Progress on the Next-to-Leading Log framework within High Energy Jets (HEJ)

Mălina Roșca

- based on work done with members from the HEJ collaboration -

Resummation, Evolution and Factorization 2025

15th of October 2025

(One of the many) Roles QCD plays in LHC processes

Both experimental and theoretical advancements made for testing the limits of the Standard Model

→ precision era

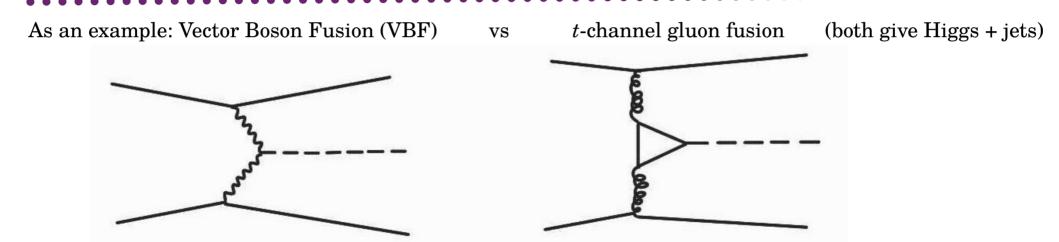
From the many processes that occur at the LHC the focus for this talk will be on those that have a *t*-channel-gluon mediated contribution

(One of the many) Roles QCD plays in LHC processes

Both experimental and theoretical advancements made for testing the limits of the Standard Model . .

→ precision era

From the many processes that occur at the LHC the focus for this talk will be on those that have a *t*-channel-gluon mediated contribution



What theoretical approach could help one distinguish between such two different origins?

gluon exchange in hard interaction!! large perturbative corrections at high energies resummation

Lessons learnt from Regge theory

In a $2 \rightarrow 2$ scattering process the **Regge limit** means s >> |t|

Dominant behaviour in this limit:

asymptotic behaviour of Legendre polynomial of **highest spin** *j* in a *t*-channel exchange

$$\mathcal{M}(s,t) \longmapsto 16\pi (2j+1) a_j(t) \left(\frac{s}{t}\right)^j$$

QCD candidate: gluon field exchanged in *t*-channel

For a general $2 \rightarrow n$ scattering

the Multi-Regge Kinematics (MRK) limit demands:

$$y_1 \gg y_2 \gg \ldots \gg y_n$$
 and $|p_{\perp i}|^2 \simeq |p_{\perp j}|^2$, $\forall i, j$

In the $2 \rightarrow 3$ scattering (a gluon emission):

$$\int \frac{d^3 p_g}{(2\pi)^3 \, 2 \, E_g} \, \cdot \, |\mathcal{M}_{2 \to 3}|^2 = \int \frac{d^2 p_{\perp g}}{(2\pi)^2} \, \int_{y_3}^{y_1} \frac{dy_g}{4\pi} \, \cdot \, \left| \mathcal{M}_{2 \to 3}^{\mathrm{MRK}} \right|^2 = \Delta y \int \frac{d^2 p_{\perp g}}{(2\pi)^2} \, \cdot \, \left| \mathcal{M}_{2 \to 3}^{\mathrm{MRK}} \right|^2$$

$$\qquad \qquad \text{where } \left| \mathcal{M}_{2 \to 3}^{\mathrm{MRK}} \right|^2 \propto \frac{1}{\left| p_{\perp g} \right|^2} \quad \text{and} \quad \Delta y \underset{\mathrm{MRK}}{\longmapsto} \ln \left(\frac{s}{-t} \right)$$

High energy logarithms and their resummation

Reorganizing the perturbative series

$$d\sigma^{pp \to 2j + X} = c_0^{(1)} \alpha_s^2 \\ + \left[c_1^{(2)} \ln \left(-\frac{s}{t} \right) + c_0^{(2)} \right] \alpha_s^3 \\ + \left[c_2^{(3)} \ln^2 \left(-\frac{s}{t} \right) + c_1^{(3)} \ln \left(-\frac{s}{t} \right) + c_0^{(3)} \right] \alpha_s^4 \\ + \left[c_3^{(4)} \ln^3 \left(-\frac{s}{t} \right) + c_2^{(4)} \ln^2 \left(-\frac{s}{t} \right) + c_1^{(4)} \ln \left(-\frac{s}{t} \right) + c_0^{(4)} \right] \alpha_s^5 \\ + \left[c_4^{(5)} \ln^4 \left(-\frac{s}{t} \right) + c_3^{(5)} \ln^3 \left(-\frac{s}{t} \right) + c_2^{(5)} \ln^2 \left(-\frac{s}{t} \right) + c_1^{(5)} \ln \left(-\frac{s}{t} \right) + c_0^{(5)} \right] \alpha_s^6 \\ + \dots$$

$$LL \qquad NLL \qquad NNLL \qquad NNLL$$

High energy logarithms and their resummation

Reorganizing the perturbative series

$$\begin{split} d\sigma^{pp \to 2j + X} &= c_0^{(1)} \alpha_s^2 \\ &+ \left[c_1^{(2)} \ln \left(-\frac{s}{t} \right) + c_0^{(2)} \right] \alpha_s^3 \\ &+ \left[c_2^{(3)} \ln^2 \left(-\frac{s}{t} \right) + c_1^{(3)} \ln \left(-\frac{s}{t} \right) + c_0^{(3)} \right] \alpha_s^4 \\ &+ \left[c_3^{(4)} \ln^3 \left(-\frac{s}{t} \right) + c_2^{(4)} \ln^2 \left(-\frac{s}{t} \right) + c_1^{(4)} \ln \left(-\frac{s}{t} \right) + c_0^{(4)} \right] \alpha_s^5 \\ &+ \left[c_4^{(5)} \ln^4 \left(-\frac{s}{t} \right) + c_3^{(5)} \ln^3 \left(-\frac{s}{t} \right) + c_2^{(5)} \ln^2 \left(-\frac{s}{t} \right) + c_1^{(5)} \ln \left(-\frac{s}{t} \right) + c_0^{(5)} \right] \alpha_s^6 \\ &+ \dots \end{split}$$

Virtual level

Lipatov ansatz for *t*-channel propagators:

[Kuraev, Lipatov, Fadin (1976)]

$$\frac{1}{t} \longmapsto \frac{1}{t} \left(\frac{s}{-t} \right)^{\alpha(t)}$$

(verified at NNLO by full QCD [hep-ph/0109028])

The Regge trajectory at one-loop is

$$\alpha(t) = 2 g_s^2 C_A c_\Gamma \frac{1}{\epsilon} \left(\frac{\mu_R^2}{-t} \right)^{\epsilon}$$

Real emission level

The phase space measure of the $k^{\rm th}$ emission:

$$\int \frac{d^3 p_k}{(2\pi)^3 2 E_k} \cdot \left| \mathcal{M}_{2 \to n}^{\text{MRK}} \right|^2$$

$$= \int \frac{d^2 p_{\perp k}}{(2\pi)^2} \int_{y_{k-1}}^{y_{k+1}} \frac{dy_k}{4\pi} \cdot \left| \mathcal{M}_{2 \to n}^{\text{MRK}} \right|^2$$

But $\left|\mathcal{M}_{2\to n}^{\mathrm{MRK}}\right|^2$ does not depend on the rapidity This will result in log of large invariants

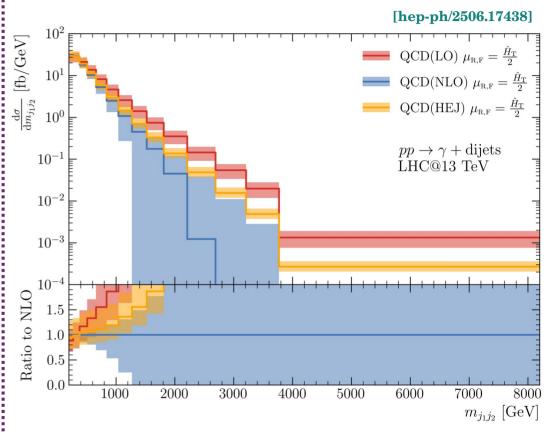
The differential cross section in bins of m_{jj}

Process studied: $pp \longrightarrow \gamma + 2j$... Why?

[hep-ex/2403.02793]

	Final-state event selection					
Production process	p _T ^{miss} +jets	2e+jets	2μ+jets	e+jets	μ+jets	γ+jets
$Z \rightarrow \nu\nu + \text{jets}$	55%	_	_	_	_	_
$Z \rightarrow ee + jets$	_	94%	_	_	_	_
$Z \rightarrow \mu\mu + \text{jets}$	_	_	95%	_	2%	-
$W \rightarrow ev + \text{jets}$	6%	_	_	68%	_	_
$W \rightarrow \mu \nu + \text{jets}$	9%	_	_	_	67%	-
$W \rightarrow \tau \nu + \text{jets}$	20%	_	_	5%	7%	
γ + jets	_	_	_	_	- (>99%
Top	7%	3%	2%	25%	21%	_
Multi-boson	3%	3%	3%	2%	3%	<1%

Photon rapidity	$ y \le 1.37 \text{ or } 1.52 \le y \le 2.47$		
Leading photon p_T	> 160 GeV		
$p_T^{ m recoil}$	> 200 GeV		
Leading jet p_T	> 80 GeV		
Sub-leading jet p_T	> 50 GeV		
Leading jet $ y $	< 4.4		
Sub-leading jet $ y $	< 4.4		
Dijet invariant mass $m_{j_1j_2}$	> 200 GeV		
$ \Delta y_{j_1j_2} $	> 1		
Jets with rapidity in-between hardest two	None with $p_T > 30 \text{ GeV}$		
Jet definition	anti- k_t , $R = 0.4$		



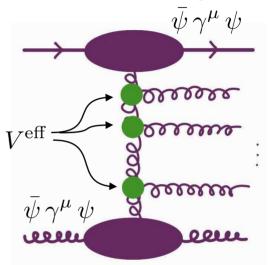
 $m_{j_1j_2}$ is the invariant mass between the two hardest jets ($j_{\it l}$ and $j_{\it l}$)

(A very brief) Introduction to High Energy Jets

HEJ performs a leading log (LL) resummation of high energy logarithms to all orders. It does this with the help of **factorised** amplitudes \rightarrow can construct high multiplicity processes (and includes subleading channels too).

(!! factorised does not necessarily imply that the dependence is only on local momenta)

impact currents and *t*-channel emissions create an effective diagram (Lipatov vertices + Lipatov ansatz)



HEJ works with approximations of amplitudes which preserve: •

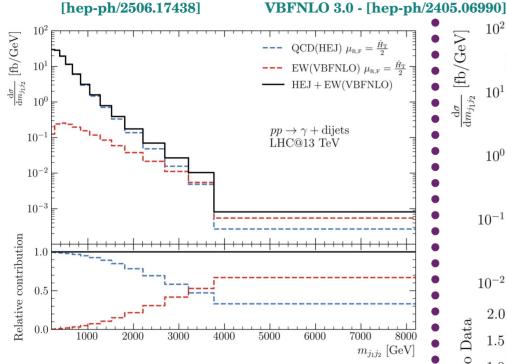
- gauge invariance
- Lorentz invariance
- crossing symmetry
- momentum conservation

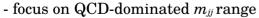
⇒ retaining these properties can make the predictions for the LHC processes better and richer.

HEJ can also perform matching to full fixed order results.

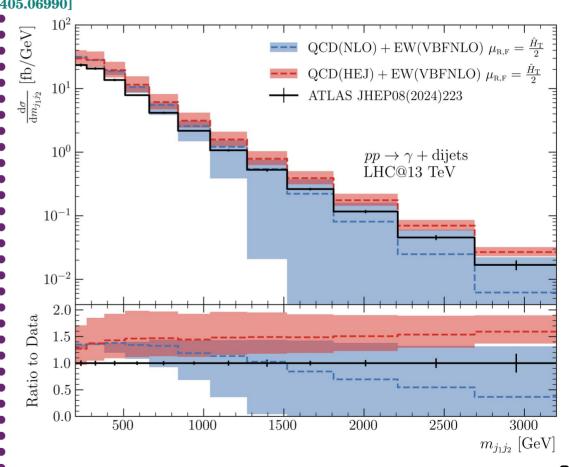
Some highlights from previous studies

1. Stable HEJ prediction for $\gamma + 2j$



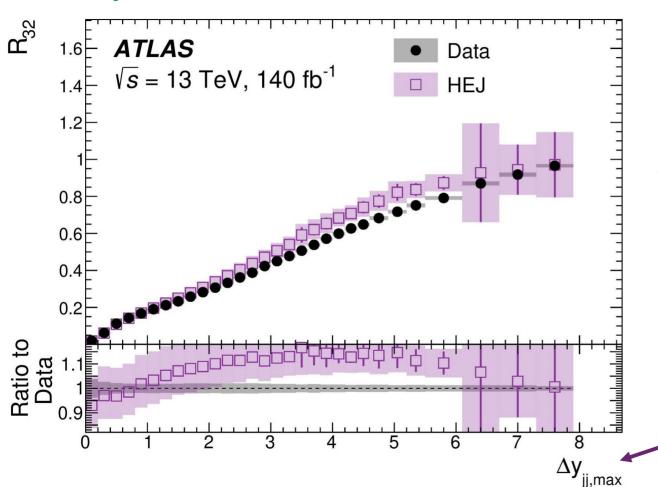


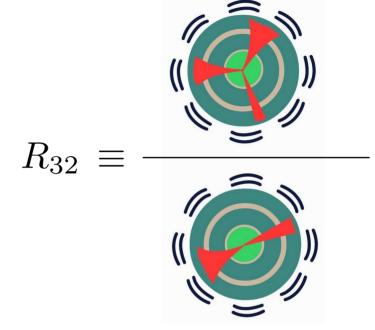
- jet veto implemented
- photon isolation procedure introduces effects beyond NLO and HEJ ightarrow off-set is due to those
- scale variation under control good indication of perturbative stability



2. HEJ prediction for R_{32}

[hep-ex/2405.20206]





NLL could improve the slope!

absolute value of maximum rapidity difference between most forward and most backward jets

10

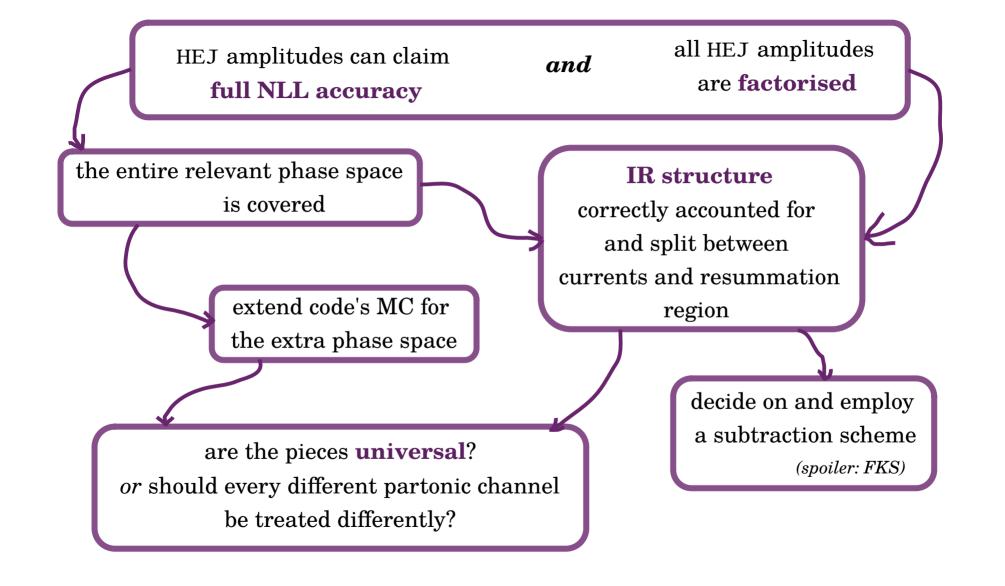
What does it take to do NLL resummation in HEJ?

Next-to-Leading-Log contribution $\implies \alpha_s$ corrections to all the LL pieces, meaning:

one-loop corrections and relaxing the MRK regime to a Quasi-Multi-Regge one instead $y_k \approx y_{k+1}$ 2022202

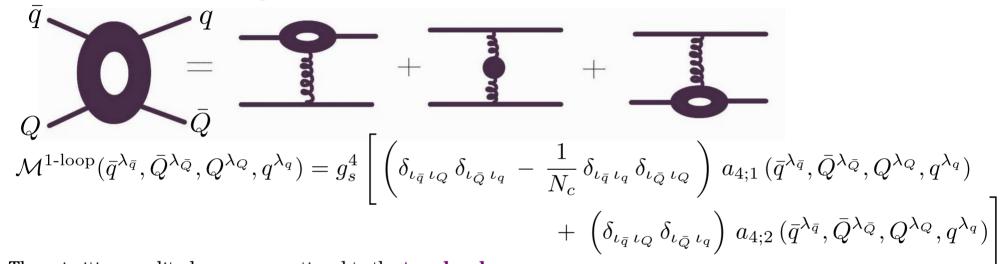
There was no "recipe" for obtaining these HEJ components ...

...how should one start designing these pieces so as to fulfill all HEJ requirements?



One-loop-corrected impact current

HEJ works directly with helicity-spinor objects \Longrightarrow useful to resort to full QCD results of one-loop amplitude given in terms of colour-ordered components [hep-ph/9305239]



The primitive amplitudes are proportional to the **tree level**:

$$a_{4;1} (\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}) = c_{\Gamma} a_{4;0} (\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}) F_{a;1}^{(\lambda_{q}, \lambda_{Q})} (\epsilon, s_{\bar{q}\bar{Q}}, s_{\bar{q}Q}, s_{\bar{q}q})$$

$$a_{4;2} (\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}) = c_{\Gamma} a_{4;0} (\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}) F_{a;2}^{(\lambda_{q}, \lambda_{Q})} (\epsilon, s_{\bar{q}\bar{Q}}, s_{\bar{q}Q}, s_{\bar{q}q})$$

$$F_{a;1}^{(\lambda_q,\lambda_Q)}(\epsilon,s_{\bar{q}ar{Q}},s_{\bar{q}Q},s_{\bar{q}q}) \ F_{a;2}^{(\lambda_q,\lambda_Q)}(\epsilon,s_{\bar{a}ar{Q}},s_{\bar{q}Q},s_{\bar{q}q})$$

One-loop scalar functions for $qQ \rightarrow qQ$ scattering

Considering a physical $2 \to 2$ process for which: $s = s_{qQ}$, $t = -s_{q\bar{q}}$, $u = -s_{\bar{q}Q}$ [hep-ph/9305239]

$$F_{a;1}^{(\ominus\ominus)} = \left(-\frac{\mu^2}{t}\right)^{\epsilon} \left\{ N_c \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} + \frac{11}{3\epsilon} - \frac{2}{\epsilon} \ln\left(-\frac{t}{s}\right) + \frac{19}{9} - \frac{2\delta_R}{3} + \pi^2 \right] + N_f \left[-\frac{2}{3\epsilon} - \frac{10}{9} \right] - \frac{1}{N_c} \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - \frac{2}{\epsilon} \ln\left(-\frac{s}{u}\right) - 7 - \delta_R - \frac{1}{2} \frac{t}{s} \left(1 + \frac{u}{s}\right) \left(\ln^2\left(-\frac{t}{s}\right) + \pi^2\right) - \frac{t}{s} \ln\left(\frac{t}{u}\right) \right] \right\} - \frac{\beta_0}{\epsilon}$$

$$F_{a;2}^{(\ominus\ominus)} = \left(-\frac{\mu^2}{t}\right)^{\epsilon} \left(N_c - \frac{1}{N_c}\right) \left[-\frac{2}{\epsilon} \ln\left(-\frac{s}{u}\right) - \frac{1}{2} \frac{t}{s} \left(1 + \frac{u}{s}\right) \left(\ln^2\left(\frac{t}{u}\right) + \pi^2\right) - \frac{t}{s} \ln\left(\frac{t}{u}\right)\right]$$

One-loop scalar functions for $qQ \rightarrow qQ$ scattering

Considering a physical $2 \to 2$ process for which: $s = s_{qQ}$, $t = -s_{q\bar{q}}$, $u = -s_{\bar{q}Q}$ [hep-ph/9305239]

$$F_{a;1}^{(\ominus\ominus)} = \left(-\frac{\mu^2}{t}\right)^{\epsilon} \left\{ N_c \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} + \frac{11}{3\epsilon} - \frac{2}{\epsilon} \ln\left(-\frac{t}{s}\right) + \frac{19}{9} - \frac{2\delta_R}{3} + \pi^2 \right] + N_f \left[-\frac{2}{3\epsilon} - \frac{10}{9} \right] - \frac{1}{N_c} \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - \frac{2}{\epsilon} \ln\left(-\frac{s}{u}\right) - 7 - \delta_R - \frac{1}{2} \frac{t}{s} \left(1 + \frac{u}{s}\right) \left(\ln^2\left(-\frac{t}{s}\right) + \pi^2\right) - \frac{t}{s} \ln\left(\frac{t}{u}\right) \right] \right\} - \frac{\beta_0}{\epsilon}$$

$$F_{a;2}^{(\ominus\ominus)} = \left(-\frac{\mu^2}{t}\right)^{\epsilon} \left(N_c - \frac{1}{N_c}\right) \left[-\frac{2}{\epsilon} \ln\left(-\frac{s}{u}\right) - \frac{1}{2} \frac{t}{s} \left(1 + \frac{u}{s}\right) \left(\ln^2\left(\frac{t}{u}\right) + \pi^2\right) - \frac{t}{s} \ln\left(\frac{t}{u}\right)\right]$$

Recall from before that the Lipatov ansatz reads:

$$\frac{1}{t} \left(-\frac{s}{t} \right)^{\alpha(t)} \longmapsto \frac{1}{t} \exp \left[\alpha(t) \ln \left(-\frac{s}{t} \right) \right] \quad \text{where} \quad \alpha(t) = 2 g_s^2 C_A c_\Gamma \frac{1}{\epsilon} \left(\frac{\mu_R^2}{-t} \right)^{\epsilon}$$

One-loop scalar functions for $qQ \rightarrow qQ$ scattering

Considering a physical 2 \rightarrow 2 process for which: $s=s_{qQ}$, $t=-s_{q\bar{q}}$, $u=-s_{\bar{q}Q}$ [hep-ph/9305239]

$$F_{a;1}^{(\ominus\ominus)} = \left(-\frac{\mu^2}{t}\right)^{\epsilon} \left\{ N_c \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} + \frac{11}{3\epsilon} \right] - \frac{2}{\epsilon} \ln\left(-\frac{t}{s}\right) + \frac{19}{9} - \frac{2\delta_R}{3} + \pi^2 \right] + N_f \left[-\frac{2}{3\epsilon} - \frac{10}{9} \right] - \frac{1}{N_c} \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - \frac{2}{\epsilon} \ln\left(-\frac{s}{u}\right) - 7 - \delta_R - \frac{1}{2} \frac{t}{s} \left(1 + \frac{u}{s}\right) \left(\ln^2\left(-\frac{t}{s}\right) + \pi^2\right) - \frac{t}{s} \ln\left(\frac{t}{u}\right) \right] \right\} - \frac{\beta_0}{\epsilon}$$

$$F_{a;2}^{(\ominus\ominus)} = \left(-\frac{\mu^2}{t}\right)^{\epsilon} \left(N_c - \frac{1}{N_c}\right) \left[-\frac{2}{\epsilon} \ln\left(-\frac{s}{u}\right) - \frac{1}{2} \frac{t}{s} \left(1 + \frac{u}{s}\right) \left(\ln^2\left(\frac{t}{u}\right) + \pi^2\right) - \frac{t}{s} \ln\left(\frac{t}{u}\right)\right]$$

!!! crossing symmetry demands distinguishing all invariants.

As a consequence, the **entire IR structure** will be kept.

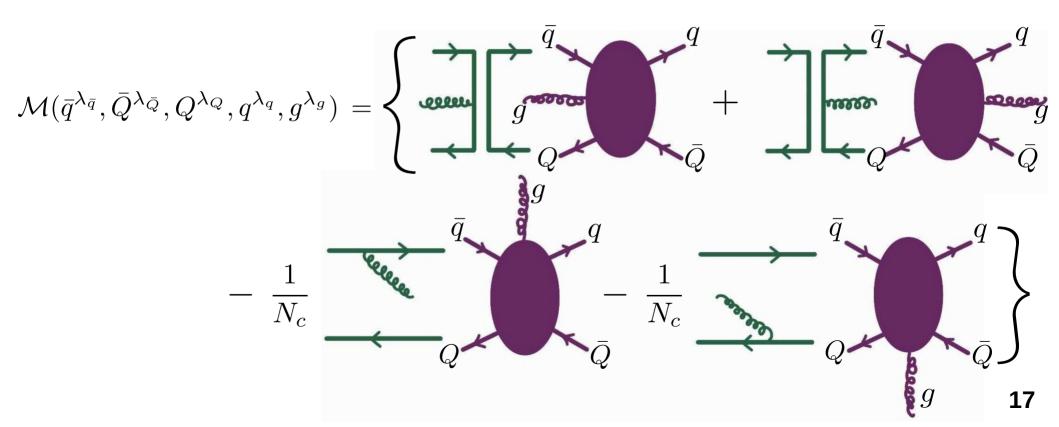
This enforces the real emission part to account for all IR points as well.

Real emission impact current

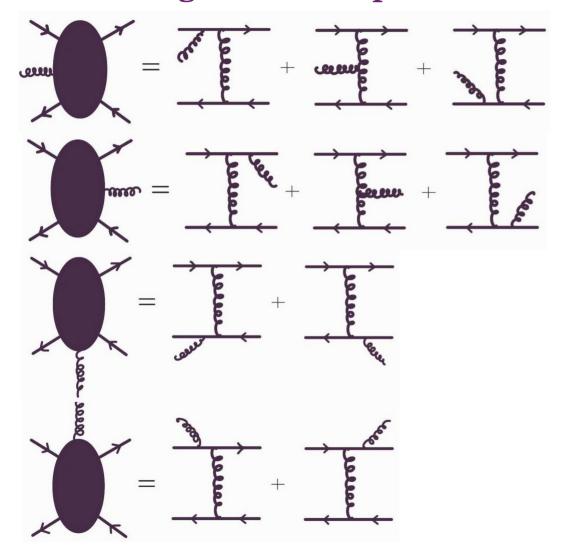
1. The full amplitude for $qQ \rightarrow qQg$

Colour-ordered helicity-dependent amplitudes for this process exist in the literature as well.

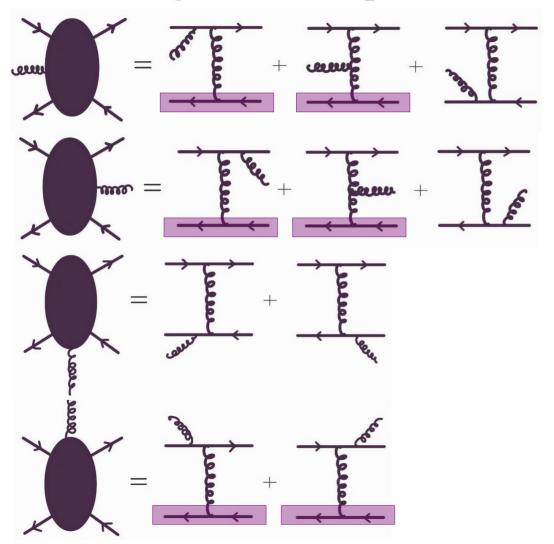
[hep-ph/9401294]



2. Obtaining the HEJ amplitude

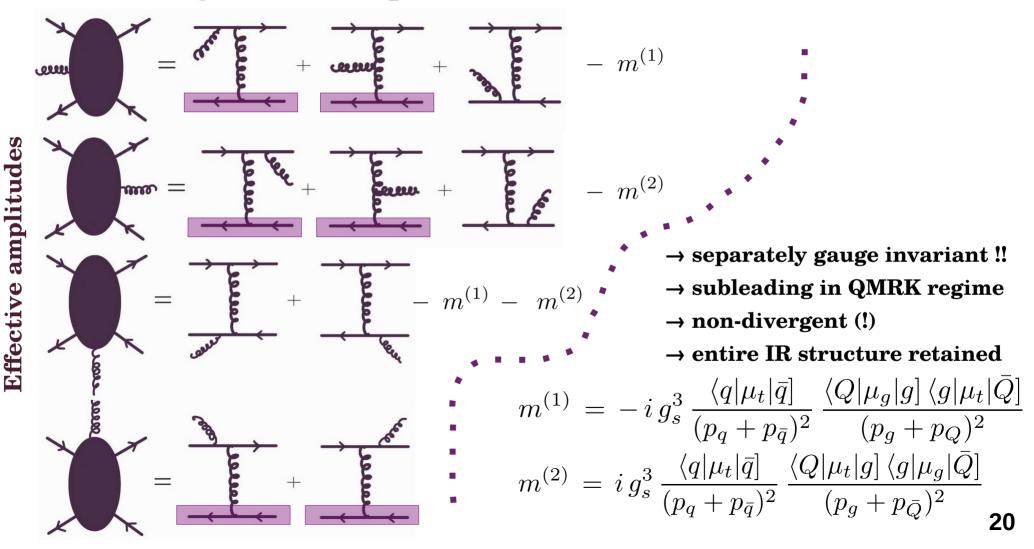


2. Obtaining the HEJ amplitude



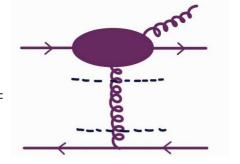
directly factorisable current

2. Obtaining the HEJ amplitude



If we want to match the result onto the form:

$$\mathcal{M}^{\mathrm{eff}}(\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}, g^{\lambda_{g}}) =$$



If we want to match the result onto the form:

$$\mathcal{M}^{\text{eff}}(\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}, g^{\lambda_{g}}) =$$

We are getting the expression:

$$\mathcal{J}_{q\bar{q}}^{\mathrm{NLL}}(\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}, g^{\lambda_{g}}) \equiv (i \, g_{s})^{2} \, \epsilon_{\mu_{g}}^{\lambda_{g}}(p_{g}, p_{r}) \cdot \left(\int_{\mathbb{R}^{3}} \langle g | g \rangle \right) \, ds$$

$$\cdot \left\{ \delta_{\iota_{Q}\bar{\iota}_{\bar{q}}} \left(T^{a_{g}} \right)_{\iota_{q}\bar{\iota}_{\bar{Q}}} \left[-\frac{\langle q | \mu_{t} \left(p_{g} + p_{\bar{q}} \right) \mu_{g} | \bar{q} \right]}{(p_{g} + p_{\bar{q}})^{2}} + \frac{2 p_{Q}^{\mu_{g}} \left(p_{Q} + p_{\bar{Q}} \right)^{2} \langle q | \mu_{t_{2}} | \bar{q} \right]}{(p_{g} + p_{Q})^{2} \left(p_{q} + p_{\bar{q}} \right)^{2}} \right. \\
\left. - \frac{\langle q | \mu_{t_{1}} | \bar{q} \right]}{(p_{q} + p_{\bar{q}})^{2}} \left(2 \eta^{\mu_{g} \mu_{t_{1}}} p_{g}^{\mu_{t_{2}}} + \eta^{\mu_{t_{1}} \mu_{t_{2}}} \left(2 p_{q} + 2 p_{\bar{q}} \right)^{\mu_{g}} + 2 \eta^{\mu_{t_{2}} \mu_{g}} p_{g}^{\mu_{t_{1}}} \right) \right] \\
+ \delta_{\iota_{q}\bar{\iota}_{\bar{Q}}} \left(T^{a_{g}} \right)_{\iota_{Q}\bar{\iota}_{\bar{q}}} \left[\frac{\langle q | \mu_{g} \left(p_{g} + p_{q} \right) \mu_{t_{2}} | \bar{q} \right]}{(p_{g} + p_{q})^{2}} - \frac{2 p_{\bar{Q}}^{\mu_{g}} \left(p_{Q} + p_{\bar{Q}} \right)^{2} \langle q | \mu_{t_{2}} | \bar{q} \right]}{(p_{q} + p_{\bar{q}})^{2} \left(p_{g} + p_{\bar{Q}} \right)^{2}} \\
+ \frac{\langle q | \mu_{t_{1}} | \bar{q} \right]}{(p_{q} + p_{\bar{q}})^{2}} \left(2 \eta^{\mu_{g} \mu_{t_{1}}} p_{g}^{\mu_{t_{2}}} + \eta^{\mu_{t_{1}} \mu_{t_{2}}} \left(2 p_{q} + 2 p_{\bar{q}} \right)^{\mu_{g}} + 2 \eta^{\mu_{t_{2}} \mu_{g}} p_{g}^{\mu_{t_{1}}} \right) \right] \\
- \frac{1}{N_{\circ}} \delta_{\iota_{q}\bar{\iota}_{\bar{q}}} \left(T^{a_{g}} \right)_{\iota_{Q}\bar{\iota}_{\bar{Q}}} \left[\frac{\langle q | \mu_{g} \left(g + q \right) \mu_{t_{2}} | \bar{q} \right]}{(p_{g} + p_{g})^{2}} - \frac{\langle q | \mu_{t_{2}} \left(g + \bar{q} \right) \mu_{g} | \bar{q} \right]}{(p_{g} + p_{g})^{2}} \right]$$

If we want to match the result onto the form:

$$\mathcal{M}^{\mathrm{eff}}(\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}, g^{\lambda_{g}}) =$$

We are getting the expression:

$$\mathcal{J}_{q\bar{q}}^{\mathrm{NLL}}(\bar{q}^{\lambda_{\bar{q}}}, \bar{Q}^{\lambda_{\bar{Q}}}, Q^{\lambda_{Q}}, q^{\lambda_{q}}, g^{\lambda_{g}}) \equiv (i g_{s})^{2} \epsilon_{\mu_{g}}^{\lambda_{g}}(p_{g}, p_{r}) \cdot$$

$$\cdot \left\{ \delta_{\iota_{Q}\bar{\iota}_{\bar{q}}} (T^{a_{g}})_{\iota_{q}\bar{\iota}_{\bar{Q}}} \left[-\frac{\langle q | \mu_{t} (p_{g} + p_{\bar{q}}) \mu_{g} | \bar{q} |}{(p_{g} + p_{\bar{q}})^{2}} + \frac{2 p_{Q}^{\mu_{g}} (p_{Q} + p_{\bar{Q}})^{2} \langle q | \mu_{t_{2}} | \bar{q} |}{(p_{g} + p_{\bar{q}})^{2}} - \frac{\langle q | \mu_{t_{1}} | \bar{q} |}{(p_{q} + p_{\bar{q}})^{2}} \left(2 \eta^{\mu_{g} \mu_{t_{1}}} p_{g}^{\mu_{t_{2}}} + \eta^{\mu_{t_{1}} \mu_{t_{2}}} (2p_{q} + 2p_{\bar{q}})^{\mu_{g}} + 2 \eta^{\mu_{t_{2}} \mu_{g}} p_{g}^{\mu_{t_{1}}} \right) \right] \\
+ \left[\delta_{\iota_{q}\bar{\iota}_{\bar{Q}}} (T^{a_{g}})_{\iota_{Q}\bar{\iota}_{\bar{q}}} \left[\frac{\langle q | \mu_{g} (p_{g} + p_{q}) \mu_{t_{2}} | \bar{q} |}{(p_{g} + p_{q})^{2}} - \frac{2 p_{\bar{Q}}^{\mu_{g}} (p_{Q} + p_{\bar{Q}})^{2} \langle q | \mu_{t_{2}} | \bar{q} |}{(p_{q} + p_{\bar{q}})^{2}} + \frac{\langle q | \mu_{t_{1}} | \bar{q} |}{(p_{q} + p_{\bar{q}})^{2}} \left(2 \eta^{\mu_{g} \mu_{t_{1}}} p_{g}^{\mu_{t_{2}}} + \eta^{\mu_{t_{1}} \mu_{t_{2}}} (2p_{q} + 2p_{\bar{q}})^{\mu_{g}} + 2 \eta^{\mu_{t_{2}} \mu_{g}} p_{g}^{\mu_{t_{1}}} \right) \right] \\
- \frac{1}{N_{c}} \delta_{\iota_{q}\bar{\iota}_{\bar{q}}} (T^{a_{g}})_{\iota_{Q}\bar{\iota}_{\bar{Q}}} \left[\frac{\langle q | \mu_{g} (g + q) \mu_{t_{2}} | \bar{q} |}{(p_{g} + p_{q})^{2}} - \frac{\langle q | \mu_{t_{2}} (g + \bar{q}) \mu_{g} | \bar{q} |}{(p_{g} + p_{\bar{q}})^{2}} \right] \\
- \frac{1}{N_{c}} \delta_{\iota_{Q}\bar{\iota}_{\bar{Q}}} (T^{a_{g}})_{\iota_{q}\bar{\iota}_{\bar{q}}} \left[\frac{(p_{Q} + p_{\bar{Q}})^{2}}{(p_{g} + p_{\bar{q}})^{2}} \langle q | \mu_{t_{2}} | \bar{q} | \cdot \left(\frac{2 p_{\bar{Q}}^{\mu_{g}}}{(p_{g} + p_{\bar{Q}})^{2}} - \frac{2 p_{Q}^{\mu_{g}}}{(p_{g} + p_{\bar{Q}})^{2}} \right) \right] \right\}$$

$$= 22$$

Improvements over an earlier HEJ current

(Previous expression) (Current expression) Unordered impact current Quasi-MRK impact current fully NLL-accurate for fully NLL-accurate for **NLL** accuracy $qQ \rightarrow qQg$ process $qQ \rightarrow qQg$ process phase space can be used for fully regulated does not have loop corrections $qQ \rightarrow qQ$ at NLO covered so can not cover IR phase space contains the entire current contains kinematics factorisability colour information and part of the colour of the $2 \rightarrow 3$ process can be applied universality 111 to any partonic channel

(Photo taken during the "HEJ days" in Edinburgh - 2023)

Further steps

- test the new NLL $\emptyset \longrightarrow qqgg^*$ current in a NLO calculation for dijet production
- implement the FKS subtraction scheme for the HEJ calculation of dijet production
- construct the $\emptyset \longrightarrow gggg^*$ impact current at NLL
- fit the LL resummation scheme within the new impact currents

Conclusions

- demonstrated the importance of high energy log resummation for LHC processes
 - → motivation for working towards full NLL
- worked out the first NLL HEJ component
- "recipe" that fulfills all HEJ constraints, accounts for the entire phase space at NLO, amenable to (unmodified) implementation of subtraction scheme (FKS)

Further steps

- test the new NLL $\emptyset \longrightarrow qqgg^*$ current in a NLO calculation for dijet production
- implement the FKS subtraction scheme for the HEJ calculation of dijet production
- construct the $\emptyset \longrightarrow gggg^*$ impact current at NLL
- fit the LL resummation scheme within the new impact currents

Conclusions

- demonstrated the importance of high energy log resummation for LHC processes
 - → motivation for working towards full NLL
- worked out the first NLL HEJ component
- "recipe" that fulfills all HEJ constraints, accounts for the entire phase space at NLO, amenable to (unmodified) implementation of subtraction scheme (FKS)

Thank you for your attention!