TeV

Phenomenology at 8 TeV

Summary and outlook

- We have implemented non-perturbative (NP) CS kernel in RadISH calculation
 - Improved description is achieved across different collision energies and observables with the same set of parameters
- We will further include scale variance
- We will study the impact of NP effect in extraction of physical constants: W mass
- We need to include of intrinsic transverse momentum effects

Thank you for your attention!