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DIS at Small-x in Dipole Picture: Time Scales

⊙ Right moving off-shell γ∗, qµ = (q+,0,−Q2/2q+)

⊙ Left moving nucleus, pµ = (M2
N/2P−

N ,0, P−
N ) per nucleon

⊙ Projectile lifetime τγ ∼ 2q+/Q2

⊙ Nucleus contracted length L ∼ 2RAMN/P−
N ∼ A1/3/P−

N

⊙ L ≪ τγ ⇐⇒ xA1/3 ≪ 1

Diffractive jets and evolution of DTMDs in coordinate and momentum space D. Triantafyllopoulos, ECT*



4/24

DIS at Small-x in Dipole Picture: Factorization

σγ∗A(x,Q2) =

󰁝
d2r

󰁝 1

0

dz
󰀏󰀏Ψγ∗→qq̄(Q

2; r, z)
󰀏󰀏2 2πR2

AT (r, x)

⊙ All QCD dynamics in T (r, x)

⊙ Virtuality limits large dipoles: r ≲ 1/Q̄, with Q̄2 = z(1− z)Q2

⊙ Saturation requires r ≳ 1/Qs, hence Q̄2 ≲ Q2
s

⊙ When Q2 ≫ Q2
s dominant contribution from weak scattering
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Diffraction/Elastic Scattering

Elastic Total

⊙ Rapidity gap: wide angular region void of particles

⊙ Elastic for projectile, no nuclear break-up (coherent reaction)

⊙ Close color at amplitude level

⊙ At least two gluons exchanged at amplitude
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Large Dipoles in Diffraction

Elastic Total

σγ∗A
D (x,Q2) =

󰁝
d2r

󰁝 1

0

dz
󰀏󰀏Ψγ∗→qq̄(Q

2; r, z)
󰀏󰀏2 πR2

A[T (r, x)]
2

⊙ T 2 : Diffractive cross section less sensitive to small dipoles

⊙ Even for Q2 ≫ Q2
s dipoles with r ≳ 1/Qs and z ∼ Q2

s/Q
2 ≪ 1

(“aligned jets”) dominate diffractive cross section
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Hard Dijet in Diffraction

⊙ More exclusive processes? Measured jets or hadrons?

⊙ Hard scale sets dipole size r ∼ 1/P⊥, weak scattering

⊙ Hard, symmetric, back to back qq̄ pair:

k1⊥ ≃ k2⊥ ≡ P⊥ ∼ Q ≫ Qs, z1,2 ∼ 1/2

dσγ∗A→qq̄A
D

dz1d2P
∝ πR2

A

1

Q2

󰁿󰁾󰁽󰂀
γ∗qq̄

Q4
s

P 4
⊥󰁿󰁾󰁽󰂀

T 2(r)

∼ 1

P 6
⊥

higher twist
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2+1 Jets in Diffraction

⊙ Diffractive dijet at leading twist 1/P 4
⊥?

⊙ Yes, two hard jets P⊥ ≫ Qs and one semi-hard kg⊥ ∼ Qs ≪ P⊥

⊙ Third, semi-hard, jet provides dijet imbalance

⊙ O(αs) suppression

⊙ R ≫ r: gluon dipole

⊙ Tg(R, YP) ≃ O(1)

⊙ Hard factor

H ∝ 1

Q2

󰁿󰁾󰁽󰂀
γ∗qq̄

× r2󰁿󰁾󰁽󰂀
gluon

emission

∼ 1

P 4
⊥

⊙ xPP
−
N puts trijet on-shell: xP ≃ 1

2q+P−
N

󰀣
P 2
⊥

z1z2
+

k2g⊥
zg

+Q2

󰀤
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Gluon Dipole Wavefunction

⊙ Gluon formation time must be small enough:

k+g /k
2
g⊥ ≲ q+/Q2 ⇝ zg ≲ k2g⊥/P

2
⊥ ≪ 1, gluon is soft

⊙ Momentum space LCWF

⋄ Expand for kg⊥ ≪ P⊥ and zg ≪ kg⊥/P⊥ (no recoil)

⋄ Leading terms cancel ⇝ Non-eikonal emission

⋄ Scattering is eikonal (Wilson lines), keep diffractive projection

⋄ Add instantaneous quark propagator graph
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Gluon from the Pomeron

⊙ Scales separation ⇝ Factorization?

⊙ View gluon as part of Pomeron. Variable change from ξ to x:

x =
xqq̄

xP
=

P 2
⊥

z1z2
+Q2

P 2
⊥

z1z2
+

k2
g⊥
z3

+Q2
or x = β

xqq̄

xBj

≃ β
Q̄2 + P 2

⊥
P 2
⊥

⊙ For given xBj and hard jets, only one of zg, xP and x is independent
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TMD Factorization and Cross Section

dσ
γ∗
T,LA→qq̄gA

D

dϑ1dϑ2d2Pd2KdYP
= HT,L(z1, z2, Q

2, P 2
⊥)

dxGP(x, xP,K
2
⊥)

d2K

⊙ Hard factor as in inclusive qq̄ dijet cross section

HT (z1, z2, Q
2, P 2

⊥) ≡ αemαs

󰀓󰁛
e2f

󰀔
δz

󰀃
z21 + z22

󰀄
󰁿 󰁾󰁽 󰂀
2Pqγ(ϑ1)

P 4
⊥ + Q̄4

(P 2
⊥ + Q̄2)4

󰁿 󰁾󰁽 󰂀
∼1/P 4

⊥
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Semi-hard Factor: Gluon Diffractive TMD

dxGP(x, xP,K
2
⊥)

d2K
=

S⊥(N
2
c − 1)

4π3
󰁿 󰁾󰁽 󰂀

d.o.f.

ΦP(x, xP,K
2
⊥)󰁿 󰁾󰁽 󰂀

occupation number

⊙ Explicit in terms of elastic amplitude Tg(R, xP)

ΦP(x, xP,K
2
⊥) ≈

1− x

2π

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

1 for K⊥ ≪ Q̃s(x)

Q̃4
s(x, YP)

K4
⊥

for K⊥≫ Q̃s(x)

⊙ Valid for large gaps: xP ≲ 10−2

⊙ Effective saturation momentum Q̃2
s(x) ≡ (1− x)Q2

s

⊙ Bulk of distribution at saturation K⊥ ≲ Q̃s(x)
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Gluon Diffractive TMD

MV, Q2
s = 2 GeV2 BK, �YP = 3

0 0.5 1 1.5 2 2.5 3
0

2

4

6

·10�2

K?/Q̃s(x)

[K
?
/Q̃

s
(x
,Y

P)
][
�

P/
(1

�
x
)] x = 0

x = 0.3
x = 0.6
x = 0.9

0 0.5 1 1.5 2 2.5 3

K?/Q̃s(x, YP)

x = 0
x = 0.3
x = 0.6
x = 0.9

Tg(r) = 1− exp

󰀗
−r2Q2

A

4
ln

4

r2Λ2

󰀘
(left) plus BK (right)

⊙ Multiplied by K⊥ (cf. measure d2K)

⊙ Pronounced maximum at K⊥ ∼ Q̃s(x)
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Late time emissions

⊙ Gluons with τg ≫ τγ → zg ≫ k2g⊥/P
2
⊥ do not interact

⊙ Interested in gluons emitted at large angles

θg ≫ θq → zg ≪ kg⊥/P⊥

∆Fg(x,K) =
αsNc

π2

󰁝
d2kg

k2
g

󰁝 kg⊥/P⊥

k2
g⊥/P 2

⊥

dzg
zg

󰁫
F (0)

g (x,K + kg)− F (0)
g (x,K)

󰁬

⊙ If kg⊥ ≪ K⊥, real and virtual cancel

⊙ If K⊥≪ kg⊥ ≪ P⊥, real is small → uncompensated emission

∆Fg(x,K, Q2) = −αsNc

4π
ln2

Q2

K2
⊥
F (0)

g (x,K, Q2)
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The DLA equation

Recast the problem into an evolution equation. First in DLA

ℓ = kg +K in the real term: momentum of t-channel gluon in “target

picture”

∂Fg(x,K
2
⊥, Q

2)

∂ lnQ2
=

Nc

2π

󰀗
Θ(K⊥, µ0)

αs(K
2
⊥)

K2
⊥

󰁝 K2
⊥

Λ2

dℓ2⊥ Fg(x, ℓ
2
⊥, Q

2)

−
󰁝 Q2

K2
⊥

dℓ2⊥
ℓ2⊥

Θ(ℓ⊥, µ0)αs(ℓ
2
⊥)Fg(x,K

2
⊥, Q

2)

󰀘

+Θ(Q,µ0)β0
αs(Q

2)Nc

π
Fg(x,K

2
⊥, Q

2)

⊙ Real ”gain” term: ℓ⊥ ≪ K⊥ ≃ kg⊥

⊙ Virtual ”loss” term: K⊥ ≪ ℓ⊥

⊙ β0 term: virtual corrections from RG flow of gluon DTMD

⊙ Θ-step functions: reduce emissions of partons harder than µ0 ∼ Qs

⊙ Solve as boundary problem at K2
⊥ = Q2 (or better a fraction of Q2)
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The DLA solution

⊙ Exact solution!

Fg(x,K
2
⊥, Q

2) =
1

π

∂xG(x,K2
⊥) exp[−S(K2

⊥, Q
2)]

∂K2
⊥

⊙ Sudakov factor

S(K2
⊥, Q

2) =
Nc

π

󰁝 Q2

K2
⊥

dℓ2⊥
ℓ2⊥

Θ(ℓ⊥, µ0)αs(ℓ
2
⊥)

󰀕
1

2
ln

Q2

ℓ2⊥
− β0

󰀖

≡ Sd(K
2
⊥, Q

2) + Ss(K
2
⊥, Q

2)

⊙ Gluon DPDF “integral of motion”
󰁝 Q2

0

d2K Fg(x,K
2
⊥, Q

2) = xG(x,K2
⊥)

⊙ Obeys DGLAP, source term by “tree-level” (MV/B-JIMWLK)

⊙ All evolutions in one analytic solution
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Boundary Condition

⊙ Boundary condition has contributions from tree-level and DGLAP

F0(x,K
2
⊥) = F (0)

g (x,K2
⊥)󰁿 󰁾󰁽 󰂀

tree

+Θ(K⊥, µ0)
αs(K

2
⊥)

2π2

1

K2
⊥

󰁝 1

x

dξ P (+)
gg (ξ)

󰁿 󰁾󰁽 󰂀
no β0

x

ξ
G

󰀕
x

ξ
,K2

⊥

󰀖

⊙ Rewrite solution as

Fg(x,K
2
⊥, Q

2) =

󰀗
F0(x,K

2
⊥)

+Θ(K⊥, µ0)
αs(K

2
⊥)Nc

2π2
ln

Q2

K2
⊥

xG(x,K2
⊥)

K2
⊥

󰀘
exp

󰀅
−S(K2

⊥, Q
2)
󰀆

⊙ For K⊥ ≫ µ0, tree ∼ 1/K4
⊥

⊙ Receives 1/K2
⊥ contributions from both DGLAP and CSS
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Conserve energy momentum

⊙ Relax strong ordering in transverse momenta

∂Fg(x,K, Q2)

∂ lnQ2
=

Nc

2π

󰁝
d2ℓ

πℓ2⊥
αs(ℓ

2
⊥)

󰁫
Fg(x,K + ℓ, Q2)−Θ(Q−ℓ⊥)Fg(x,K, Q2)

󰁬

+Θ(Q,µ0)β0
αs(Q

2)Nc

π
Fg(x,K, Q2) ,

⊙ Well defined in UV and IR

⊙ To be solved with the boundary condition at Q2 = K2
⊥
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Coordinate space

⊙ Fourier transform K ↔ b

⊙ Problem 1: running coupling

⊙ Problem 2: boundary condition

⊙ Close eyes

∂F̃g(x, b
2
⊥, Q

2)

∂ lnQ2
= −Nc

π

󰀥
1

2

󰁝 Q2

µ2
b

dℓ2⊥
ℓ2⊥

αs(ℓ
2
⊥)−Θ(Q,µ0)β0αs(Q

2)

󰀦
F̃g(x, b

2
⊥, Q

2)

Straightforward solution

F̃g(x, b
2
⊥, Q

2) = F̃0(x, µ
2
b) exp

󰀅
−S(µ2

b , Q
2)
󰀆

with µ2
b = c20/b

2
⊥ and c0 = 2e−γE
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Boundary condition in coordinate space

⊙ If µ2
b ≫ µ2

0: BC is proportional to DPDF, e.g. integrate DLA solution

(total derivative)

F̃0(x, µ
2
b) =

1

4π2
xG(x, µ2

b)

⊙ If µ2
b ≲ µ2

0: no DGLAP, Sudakov K⊥-independent. BC proportional to

FT of tree level

F̃0(x, µ
2
b) = F̃ (0)

g (x, µ2
b)

⊙ Can interpolate the two regimes, e.g.

F̃0(x, µ
2
b) =

xG(x, µ2
b)

xG(0)(x, µ2
b)

F̃ (0)
g (x, µ2

b)
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Tree level BC

⊙ Assume MV model. For µb ≲ µ0 dominated by K⊥ ∼ µ0

F̃ (0)
g (x, µ2

b) ∼ exp(−B)/B2 with B = b2⊥µ
2
0/8

⊙ Exact expression in terms of E1-function, finite b⊥ = 0 limit

⊙ This is our IR Sudakov

⊙ IR here refers to scale µ0 ∼ Qs

MVGBW

Q2
A,g = 2 GeV2

0 2 4 6 8

10�3

10�2

10�1

100

101

Q̃sb?

F̃
0
(x
,b
)/
(1

�
x
)2

x = 0.01
x = 0.05
x = 0.10
x = 0.20
x = 0.30

0 2 4 6 8

Q̃sb?

x = 0.01
x = 0.05
x = 0.10
x = 0.20
x = 0.30
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Numerical Solutions (w/o DGLAP)

Q = 10 GeV

x = 0.1

MV

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

K? (GeV)

K
2 ?
F

g
(x
,K

?
,Q

)

DLA; A
DLA; B
b-space; A
b-space; B
CSS

Q = 40 GeV

x = 0.1

MV

0 10 20 30 40
0

0.2

0.4

0.6

K? (GeV)

K
2 ?
F

g
(x
,K

?
,Q

)

DLA; A
DLA; B
b-space; A
b-space; B
CSS

⊙ K∗
⊥tree ∼ Q̃s and K∗

⊥CSS = Qe
− 1√

2ᾱs

⊙ Results of 3 equations match perturbatively to order ᾱs

Can choose the K⊥-space boundary to match results to order ᾱ2
s

Cannot go beyond.
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Numerical Solutions (DGLAP)

x = 0.1

Q = 10 GeV

Toy Model

w/ DGLAP
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w/ DGLAP
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⊙ DGLAP pushes peak to lower K⊥

⊙ Distribution negative above some K⊥ for x > 0.
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Conclusion

⊙ Diffraction at hard momenta in γA collisions in CGC

⊙ Diffractive hard dijet cross sections dominated by 2+1 jets

due to scattering near unitarity limit

⊙ Factorization: Diffractive gluon TMD

⊙ CSS evolution in momentum and coordinate space

⊙ For sufficiently large rapidity gaps and/or large nuclei gluon DTMD

and DPDF calculated from “first principles”

⊙ CGC, DGLAP and TMD evolution in the same formalism
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