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Questions and Plan

Which S-matrices violate factorization? All amplitudes with
2 incoming particles and n — 2 outgoing particles, n > 5
particles

Is factorization violation a subleading color effect? No!

Are splitting functions analytic in the their parameters? No!
What is the domain of analyticity for the splitting functions?
Is there an IR safe hard function? Yes!

Are there (sufficiently inclusive) cross-section level observables
that violate factorization? No

How is factorization restored for inclusive cross-sections?



Setup—Kinematics

Denote the four particle form factor .7-"4 ({sw, Sijk, }) Will be
the four particle form factor in N' =4 SYM.

sij = (pi + p;)° sijk = (pi +pj + pi)?
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Setup-Dynamics (QCD)
In the 1 — 4 region, a Higgs decaying into 4 gluons,
H(q) = g(p1) + 9(p2) + 9(p3) + g(p4)

In the 2 — 3 region, we consider Higgs production through gluon
fusion.

9(p1) +9(p3) — H(q) + g(p2) + g(pa)

The coupling of gluons to the Higgs is then captured through the
effective coupling in the heavy top limit, which is given by

C
Line = 5 Htr(F ™).

g 1log 9
C = - <1+ 1o +O(ozs)>.




Glossary

Euclidean s;;, s;;x, ¢> < 0. The natural region to carry our
loop integrals (through Wick rotation).

Pseudo-Euclidean The finite parts of the Euclidean result
have the same functional form in the s;;, s, ¢*> > 0. This is
the 1 — 4 kinematics. The difference is an overall phase.

Admits a path of analytic continuation with no relative phase

Eq.
—512 —s1€" —512
log —log | ——— | =log
—523 —s23€" —523
“Gluon fusion region" 2 — 3 region s;; <0,
5123 = (¢ — p4)? > 0 etc.




Collinear limits

Our interest here is in the collinear limit of scattering. We
study the limit

b1 = ap2
p3 = Bpa

The kinematic space is spanned by «, 3, so4, a singular slice on
the five dimensional kinematics.

Additionally, the phases of o, 3 are related
(a+1)(B+1)s24 = ¢°

We definea+1=2,+1=2".



Factorization— Pseudo Euclidean region

Q\

Fa,pc = Fa(q) x Sp(p1,p2) x Sp(ps, pa)-



Pseudo Euclidean region

These splitting functions don’t depend on the process — universality.
The hard sub-process can be a complicated higher point amplitude

Mota(p1,02, 03, P4, q1 - - - @) = Mnta(qi - . . ¢n)SP2(p1, p2)SPa(P3, P4)




Generalized splitting functions—Higgs production region

Fapc = Fa(q) x Spy(p1, 2, p3, pa)-

Also Universal- Planar Graphs are always going to factorize
"Universally".



Generalized splitting functions

Analytic "

- continuation Analytic

Psuedo Euclidean . . continuation .
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Glauber pinches

s

The region of interest is defined by & — 0. The denominators
p2 — k, —p1 — p2 + k are both onshell.



Glauber pinches in N/ = 4 SYM

P+ k

A non-planar graph with planar color flow. The graph also violates
collinear factorization.



Analyticity of the form factors on the collinear slice

Im(z)

Domain of analyticity for the

Gluon fusion, double Domain of analyticity for

Euclidean, double collinear form
factor

Collinear form factor

N

The domains of analyticity for the double collinear form factors.
The edge of the wedge theorem cannot be applied. Crossing
symmetrty is violated on this slice.



Explicit checks

® At tree level, the form factor is known

&t (q - é&/@) ((24))?
<12> <23> <34> <41>

® Here, the full form factor with color factors is generated from
these color ordered ones by the equation

Fy= Y TTT5TyFa(p1, p2, s, pa)

perms

FO =

® The form factor at higher loops are necessarily proportional to
the tree level form factor (SUSY ward identity+R symmetry)

Fi = ]_-io) (1 + ZQ(L)>
L=1

= 7 <e452(—<812>6*695“0”551)) R



One Loop result
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In the double collinear limit

—log 512 log 523 + log 5123 log 512523 —
q2 qz q2 51235234
(B+1)?
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Appearance of a new leading power term

The Logarithms can be smoothly analytically continued into the
gluon fusion region.
The Dilogarithm is curious

2
Liy (1 _ M”) — Liz(0) = 0+ O(s12)
51235234

This relationship holds in the Euclidean region. However, The
analytic continuation of the DiLog to the gluon fusion region reads

2 2 2
S
Liy (1 _ 15 ) — Lis (1 _ 15 ) —inlog (1 _ 15 )
51235234 51235234 51235234



Correlated splitting function

The log in the gluon fusion region is
2
—irlog (1 _ q523>
51235234

® A new singular contribution in the double collinear limit.
e Correlates s19, $34.

® Violates factorization.

e Appears only when Re(z') < 0.

e |s this the only letter for five particle kinematics which can do
this? Yes— Upto permutations.

® Clearly a planar effect.

® Checks upto 4 loops and 8 particles for MHV amplitude.



Connection to Regge physics

Now repeat for amplitudes.

| study the case of the six particle amplitude, and by
universailty we have checked, all higher particles, can be
computed.

Just as before, we can factor out all the color and polarization
factors.

Ag =Y Ti...T5Aq(p1,- - -pe)

perms

and
(16)*
(12)(23) ...(61)

R is a remainder function which starts at two loops, a

conformally invariant object. depends on three cross ratios

wy = —$12545
51235345

Ag = AppsR(u1,uz, us)




The double collinear limit

® We take (u1,u2,u3) = (0,1,0), holding hard scales finite

. . it
which is equivalent to T To

® |n this limit we find

AN~ Sy (—p1, p2; €1 + ic) SP;?/)(ipa, Fpa; §2 + ic)

h,h’ h h
AI/II(I“L2,1 u2)AN o(PrP Qe .. )
This is the same limit as the MRK limit because of
conformal invariance of the remainder function! These
functions are known to all orders from integrability in
the MRK context!



What about cross-sections?

Consider DIS— Similar but color dependant violation found by
Catani-De Florian- Rodrigo

Replace the hard, final state directions by Wilson lines.

UV subtraction scheme: every soft parton, real or virtual has
momentum less than A.

Two components: The hard function+ final state jets which
are like e + e— final state jets, and soft+initial state function.

Study the soft+inital state function.



Time-like factorization

We will assume that all time like seperated final state partons are
replaced by Wilson lines in the soft function SI(51,05s... B, P,x).

Jets |
|

Q

xSI(B1.Bs... 0, P.x)

In addition, the incoming parton is also undergoing partonic
splitting inside the color space matrix ST.



What is the soft +intial state function?

SI(By ... fn, ) Z/dye’yxp PW()H —ig J5* ABN)-Bid)| xy

=1

xC.C

This matrix element is written in light cone gauge A = 0.



Optical Theorem to the rescue

> [ v (i) [ e 5 46200 x,
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This is the PDF. The optical theorem is true in the presence of a

UV regulator A. Factorization requires only being fully inclusive in
soft radiation, for the cancellation of Wilson lines.



Conclusions and Outlook

Factorization violation at amplitude level.

Limits don't commute in general because crossing symmetry is
broken on a collinear slice.

In A/ =4, we find the factorization violation to all orders.
Splitting function = Regge Kernel.

This contribution cancels upon summing over the cuts of the
hard part at the cross section level.

Are non global observables sensitive to this correlated splitting?

There is a need to study these soft-+initial state functions more
carefully to relax the inclusivity in soft radiation condition.



