A parton shower consistent with parton densities at LO and NLO: PDF2ISR

Resummation, Evolution & Factorisation workshop, Milan

H. Jung^{1,2} L. Lönnblad³ M. Mendizabal¹ S. Taheri Monfared¹

¹Deutsches Elektronen-Synchrotron DESY, Germany ²II. Institut für Theoretische Physik, Universität Hamburg, Hamburg, Germany ³Department of Physics, Lund University, Lund, Sweden

October 15, 2025

Plan for today

- 1. Introduction
- 2. Parton Branching method
- 3. PDF2ISR
- 4. Conclusion

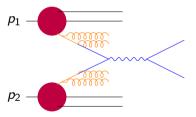
Introduction

Introduction

Collinear factorisation theorem successful for most observables

$$\sigma \propto \mathit{f}_1 \otimes \mathit{f}_2 \otimes \hat{\sigma}$$

If two scales scales are involved, e.g.: DY pT $\rightarrow \alpha_s^n() \log^m(Q^2/p_T^2)$ need to be resummed



These can be resumed via TMDs, SCET or Parton Showers

Parton Showers

Parton showers make use of DGLAP equation to resum:

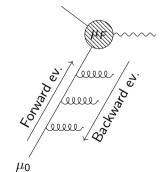
• In terms of real splitting functions and Sudakov form factor

$$\Delta_{ib} = \exp - \sum_b \int_{\mu_{i-1}}^{\mu} rac{d^2 \mu'}{\mu'} \int_{z_{min}}^{z_{max}} dz \; P^R_{ib}(z, lpha_s(\mu^2))$$

We can study exclusive individual effects of each emission

For the initial state shower \rightarrow Backard evolution:

$$\Delta_{ib}^{BW} = \exp{-\sum_b \int_{\mu_{i-1}}^{\mu} rac{d^2 \mu'}{\mu'} \int_{z_{min}}^{z_{max}} dz \; P_{ib}^R(z, lpha_s(\mu^2)) rac{f_i(x_i, \mu')}{f_b(x_b, \mu')}}$$



Parton Showers

Most common parton showers: Herwig, Pythia, Sherpa... only resum at LL

PanScales NLL resummation and NNLL in some observables

However, the relation between the PDF used in the calculation and the parton shower are overlooked:

- The emission phase space
- Ordering of the emissions
- QCD order

In this work we implement the Parton-Branching method into Pythia8:

PB method allows for extraction of PDFs and TMDs

Parton Branching method

Forward evolution

$$\mu^2 \frac{\partial (x f_a(x,\mu))}{\partial \mu^2} = \sum_b \int_x^1 dz \ P_{ab}(z,\alpha_s) \ \frac{x}{z} f_b(\frac{x}{z},\mu^2)$$

To solve the DGLAP evolution equations iteratively, we rewrite the evolution equations in terms of the Sudakov form factor:

$$\Delta_{ab}^s = \exp{-\sum_b \int_{\mu_0}^{\mu} \frac{d^2 \mu'}{\mu'} \int_{z_{min}}^{z_{max}} dz \ z P_{ab}^R(z, \alpha_s(\mu^2))}$$

which represents the probability of no emission

$$f_a(x,\mu) = \Delta_a(\mu)f(x,\mu) + \sum_b \int_{\mu_0}^{\mu} \frac{d\mu'^2}{\mu'^2} \frac{\Delta_{ab}(\mu')}{\Delta_{ab}(\mu)} \int_x^{z_{max}} dz \ z P_{ab}^R(z)$$

To avoid the (1/(1-z)) pole for $z \to 1$ we introduce $z_{max} = 1 - \epsilon$: $\epsilon \ll 1$

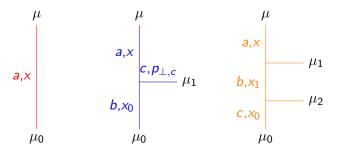
However, we do not have any information on the transverse momentum

The Parton Branching method

In the Parton Branching (PB) method we go further:

- At every splitting we compute the momentum of the emitted and propagating partons
- Generating a TMD with its corresponding evolution equation

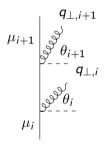
$$\begin{split} \widetilde{A}_{a}(x,\mu^{2},k_{\perp}) &= \widetilde{A}(x,\mu_{0}^{2},k_{\perp})\Delta_{a}(\mu^{2}) + \int_{\mu_{0}}^{\mu} \frac{d^{2}\mu_{1\perp}}{\pi\mu_{1}^{2}} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu_{1}^{2})} \\ &\times \sum_{b} \int_{x}^{z_{max}} dz_{1} P_{ab}^{R}(\mu_{1}^{2},z_{1}) \widetilde{A}_{b} \left(\frac{x}{z_{1}},\mu_{0}^{2},k_{\perp}\right) \Delta_{b}(\mu_{1}^{2}) + \dots \end{split}$$



9 / 27

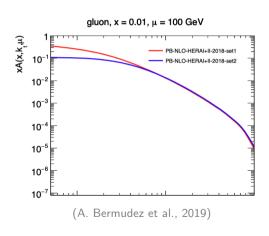
Parton branching and angular ordering

In the PB method the emissions follow the angular ordering condition: $\theta_i < \theta_{i+1}$



$$\begin{array}{|c|c|c|c|c|c|} \hline \mathsf{PB-set1} & q_{\perp,i}^2 = (1-\mathsf{z})^2 \mu_i^2 & \alpha_s(q_{\perp,i}^2) \\ \hline \mathsf{PB-set2} & q_{\perp,i}^2 = (1-\mathsf{z})^2 \mu_i^2 & \alpha_s(\mu_i^2) \\ \hline \end{array}$$

Each TMD will have its corresponding PDF

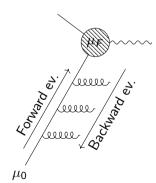


Backwards evolution in PS

In Initial State Radiation (ISR), in the PS follows a backwards evolution (BE), from the hard scale, μ_f , down to the starting scale μ_0 :

$$\sigma = \int dx_i dx_j f_i(x_i, \mu_f) f_j(x_j, \mu_f) \hat{\sigma}_{ij \to X}(x_i, x_j, \mu_f, ...)$$

$$egin{aligned} \Delta_{ib}^{FW} &= \exp - \sum_{b} \int_{\mu_{i-1}}^{\mu} rac{d^{2} \mu'}{\mu'} \int_{z_{min}}^{z_{max}} dz \; P_{ib}^{R}(z, lpha_{s}(\mu^{2})) \ \\ &\downarrow &\downarrow &\downarrow \ \\ \Delta_{ib}^{BW} &= \exp - \sum_{b} \int_{\mu_{i-1}}^{\mu} rac{d^{2} \mu'}{\mu'} \int_{z_{min}}^{z_{max}} dz \; P_{ib}^{R}(z, lpha_{s}(\mu^{2})) rac{f_{i}(x_{i}, \mu')}{f_{b}(x_{b}, \mu')} \end{aligned}$$



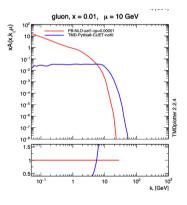
PDF2ISR

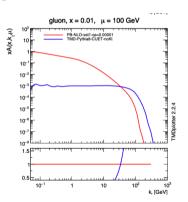
Comparison between TMDs and Parton Showers: PS2TMD

Method to extract TMDs from PS ISR (H. Jung, S. Steel, S. Taheri Monfared, Y. Zhou, 2021):

• Introduce PDF in a PS \rightarrow get a TMD

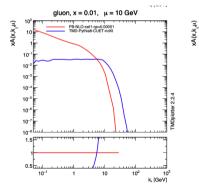
Can we introduce PB-PDF into Pythia8 and get the correct PB-TMD?

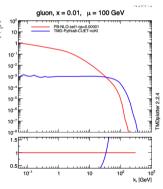




From Pyhtia8 to PDF2ISR

	Pythia8	PB method	
Ordering	$\mu_i^2 = q_{\perp,i}^2 = (1-z)Q^2$	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$	
Phase space	$0 < z < z_{dyn}^{P8}$	$0 < z < 1 - 10^5$	
Splitting Functions	LO	NLO	
$lpha_{s}$ treatment	PDG param.	QCDNum num.	



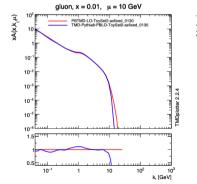


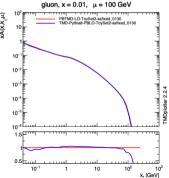
From Pyhtia8 to PDF2ISR: phase space

New PB-PDF/TMDs are fitted

	Pythia8	PB method
Ordering	$\mu_i^2 = q_{\perp,i}^2 = (1-z)Q^2$	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$
Phase space	$0 < z < z_{dyn}^{P8}$	$0 < z < 1 - 10^5$
Splitting Functions	LO	NLO
$lpha_s$ treatment	PDG param.	QCDNum num.

	Pythia8 (PDF2ISR)	PB method
Ordering	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$
Phase space	$0 < z < 1 - 10^5$	$0 < z < 1 - 10^5$
Splitting Functions	LO	LO
α_s treatment	$\alpha_s^{\it fixed} = 0.130$	$\alpha_s^{\it fixed} = 0.130$

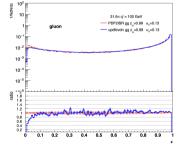


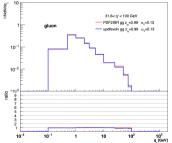


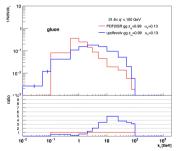
Forward and backward evolution comparison

	Pythia8 (PDF2ISR)	PB method
Ordering	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$
Phase space	$0 < z < 1 - 10^5$	$0 < z < 1 - 10^5$
Splitting Functions	LO	LO
$lpha_s$ treatment	$lpha_s^{ extit{fixed}} = 0.130$	$lpha_s^{\it fixed} = 0.130$

- Good agreement in q_{\perp} and z
- $k_T = \sum_i q_{\perp,i}$, large discrepancy:
 - BW ev.: q_{\perp} defined in the parton-parton CM-frame \rightarrow boost to the general CM frame

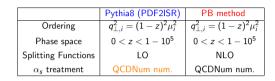


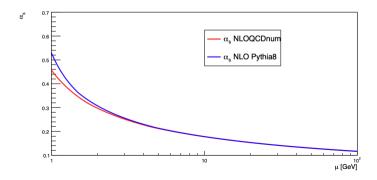




From Pyhtia8 to PDF2ISR: α_s treatment

	Pythia8	PB method	
Ordering	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$	
Phase space	$0 < z < 1 - 10^5$	$0 < z < 1 - 10^5$	
Splitting Functions	LO	NLO	
$lpha_{s}$ treatment	PDG param.	QCDNum num.	





Implementation of NLO splitting functions: veto agorithm

(S. Mrenna and P. Skands, 2016) (L. Lönnblad, 2013)

NLO splitting functions negative \rightarrow No probabilistic interpretation

LO splitting functions for emission generation

Reweighting to NLO:
$$r_{NLO} = \frac{P^{NLO}(z) \; \alpha_s^{NLO}(k_{\mathrm{T}})}{P^{NLO}(z) \; \alpha_{so}}$$

$$r_{NLO} < 0.5 \qquad r_{NLO} > 0.5$$
Accept emission Reject emission
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$w_{\mathrm{ev}} = w_{\mathrm{ev}} \times r \qquad w_{\mathrm{ev}} = w_{\mathrm{ev}} \times (2-r)$$

From Pyhtia8 to PDF2ISR: LO → NLO

We use PB-set1 PDF/TMDs

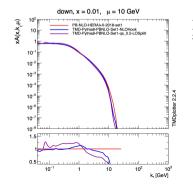
	Pythia8	PB method
Ordering	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$
Phase space	$0 < z < 1 - 10^5$	$0 < z < 1 - 10^5$
Splitting Functions	LO	NLO
$lpha_s$ treatment	QCDNum num.	QCDNum num.

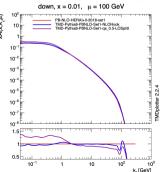
	l
Ordering	Ī
Phase space	
Splitting Functions	
α_s treatment	l

Pythia8 (PDF2ISR)	PB method
$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$	$q_{\perp,i}^2 = (1-z)^2 \mu_i^2$
$0 < z < 1 - 10^5$	$0 < z < 1 - 10^5$
NLO ¹ / LO	NLO

QCDNum num.

QCDNum num. ¹(S. Mrenna and P. Skands, 2016) (L. Lönnblad, 2013) Extra veto aglorithm using NLO/LO ratios





Conclusion

Conclusion

We have constructed a ISR consistent with the collinear distribution at LO and NLO:

- Correct treatment of kinemactics
- Implementation of NLO splitting functions via veto algorithm

This method is universal:

Can be applied to any Parton Shower and any PDF

Once the details of the PDF evolution are known

Can be extended to NNLO

Resummation accuracy:

- Naively we could think we resum up to partial NNLL (see Ola's talk yesterday)
- The discrepancy at large k_T , however, can spoil this accouracy

Backup

Emission probability and resolvability

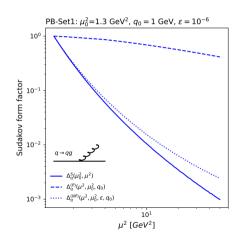
In PS a resolution parameter is introduced, z_{dvn} :

- $z < z_{dyn}$: resolvable radiation
- $z_{max} > z > z_{dyn}$: non-resolvable radiation

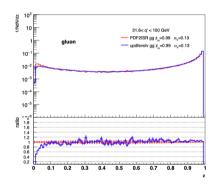
Using the angular ordering condition, $z_{dyn} = 1 - q_0/\mu$:

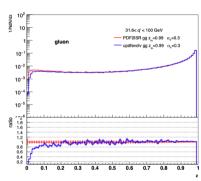
$$\Delta^s(\mu_0,\mu) = \Delta_{obs}(\mu_0,\mu,q_0)\Delta_{non-obs}(\mu_0,\mu,q_0,\epsilon)$$

For the evolution in PS $\Delta_{non-obs}$ is not taken into account, leaving non-resolvable emissions out

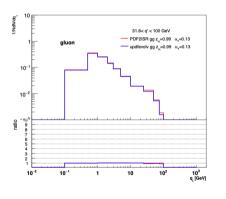


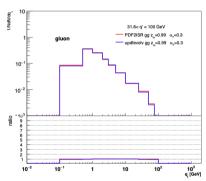
Forward Backward evolution comparison: z



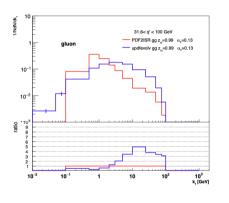


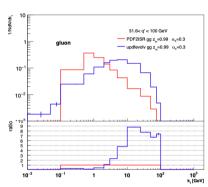
Forward Backward evolution comparison: qt





Forward Backward evolution comparison: kt





NLO/LO gluon

