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(One of the many) Roles QCD plays in LHC processes

Both experimental and theoretical advancements made for testing the limits of the Standard Model
— precision era

From the many processes that occur at the LHC the focus for this talk will be on those that

have a t-channel-gluon mediated contribution
.....Q..........Q............................................O.
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As an example: Vector Boson Fusion (VBF) VS t-channel gluon fusion (both give Higgs + jets)

—

—

What theoretical approach could help one distinguish between such two different origins?

gluon exchange . large perturbative

in hard interaction !! corrections at
high energies 3

» resummation




Lessons learnt from Regge theory

In a 2 — 2 scattering process the Regge limit means s >> ||

Dominant behaviour in this limit:

asymptotic behaviour of Legendre polynomial of highest spin j in a £-channel exchange
: S\J
M(s,t) — 167 (2§ + 1) a;(t) (;)

QCD candidate: gluon field exchanged in ¢-channel
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For a general 2 — n scattering

the Multi-Regge Kinematics (MRK) limit demands:
2 2 .
Y1 > y2>>>>y’n and |p_L7J’ 2|p_Lj| ) \V/’l,j
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In the 2 — 3 scattering (a gluon emission):
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High energy logarithms and their resummation

Reorganizing the
perturbative series
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High energy logarithms and their resummation
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Lipatov ansatz for t-channel propagators: The phase space measure of the £™ emission:
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The Regge trajectory at one-loop is
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aft) = 2g°Cuer - ( R>

—1

This will result in log of large invariants



The differential cross section in bins of m;

Process studied: pp —
[hep-ex/2403.02793]

v 4+ 27 ... Why?

Final-state event selection

Production process p%’iss+jets 2e+jets  2u+jets  e+jets  u+jets  y+jets
Z — yv + jets 55% - - - - -
Z — ee +jets - 94% - - - -
Z — pu+ jets - - 95% - 2% -
W — ev + jets 6% - - 68% - -
W — uv + jets 9% - - - 67% -
W — 1v +jets 20% - - 5% 7% -

 + et N >
Top 7% 3% 2%  25%  21% _
Multi-boson 3% 3% 3% 2% 3%  <1%

Photon rapidity

Leading photon pr
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Leading jet pr
Sub-leading jet pr
Leading jet |y|
Sub-leading jet |y|

Dijet invariant mass mj, ;,
|ij1jz|

Jets with rapidity in-between hardest two
Jet definition

ly| < 1.37 or 1.52 < |y| < 2.47
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Ratio to NLO

[hep-ph/2506.17438]
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mj, j, is the invariant mass between the two hardest jets (j; and j2)
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(A very brief) Introduction to High Energy Jets

HEJ performs a leading log (LL) resummation of high energy logarithms to all orders. It does this with the help
of factorised amplitudes — can construct high multiplicity processes (and includes subleading channels too).

Iy A
(1! factorised does not necessarily imply that the ¢ Y ¢
dependence is only on local momenta)

impact currents and £-channel emissions create an effective diagram

Py
(Lipatov vertices + Lipatov ansatz) Vv \

Jy A/

Yy Y

HEJ works with approximations of amplitudes which preserve: . gauge invariance

* Lorentz invariance

* crossing symmetry

*  momentum conservation
— retaining these properties can make the predictions for the LHC processes better and richer.

HEJ can also perform matching to full fixed order results.



Some highlights from previous studies
1. Stable HEJ prediction for v + 2 j

[hep-ph/2506.17438] VBFNLO 3.0 - [hep-ph/2405.06990]
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2. HEJ prediction for R

[hep-ex/2405.20206]
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NLL could improve the slope!
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What does it take to do NLL resummation in HEJ?

Next-to-Leading-Log contribution ——> «; corrections to all the LL pieces, meaning:

one-loop corrections and relaxing the MRK regime to a Quasi-Multi-Regge one instead

v I

X o
1~?£I

...how should one start designing these pieces so as to fulfill all HEJ requirements? 11

Ye = Ye+1
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There was no “recipe” for obtaining these HEJ components ...



HEJ amplitudes can claim all HEJ amplitudes

full NLL accuracy are factorised

the entire relevant phase space
is covered

extend code's MC for

the extra phase space

are the pieces universal?

IR structure
correctly accounted for
and split between

currents and resummation
region

decide on and employ

a subtraction scheme

(spoiler: FKS)
or should every different partonic channel

be treated differently?
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One-loop-corrected impact current

HEJ works directly with helicity-spinor objects ——> useful to resort to full QCD results of one-loop amplitude given
in terms of colour-ordered components [hep-ph/9305239]
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One-loop scalar functions for g — qQ@ scattering

Considering a physical 2 —» 2 process for which: s = Sq@, U =
[hep-ph/9305239]
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One-loop scalar functions for g — qQ@ scattering

Considering a physical 2 — 2 process for which: s = 5,0, ¢ = —S4,5, U = —550Q

[hep-ph/9305239]
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Recall from before that the Lipatov ansatz reads:
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One-loop scalar functions for g — qQ@ scattering

Considering a physical 2 —» 2 process for which: s = Sq@, U =
[hep-ph/9305239]

— Sqq >
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! crossing symmetry demands distinguishing all invariants.

As a consequence, the entire IR structure will be kept.

This enforces the real emission part to account for all IR points as well.

= T %Q
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Real emission impact current
1. The full amplitude for qQ — qQg

Colour-ordered helicity-dependent amplitudes for this process exist in the literature as well.
[hep-ph/9401294]
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2. Obtaining the HEJ amplitude
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2. Obtaining the HEJ amplitude
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2. Obtaining the HEJ amplitude

— separately gauge invariant !!

l
4 o @ : — subleading in QMRK regime
. — non-divergent (!)
. — entire IR structure retained

Effective amplitudes

W _ o3 {aleld (Qliglg] (gl Q)
" e+ pa? (pg+00)?
m@ = g (qlpeld]  (Qlpelgl (glig| Q)]
—L S (pg+pg)* (P +pQ)?
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If we want to match the result onto the form:

Meﬂ.(q_kq7 QAQ Y QAQ Y qu Y g>\g) —

21



If we want to match the result onto the form:

M (@1, Q 2, Q22 M, gto) =
We are getting the expression:
T H(@1,Q°2,Q72,¢™, g*) = (igs)? €7 (pg, Dr) -
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If we want to match the result onto the form:

M (@1, Q 2, Q22 M, gto) =
We are getting the expression:
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Improvements over an earlier HEJ current

(Previous expression) (Current expression)

Unordered impact current Quasi-MRK impact current

NLL accuracy fully NLL-accurate for fully NLL-accurate for
qQ — qQg process q® — qQg process
phase space does not have loop corrections can be used for fully regulated
covered so can not cover IR phase space qQ — g at NLO
factorisability current contains kinematics contains the entire
and part of the colour colour information
of the 2 — 3 process
universality can be applied

=
-
-

to any partonic channel
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(Photo taken during the “HEJ days” in Edinburgh - 2023)
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Further steps
- test the new NLL () — qQqg g* current in a NLO calculation for dijet production

- implement the FKS subtraction scheme for the HEJ calculation of dijet production

- construct the () — ggqg g* impact current at NLL

- fit the LL resummation scheme within the new impact currents

Conclusions

- demonstrated the importance of high energy log resummation for LHC processes
— motivation for working towards full NLL

- worked out the first NLL HEJ component

- “recipe” that fulfills all HEJ constraints, accounts for the entire phase space at NLO,
amenable to (unmodified) implementation of subtraction scheme (FKS)

26



Further steps
- test the new NLL () — ¢qgg™ current in a NLO calculation for dijet production

- implement the FKS subtraction scheme for the HEJ calculation of dijet production

- construct the (Z) — ggg g* impact current at NLL

- fit the LL resummation scheme within the new impact currents

Conclusions

- demonstrated the importance of high energy log resummation for LHC processes
— motivation for working towards full NLL

- worked out the first NLL HEJ component

- “recipe” that fulfills all HEJ constraints, accounts for the entire phase space at NLO,
amenable to (unmodified) implementation of subtraction scheme (FKS)

Thank you for your attention!
27
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