Kinematic power corrections in TMD factorization

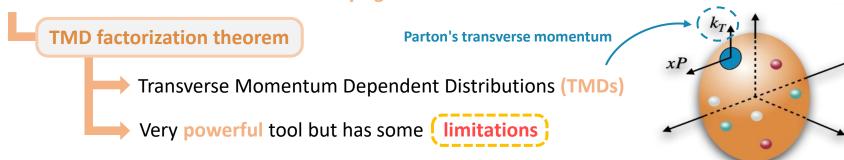
Based on S.Piloñeta and A.Vladimirov JHEP12(2024)059 and work in progress

Resummation, evolution and factorization 2025

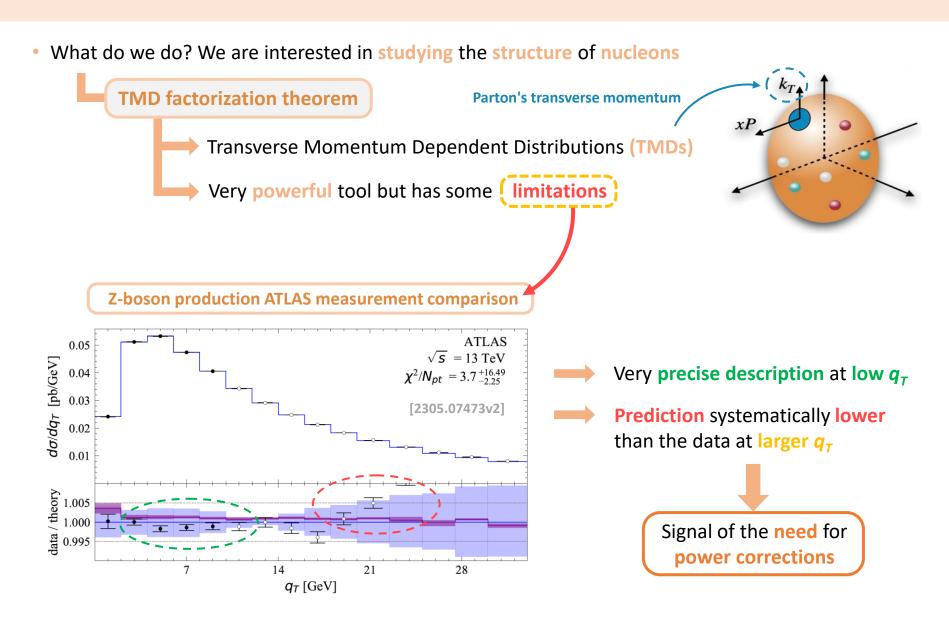
Sara Piloñeta. October 14th 2025

The need for power corrections

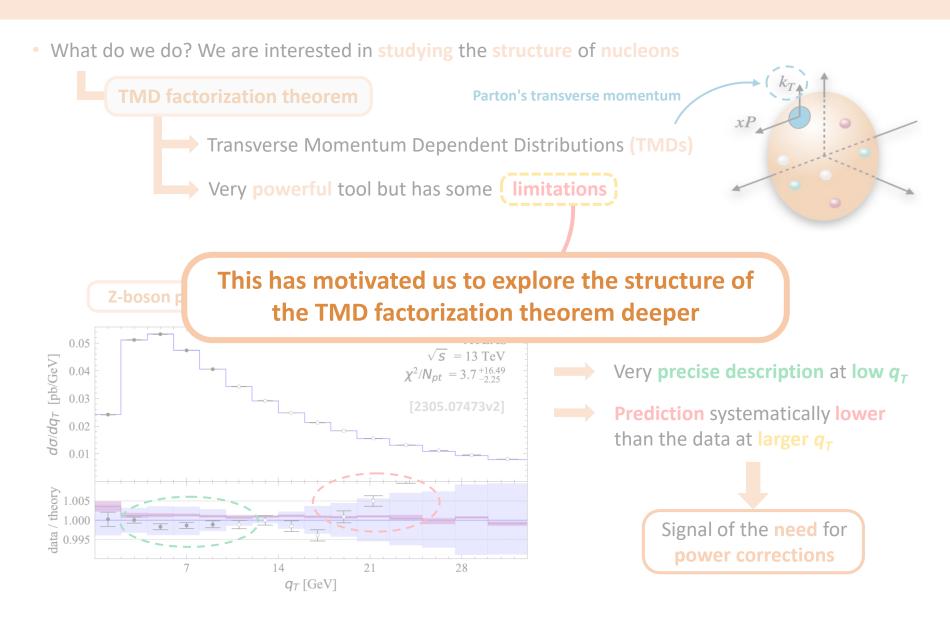
What do we do? We are interested in studying the structure of nucleons



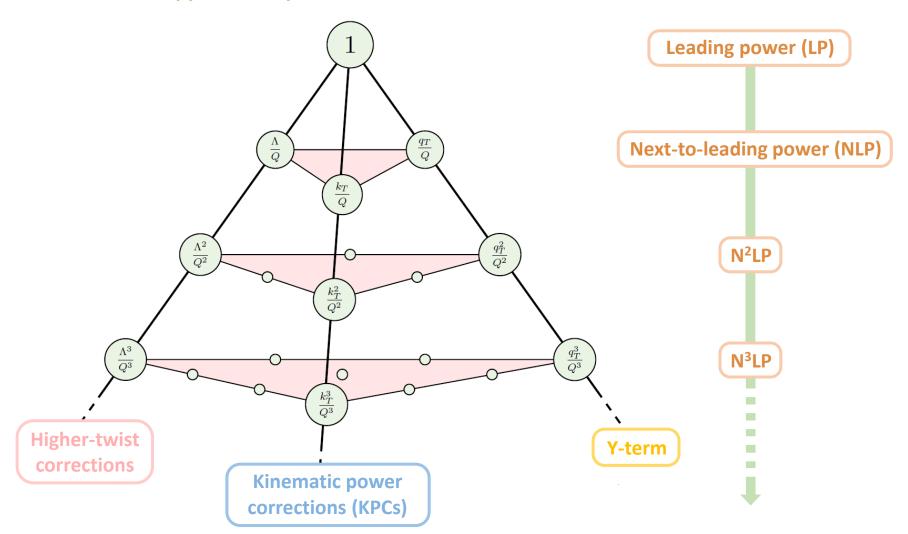
The need for power corrections



The need for power corrections

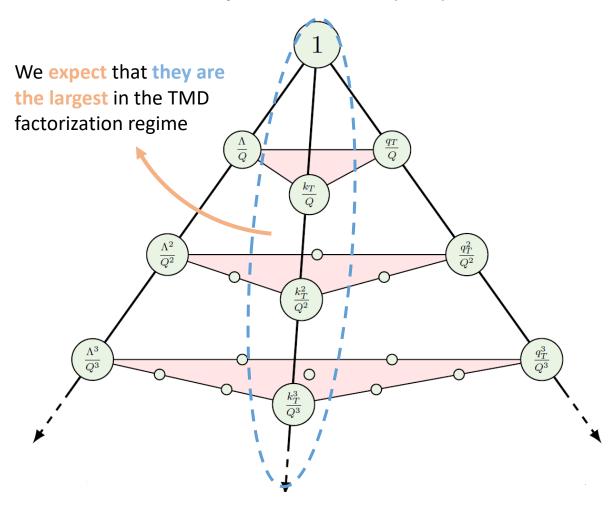


There is a whole "pyramid" of power corrections



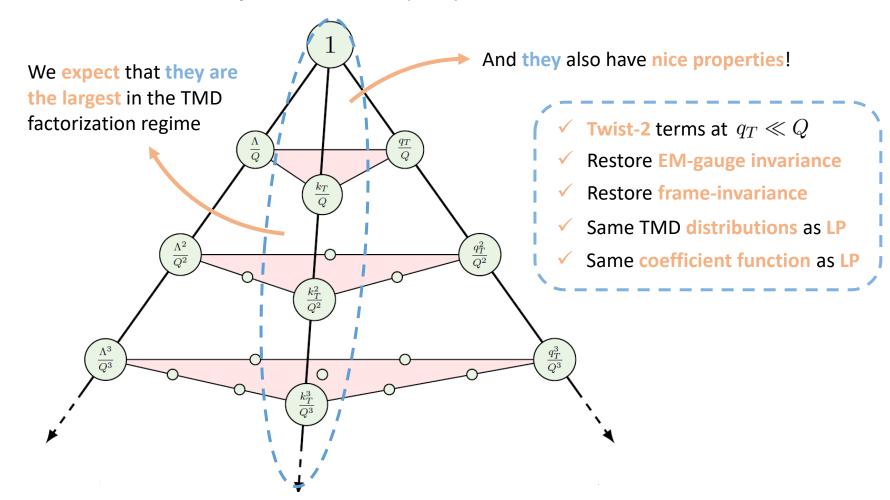
The TMD-with-KPCs factorization theorem

We focus on the kinematic power corrections (KPCs) that follow the LP term



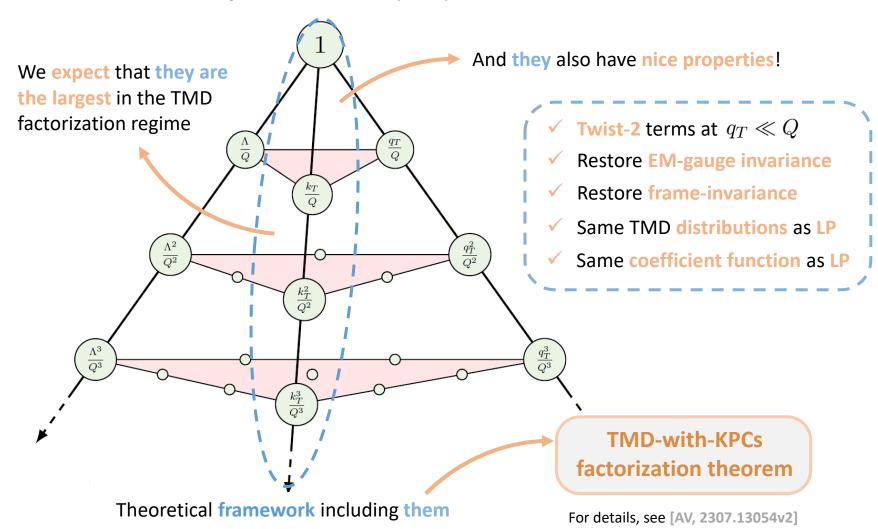
The TMD-with-KPCs factorization theorem

We focus on the kinematic power corrections (KPCs) that follow the LP term



The TMD-with-KPCs factorization theorem

We focus on the kinematic power corrections (KPCs) that follow the LP term



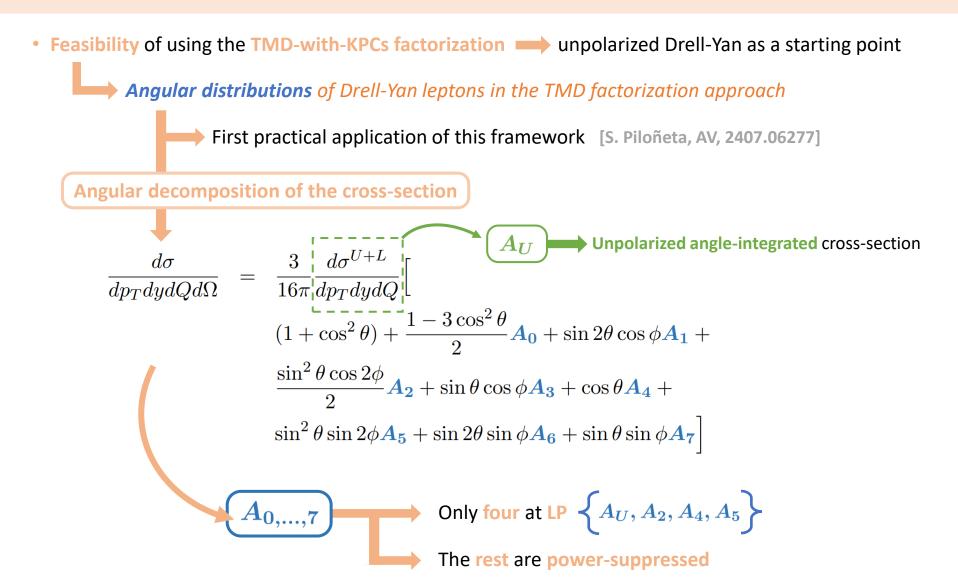
Angular distributions of Drell-Yan leptons

• Feasibility of using the TMD-with-KPCs factorization — unpolarized Drell-Yan as a starting point

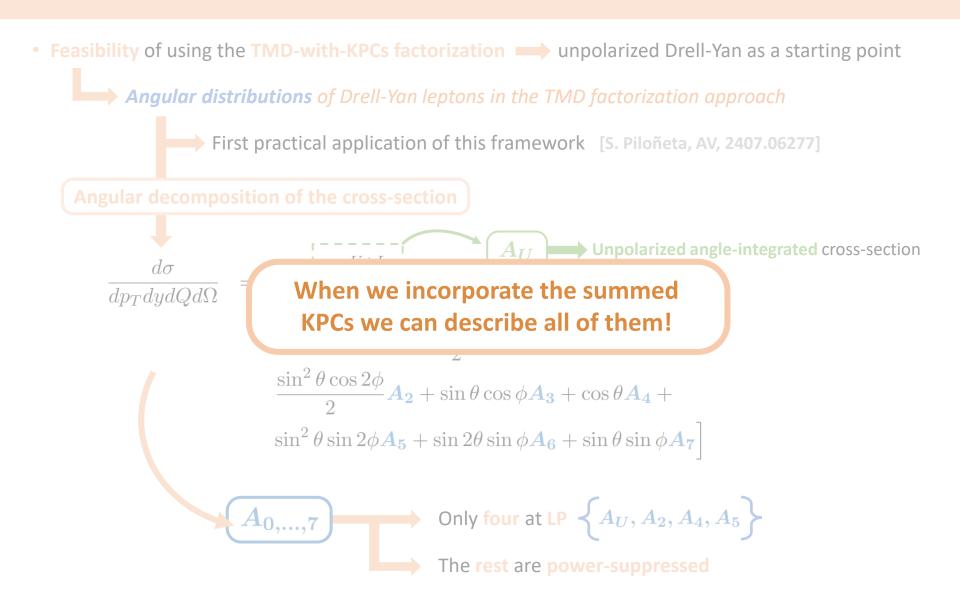
Angular distributions of Drell-Yan leptons in the TMD factorization approach

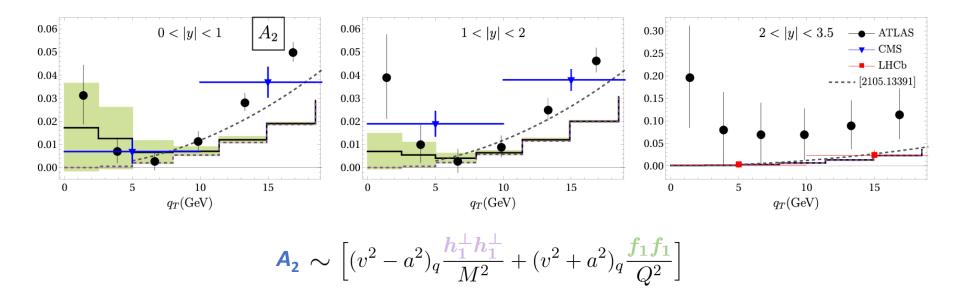
First practical application of this framework [S. Piloñeta, AV, 2407.06277]

Angular distributions of Drell-Yan leptons



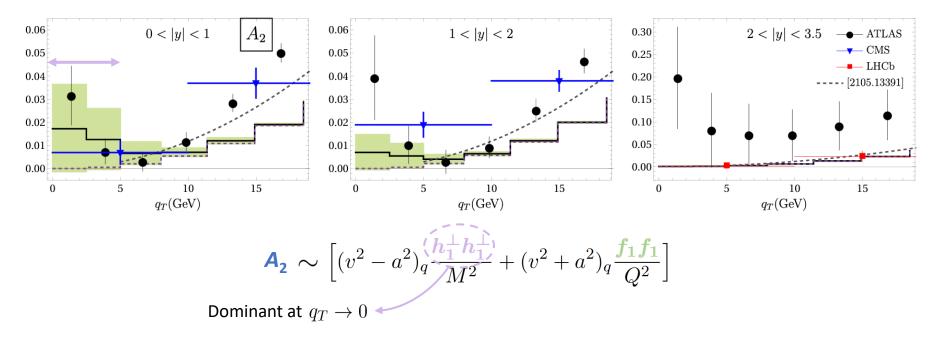
Angular distributions of Drell-Yan leptons





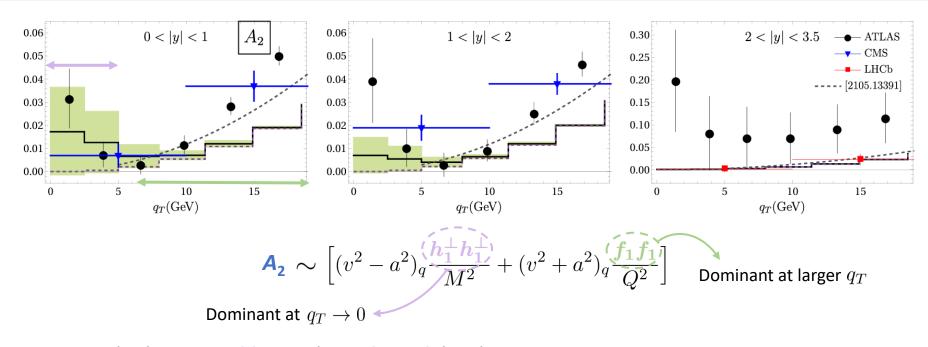
Contains both Boer-Mulders and unpolarized distributions

6/14

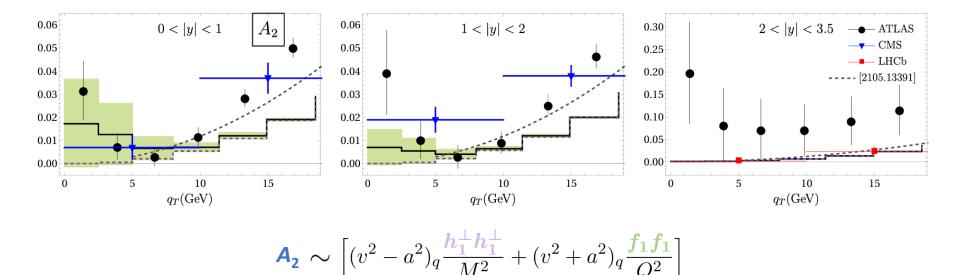


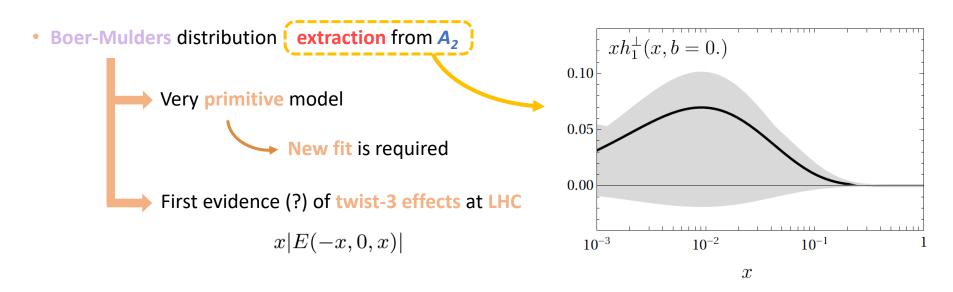
Contains both Boer-Mulders and unpolarized distributions

6/14



Contains both Boer-Mulders and unpolarized distributions





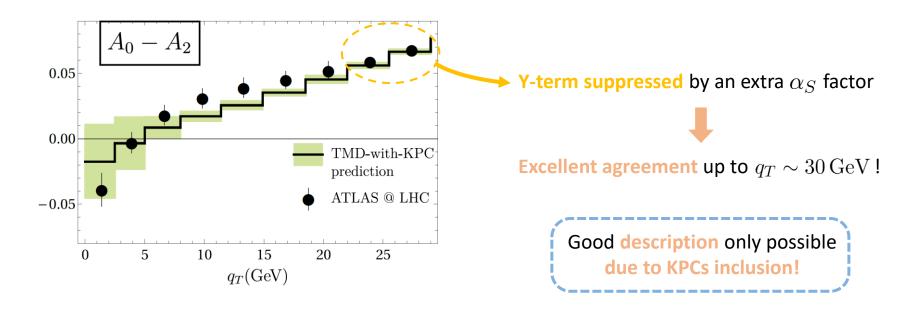
Kinematic Power Corrections

Lam-Tung relation $(A_0 - A_2)$ description

At leading power, the TMD factorization theorem can not describe it

$$(m{A_0}-m{A_2})_{LP}\sim m{k}^2/M^2m{h_1^\perp h_1^\perp}$$
 The Boer-Mulders is very small!

- If we include KPCs the theoretical expression also contains the unpolarized f_1
 - This allows us to make a prediction for the Lam-Tung relation



Moving to SIDIS: structure functions computation using KPCs

Now, let's shift our focus to (SIDIS) essential process for probing hadron structure

Cross-section decomposition in terms of structure functions

$$\frac{d\sigma}{dxdyd\psi dzd\phi_h d\boldsymbol{p}_{\perp}^2} = \frac{\alpha_{\rm em}^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left\{ \boldsymbol{F}_{\boldsymbol{U}\boldsymbol{U},\boldsymbol{T}} + \varepsilon \boldsymbol{F}_{\boldsymbol{U}\boldsymbol{U},\boldsymbol{L}} + \sqrt{2\varepsilon(1+\varepsilon)} \cos\phi_h \boldsymbol{F}_{\boldsymbol{U}\boldsymbol{U}}^{\cos\phi_h} + \varepsilon \cos(2\phi_h) \boldsymbol{F}_{\boldsymbol{U}\boldsymbol{U}}^{\cos2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h \boldsymbol{F}_{\boldsymbol{L}\boldsymbol{U}}^{\sin\phi_h} + \dots \right\}$$

We want to compute them including KPCs

$$\left\{ \mathbf{F}_{UU,T} + \dots \right\} = \frac{x}{4z} \frac{1 - \varepsilon}{Q^2} L_{\mu\nu} W^{\mu\nu}$$

Moving to SIDIS: structure functions computation using KPCs

Now, let's shift our focus to SIDIS essential process for probing hadron structure

Cross-section decomposition in terms of structure functions

$$\frac{d\sigma}{dxdyd\psi dzd\phi_h d\boldsymbol{p}_{\perp}^2} = \frac{\alpha_{\rm em}^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left\{ \boldsymbol{F_{UU,T}} + \varepsilon \boldsymbol{F_{UU,L}} + \sqrt{2\varepsilon(1+\varepsilon)} \cos\phi_h \boldsymbol{F_{UU}^{\cos\phi_h}} \right. \\ \left. + \varepsilon \cos\left(2\phi_h\right) \boldsymbol{F_{UU}^{\cos2\phi_h}} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h \boldsymbol{F_{LU}^{\sin\phi_h}} + \dots \right.$$

We want to compute them including KPCs

$$\left\{ \mathbf{F}_{UU,T} + \dots \right\} = \frac{x}{4z} \frac{1 - \varepsilon}{Q^2} L_{\mu\nu} W^{\mu\nu}$$

1 Lepton tensor conveniently decomposed via the tensors $P^\mu, \ q^\mu, \ p_\perp^\mu$

Moving to SIDIS: structure functions computation using KPCs

Now, let's shift our focus to (SIDIS) essential process for probing hadron structure

Cross-section decomposition in terms of structure functions

$$\frac{d\sigma}{dxdyd\psi dzd\phi_h d\boldsymbol{p}_{\perp}^2} = \frac{\alpha_{\rm em}^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left\{ \boldsymbol{F}_{\boldsymbol{U}\boldsymbol{U},\boldsymbol{T}} + \varepsilon \boldsymbol{F}_{\boldsymbol{U}\boldsymbol{U},\boldsymbol{L}} + \sqrt{2\varepsilon(1+\varepsilon)} \cos\phi_h \boldsymbol{F}_{\boldsymbol{U}\boldsymbol{U}}^{\cos\phi_h} + \varepsilon \cos(2\phi_h) \boldsymbol{F}_{\boldsymbol{U}\boldsymbol{U}}^{\cos2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h \boldsymbol{F}_{\boldsymbol{L}\boldsymbol{U}}^{\sin\phi_h} + \dots \right\}$$

We want to compute them including KPCs

$$\left\{ \mathbf{F}_{UU,T} + \dots \right\} = \frac{x}{4z} \frac{1 - \varepsilon}{Q^2} L_{\mu\nu} W^{\mu\nu}$$

2 Hadron tensor computed using the TMD-with-KPCs factorization theorem

Same coefficient function as LP
$$\left(q_{\mu}W^{\mu\nu}=0\right)$$

Main difference with LP \longrightarrow Convolution integral \mathcal{C}_{KPC}

A closer look at the convolution integral

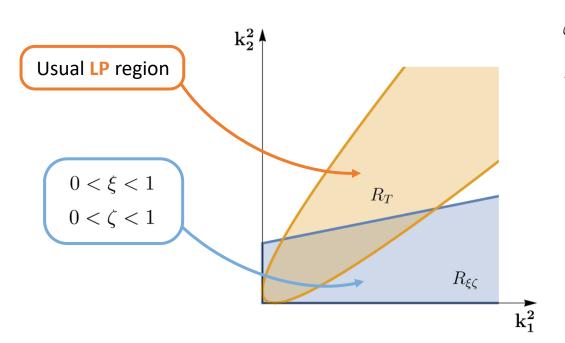
The convolution integral is more complicated now

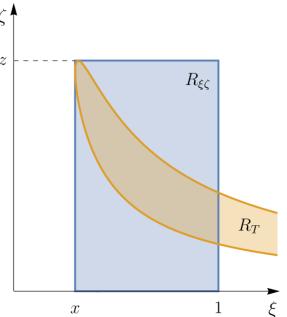
(LP case)
$$\mathcal{C}_{LP}[A, f_1D_1] \sim \int d^2k_1 d^2k_2 \, \delta(q_T + k_1 - k_2) \, f_1(x_1, k_1^2) D_1(z_1, k_2^2)$$

$$(\textbf{KPCs case}) \quad \mathcal{C}_{KPC}[A,f_1D_1] \sim \int d^2k_1 d^2k_2 \, \delta(\boldsymbol{q_T} + \boldsymbol{k_1} - \boldsymbol{k_2}) \, f_1(\boldsymbol{\xi(x_1,k_{1,2}^2)}, \boldsymbol{k_1^2}) D_1(\boldsymbol{\zeta(z_1,k_{1,2}^2)}, \boldsymbol{k_2^2})$$

The integration domain also changes

Additional dependance coming from extra δ-functions





9/14

Kinematic Power Corrections 14 October 2025

A closer look at the convolution integral

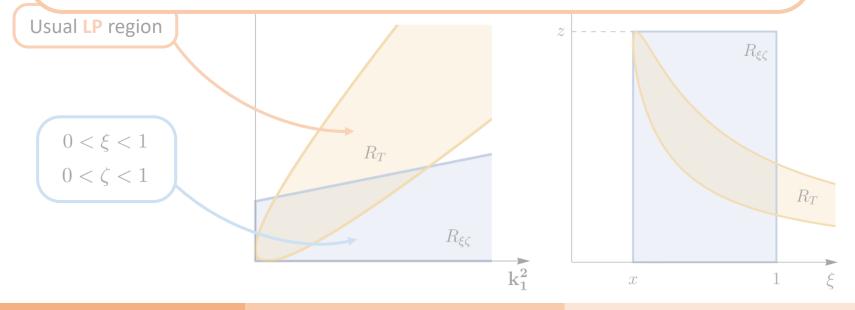
The convolution integral is more complicated now

(LP case)
$$\mathcal{C}_{LP}[A, f_1D_1] \sim \int d^2k_1 d^2k_2 \, \delta(q_T + k_1 - k_2) \, f_1(x_1, k_1^2) D_1(z_1, k_2^2)$$

$$\text{(KPCs case)} \ \ \mathcal{C}_{KPC}[A, \boldsymbol{f_1D_1}] \sim \int d^2k_1 d^2k_2 \, \delta(\boldsymbol{q_T} + \boldsymbol{k_1} - \boldsymbol{k_2}) \, f_1(\boldsymbol{\xi}(\boldsymbol{x_1}, \boldsymbol{k_{1,2}^2}), \boldsymbol{k_1^2}) D_1(\boldsymbol{\zeta}(\boldsymbol{z_1}, \boldsymbol{k_{1,2}^2}), \boldsymbol{k_2^2})$$

The in

The convolution integral and the KPCs have been implemented in arTeMiDe, github.com/VladimirovAlexey/artemide-development



Focusing on $F_{UU,T}$ and $F_{UU,L}$

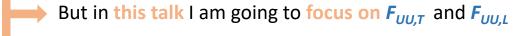
- I have obtained the theoretical expressions for all of them using the TMD-with-KPCs factorization
 - But in this talk I am going to focus on $F_{UU,T}$ and $F_{UU,L}$

$$F_{UU,T} = \frac{x}{4z} F_0 (S_1^{\mu\nu} - S_0^{\mu\nu}) W_U^{\mu\nu} \qquad F_{UU,L} = \frac{x}{4z} F_0 (2S_1^{\mu\nu}) W_U^{\mu\nu}$$

$$S_0^{\mu\nu} = g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{Q^2} \qquad S_1^{\mu\nu} = \frac{(2xP^{\mu} + q^{\mu})(2xP^{\nu} + q^{\nu})}{(1+\gamma^2)Q^2}$$

Focusing on $F_{UU,T}$ and $F_{UU,L}$

I have obtained the theoretical expressions for all of them using the TMD-with-KPCs factorization



$$F_{UU,T} = \frac{x}{4z} F_0 (S_1^{\mu\nu} - S_0^{\mu\nu}) W_U^{\mu\nu}$$
 $F_{UU,L} = \frac{x}{4z} F_0 (2S_1^{\mu\nu}) W_U^{\mu\nu}$

The theoretical expression for $F_{UU,T}$ including KPCs is

$$F_{UU,T} = \frac{x}{2z} Q^2 C_{KPC} [1, f_1 D_1] + \frac{1}{2} F_{UU,L}$$

The inclusion of the KPCs implies that $F_{UU,T}$ is not exactly 1 as it was in the LP case!

$$\begin{array}{c} \mathcal{C}_{LP}[1,f_1D_1] + \varepsilon F_{UU,L} \\ \hline (F_{UU,T})_{LP} \end{array} \qquad \begin{array}{c} \mathcal{C}_{KPC}[1,f_1D_1] + \left(\frac{1}{2} + \varepsilon\right) F_{UU,L} \\ \hline F_{UU,T} + \varepsilon F_{UU,L} \end{array}$$

Focusing on $F_{UU,T}$ and $F_{UU,L}$

I have obtained the theoretical expressions for all of them using the TMD-with-KPCs factorization

But in this talk I am going to focus on $F_{UU,T}$ and $F_{UU,L}$

$$\mathbf{F}_{UU,T} = \frac{x}{4z} F_0 (S_1^{\mu\nu} - S_0^{\mu\nu}) W_U^{\mu\nu} \qquad \mathbf{F}_{UU,L} = \frac{x}{4z} F_0 (2S_1^{\mu\nu}) W_U^{\mu\nu}$$

The theoretical expression for $F_{UU,T}$ including KPCs is

$$F_{UU,T} = \frac{x}{2z} Q^2 C_{KPC} [1, f_1 D_1] + \frac{1}{2} F_{UU,L}$$

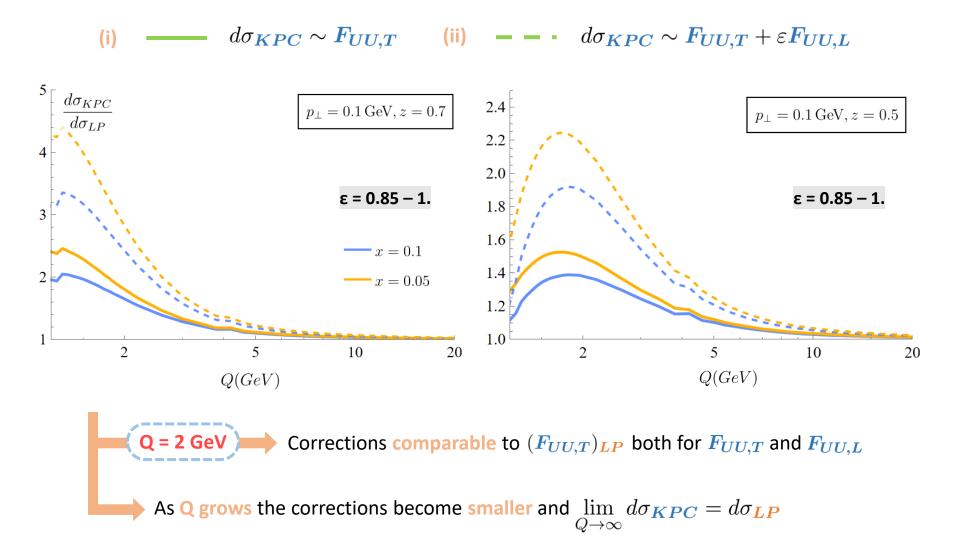
The inclusion of the KPCs implies that $F_{UU,T}$ is not exactly 1 as it was in the LP case!

$$\begin{array}{c} \mathcal{C}_{LP}[1,f_1D_1] + \varepsilon F_{UU,L} \\ \hline (F_{UU,T})_{LP} \end{array} \qquad \begin{array}{c} \mathcal{C}_{KPC}[1,f_1D_1] + \left(\frac{1}{2} + \varepsilon\right) F_{UU,L} \\ \hline \end{array}$$

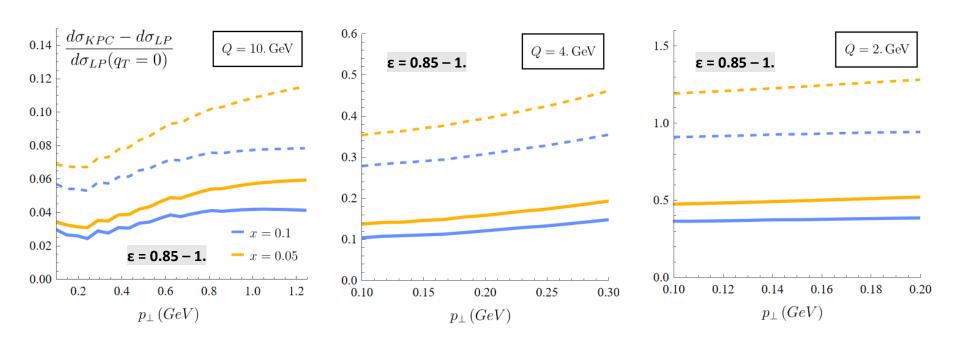
- I have studied the KPCs impact on $\left\{ egin{array}{ll} \circ & ext{The unpolarized SIDIS cross-section} & F_{UU,T} + \varepsilon F_{UU,L} \\ \circ & ext{The structure functions} & F_{UU,T} & ext{and} & F_{UU,L} \end{array}
 ight.$

Ratio of KPCs-summed to LP cross-sections

• I study the ratio $d\sigma_{KPC}/d\sigma_{LP}$ in two different scenarios



Cross-sections difference relative to the q_{τ} = 0 LP cross-section



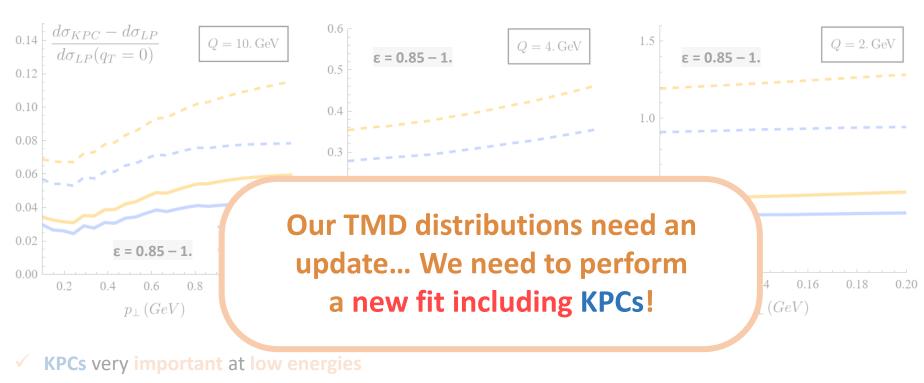
✓ KPCs very important at low energies

$$Q = 2 \text{ GeV}$$
 About 40-50% + $\varepsilon F_{UU,L}$ Several tens of percents!

✓ Almost flat increase of the cross-section ■

The inclusion of KPCs mostly changes the normalization

Cross-sections difference relative to the q_{τ} = 0 LP cross-section



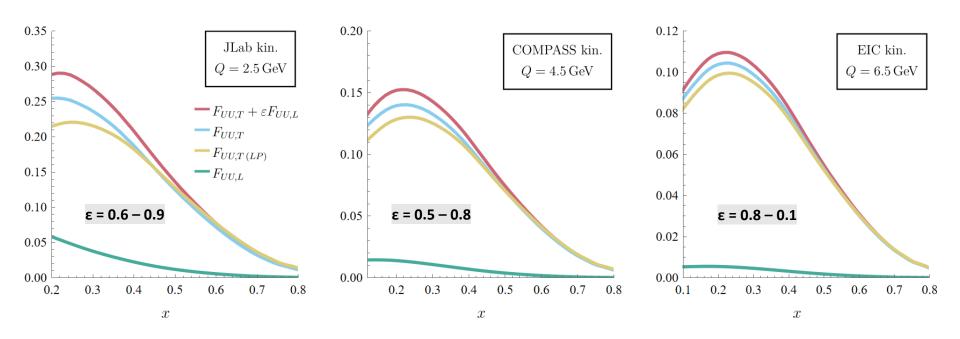
$$Q = 2 \text{ GeV}$$
 About 40-50% $+ \varepsilon F_{UU,L}$ Several tens of percents!

Almost flat increase of the cross-section

The inclusion of KPCs mostly changes the normalization

Longitudinal photons effects in different kinematics

• What about the contribution of longitudinal photons ($F_{UU,L}$) for different experiments?



- \checkmark At low energies, the $F_{UU,L}$ contribution is clearly not negligible
 - JLab significant difference between $(F_{UU,T})_{LP}$ and $F_{UU,T} + \varepsilon F_{UU,L}$
- ✓ Less important at higher energies **EIC Smaller** but still visible

Conclusions

- The TMD-with-KPCs factorization theorem [AV, 2307.13054v2] has been tested
 - The angular distributions of Drell-Yan leptons can be satisfactorily described
 - It gives a nice description of the Lam-Tung relation

- The subleading $F_{UU,T}$ and $F_{UU,L}$ SIDIS structure functions have been computed using it
 - The unpolarized SIDIS cross-section grows when including KPCs

Coming soon

The $F_{UU,L}$ contribution is not negligible at low energies like 2 – 4 GeV

Our TMD distributions need an update... We need to perform a new fit including KPCs!

Kinematic Power Corrections

Conclusions

- > The TMD-with-KPCs factorization theorem [AV, 2307.13054v2] has been tested
 - ☐ The angular distributions of Drell-Yan leptons can be satisfactorily described
 - ☐ It gives a nice description of the Lam-Tung relation

[SP, AV, 2407.06277]

- ightharpoonup The subleading $F_{UU,T}$ and $F_{UU,L}$ SIDIS structure functions have been computed using it
 - The unpola

Thank you for your attention! ©

ming soon!

lacksquare The $F_{UU,L}$

Our TMD distributions need an update... We need to perform a new fit including KPCs!

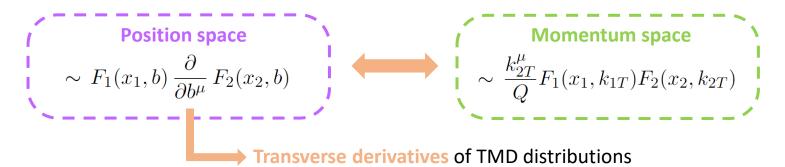
BACKUP

Power corrections

The four types

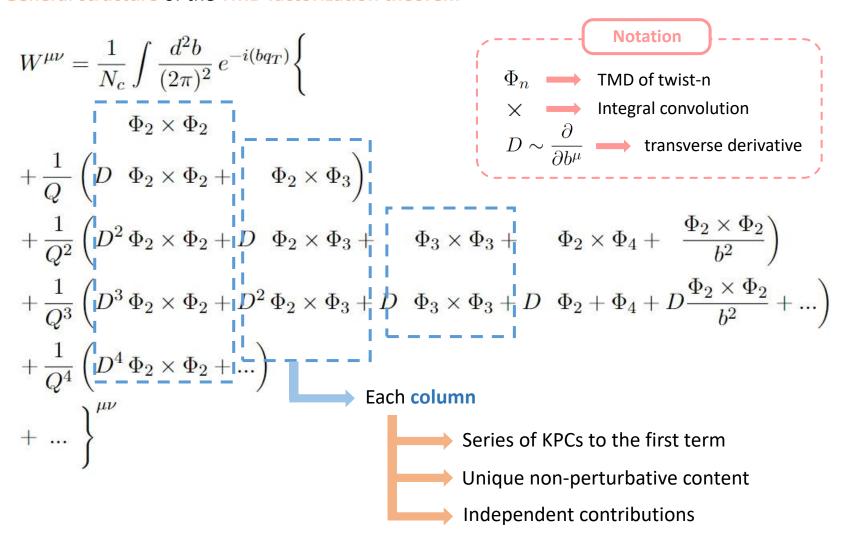
- Corrections to the LP term suppressed by powers of $Q (\sim q^+ \sim q^-)$ large scale
- The power corrections can be categorized into four conceptual types
 - lacktriangle Target-mass corrections $\sim M/Q$ \longrightarrow hadron mass
 - lacktriangleq Higher-twist power corrections $\sim (\Lambda/Q)^{n-2}$ TMDs of larger twist (n = D S)
 - \square q_{T}/Q power corrections

 \square k_{T}/Q power corrections Kinematic Power Corrections (KPCs)

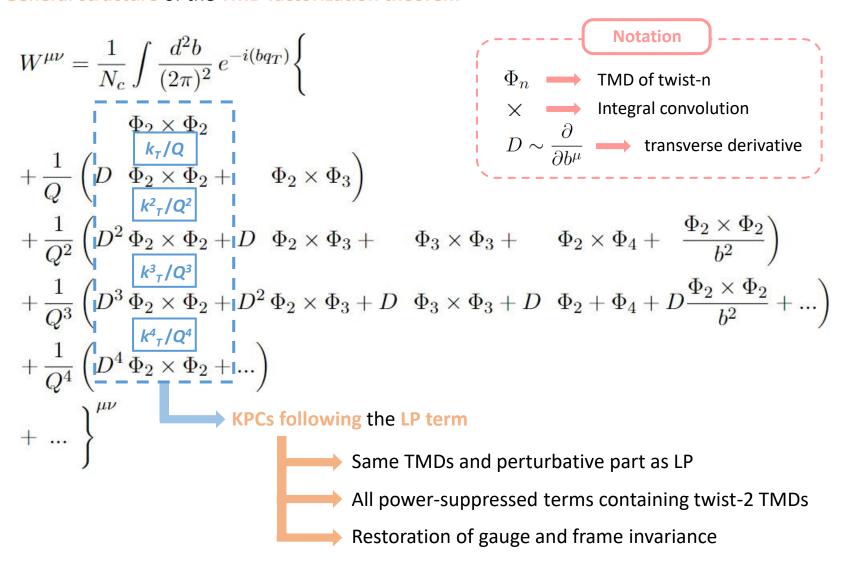


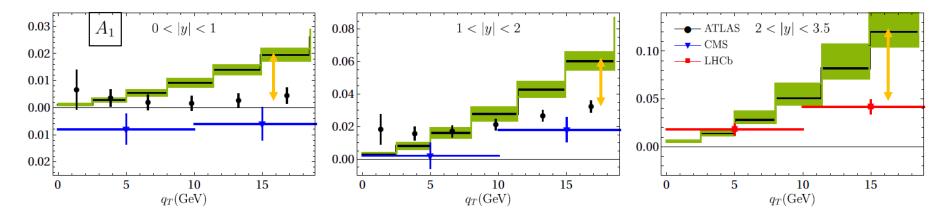
General structure of the TMD factorization theorem

General structure of the TMD factorization theorem

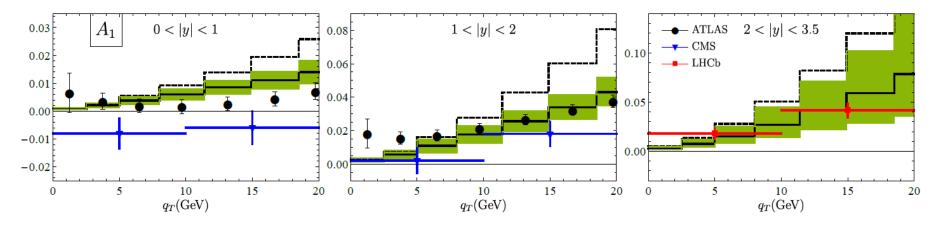


General structure of the TMD factorization theorem

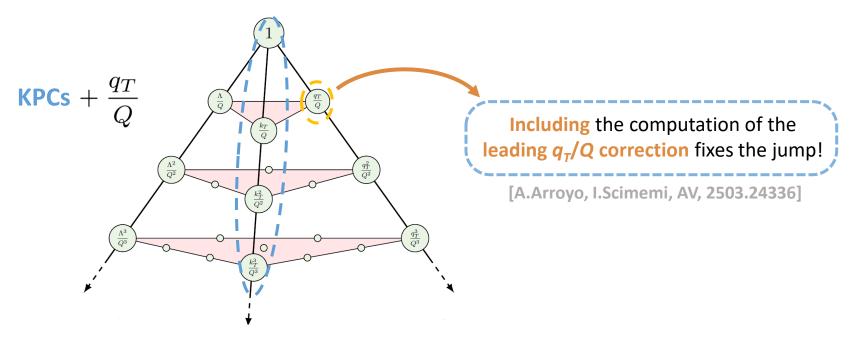




• Problems with the A_1 data description at larger values of q_T

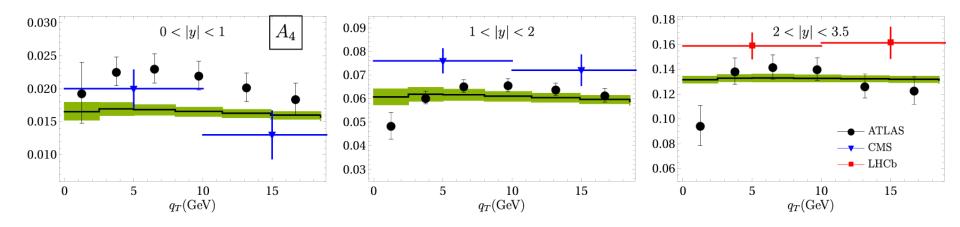


Problems with the A₁ data description at larger values of q_T



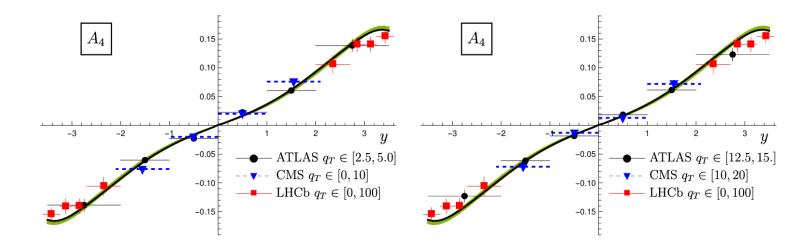
- Leading power
- Proportional to the difference between quark and anti-quark distributions (anti-symmetric flavor)
- Inclusion in standard f_1 extractions

 \triangleright Comparison as a function of q_T with ATLAS, CMS and LHCb measurements



Theory prediction agrees very well with the measurements

- Leading power
- Proportional to the difference between quark and anti-quark distributions (anti-symmetric flavor)
- Inclusion in standard f_1 extractions
- Comparison as a function of y with ATLAS, CMS and LHCb measurements



The agreement is even more transparent