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Introduction

Collinear factorisation theorem successful for most observables

σ ∝ f1 ⊗ f2 ⊗ σ̂

If two scales scales are involved, e.g.: DY pT → αn
s () log

m(Q2/p2T ) need to be resummed

p1

p2

These can be resumed via TMDs, SCET or Parton Showers
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Parton Showers

Parton showers make use of DGLAP equation to resum:
• In terms of real splitting functions and Sudakov form factor

∆ib = exp−
∑
b

∫ µ

µi−1

d2µ′

µ′

∫ zmax

zmin

dz PR
ib(z , αs(µ

2))

• We can study exclusive individual effects of each emission

For the initial state shower → Backard evolution:

∆BW
ib = exp−

∑
b

∫ µ

µi−1

d2µ′

µ′

∫ zmax

zmin

dz PR
ib(z , αs(µ

2))
fi (xi , µ

′)

fb(xb, µ′)

µ0

µF

Fo
rw
ar
d
ev
.
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Parton Showers

Most common parton showers: Herwig, Pythia, Sherpa... only resum at LL

• PanScales NLL resummation and NNLL in some observables

However, the relation between the PDF used in the calculation and the parton shower are
overlooked:

• The emission phase space

• Ordering of the emissions

• QCD order

In this work we implement the Parton-Branching method into Pythia8:

• PB method allows for extraction of PDFs and TMDs
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Parton Branching method
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Forward evolution

µ2 ∂(xfa(x , µ))

∂µ2
=

∑
b

∫ 1

x

dz Pab(z , αs)
x

z
fb(

x

z
, µ2)

To solve the DGLAP evolution equations iteratively, we rewrite the evolution equations in
terms of the Sudakov form factor:

∆s
ab = exp−

∑
b

∫ µ

µ0

d2µ′

µ′

∫ zmax

zmin

dz zPR
ab(z , αs(µ

2))

which represents the probability of no emission

fa(x , µ) = ∆a(µ)f (x , µ) +
∑
b

∫ µ

µ0

dµ′2

µ′2
∆ab(µ

′)

∆ab(µ)

∫ zmax

x

dz zPR
ab(z)

To avoid the (1/(1-z)) pole for z → 1 we introduce zmax = 1− ϵ : ϵ ≪ 1

However, we do not have any information on the transverse momentum
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The Parton Branching method

In the Parton Branching (PB) method we go further:
• At every splitting we compute the momentum of the emitted and propagating partons
• Generating a TMD with its corresponding evolution equation

Ãa(x , µ
2, k⊥) = Ã(x , µ2

0, k⊥)∆a(µ
2) +

∫ µ

µ0

d2µ1⊥
πµ2

1

∆a(µ2)

∆a(µ2
1)

×
∑
b

∫ zmax

x
dz1P

R
ab(µ

2
1, z1)Ãb

(
x

z1
, µ2

0, k⊥

)
∆b(µ

2
1) + ...

µ0

µ

a,x

µ0

µ1

µ

b,x0

c ,p⊥,c

a,x

µ0

µ2

µ1

µ

c ,x0

b,x1

a,x
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Parton branching and angular ordering

In the PB method the emissions follow the angular ordering condition: θi < θi+1

q⊥,i

q⊥,i+1

µi

θi

θi+1

µi+1

PB-set1 q2⊥,i = (1− z)2µ2
i αs(q

2
⊥,i )

PB-set2 q2⊥,i = (1− z)2µ2
i αs(µ

2
i )

Each TMD will have its corresponding PDF
(A. Bermudez et al., 2019)
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Backwards evolution in PS

In Initial State Radiation (ISR), in the PS follows a backwards evolution (BE), from the
hard scale, µf , down to the starting scale µ0:

σ =

∫
dxidxj fi (xi , µf )fj(xj , µf )σ̂ij→X (xi , xj , µf , ...)

∆FW
ib = exp−

∑
b

∫ µ

µi−1

d2µ′

µ′

∫ zmax

zmin

dz PR
ib(z , αs(µ

2))

↓

∆BW
ib = exp−

∑
b

∫ µ

µi−1

d2µ′

µ′

∫ zmax

zmin

dz PR
ib(z , αs(µ

2))
fi (xi , µ

′)

fb(xb, µ′)

µ0

µF

Fo
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PDF2ISR
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Comparison between TMDs and Parton Showers: PS2TMD

Method to extract TMDs from PS ISR (H. Jung, S. Steel, S. Taheri Monfared, Y. Zhou, 2021):

• Introduce PDF in a PS → get a TMD

Can we introduce PB-PDF into Pythia8 and get the correct PB-TMD?
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From Pyhtia8 to PDF2ISR
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Pythia8 PB method

Ordering µ2
i = q2⊥,i = (1− z)Q2 q2⊥,i = (1− z)2µ2

i

Phase space 0 < z < zP8
dyn 0 < z < 1− 105

Splitting Functions LO NLO

αs treatment PDG param. QCDNum num.



From Pyhtia8 to PDF2ISR: phase space
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Pythia8 PB method

Ordering µ2
i = q2⊥,i = (1− z)Q2 q2⊥,i = (1− z)2µ2

i

Phase space 0 < z < zP8
dyn 0 < z < 1− 105

Splitting Functions LO NLO

αs treatment PDG param. QCDNum num.

→
Pythia8 (PDF2ISR) PB method

Ordering q2⊥,i = (1− z)2µ2
i q2⊥,i = (1− z)2µ2

i

Phase space 0 < z < 1− 105 0 < z < 1− 105

Splitting Functions LO LO

αs treatment αfixed
s = 0.130 αfixed

s = 0.130

New PB-PDF/TMDs are fitted

↑



Forward and backward evolution comparison
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Pythia8 (PDF2ISR) PB method

Ordering q2⊥,i = (1− z)2µ2
i q2⊥,i = (1− z)2µ2

i

Phase space 0 < z < 1− 105 0 < z < 1− 105

Splitting Functions LO LO

αs treatment αfixed
s = 0.130 αfixed

s = 0.130

• Good agreement in q⊥ and z

• kT =
∑

i q⊥,i , large discrepancy:

• BW ev.: q⊥ defined in the parton-parton CM-frame
→ boost to the general CM frame



From Pyhtia8 to PDF2ISR: αs treatment
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Pythia8 PB method

Ordering q2⊥,i = (1− z)2µ2
i q2⊥,i = (1− z)2µ2

i

Phase space 0 < z < 1− 105 0 < z < 1− 105

Splitting Functions LO NLO

αs treatment PDG param. QCDNum num.

→
Pythia8 (PDF2ISR) PB method

Ordering q2⊥,i = (1− z)2µ2
i q2⊥,i = (1− z)2µ2

i

Phase space 0 < z < 1− 105 0 < z < 1− 105

Splitting Functions LO NLO

αs treatment QCDNum num. QCDNum num.



Implementation of NLO splitting functions: veto agorithm
(S. Mrenna and P. Skands, 2016) (L. Lönnblad, 2013)

NLO splitting functions negative → No probabilistic interpretation

LO splitting functions for emission generation

↓

Reweighting to NLO: rNLO =
PNLO(z) αNLO

s (kT)

PNLO(z) αso

↙ ↘
rNLO < 0.5

Accept emission

↓
wev = wev × r

rNLO > 0.5

Reject emission

↓
wev = wev×(2−r)
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From Pyhtia8 to PDF2ISR: LO → NLO
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Pythia8 PB method

Ordering q2⊥,i = (1− z)2µ2
i q2⊥,i = (1− z)2µ2

i

Phase space 0 < z < 1− 105 0 < z < 1− 105

Splitting Functions LO NLO

αs treatment QCDNum num. QCDNum num.

→
Pythia8 (PDF2ISR) PB method

Ordering q2⊥,i = (1− z)2µ2
i q2⊥,i = (1− z)2µ2

i

Phase space 0 < z < 1− 105 0 < z < 1− 105

Splitting Functions NLO1 / LO NLO

αs treatment QCDNum num. QCDNum num.
1(S. Mrenna and P. Skands, 2016) (L. Lönnblad, 2013)
Extra veto aglorithm using NLO/LO ratios

We use PB-set1 PDF/TMDs

↑



Conclusion
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Conclusion

We have constructed a ISR consistent with the collinear distribution at LO and NLO:

• Correct treatment of kinemactics

• Implementation of NLO splitting functions via veto algorithm

This method is universal:

• Can be applied to any Parton Shower and any PDF

Once the details of the PDF evolution are known

• Can be extended to NNLO

Resummation accuracy:

• Naively we could think we resum up to partial NNLL (see Ola’s talk yesterday)

• The discrepancy at large kT , however, can spoil this accouracy
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Backup



Emission probability and resolvability

In PS a resolution parameter is introduced, zdyn:

• z < zdyn: resolvable radiation

• zmax > z > zdyn: non-resolvable radiation

Using the angular ordering condition, zdyn = 1− q0/µ:

∆s(µ0, µ) = ∆obs(µ0, µ, q0)∆non−obs(µ0, µ, q0, ϵ)

For the evolution in PS ∆non−obs is not taken into
account, leaving non-resolvable emissions out
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Forward Backward evolution comparison: z
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Forward Backward evolution comparison: qt
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Forward Backward evolution comparison: kt
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NLO/LO gluon
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