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PDF factorization

• Factorization of long- and short—range physics 

• Only proof for inclusive Drell-Yan 

• Crucially, Glauber interactions cancel in this specific case
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Figure 2: A hard scattering process described in the parton model. [2]

The cross section of hard scattering processes initiated by two hadrons with momenta P1 and P2 are

�(P1, P2) =
X

i,j=q,q̄,g

Z
dx1dx2 fi(x1, µ)fj(x2, µ) �̂ij(p1, p2,↵s(µ), µ), (2.10)

where p1 = x1P1 and p2 = x2P2 [2]. On parton level, it also now becomes evident that

ŝ = x1x2s, (2.11)

where s is the center of mass energy squared for the incoming beams, and ŝ only involves the
momentum of the particles that actually participate in the hard scattering process we’re looking
at. f1(x1, µ) and f2(x2, µ) are the parton distributions functions of the incoming partons. We then
sum over all channels that contribute to a certain process. This gives us the fully inclusive jet cross
section.

2.4. Gap Between Jets

A gap between jets cross section refers to the cross section of an event where there are two jets are
emitted in roughly opposite directions in the center of mass frame, and there is a „gap” between
them without particle emission. The jets occur at energies ⇠ Q. One then introduces a veto scale
Q0 for the gap region , which is much lower. Any event that involves a jet with pT > Q0 in the gap
region is vetoed [3].

Technically, when one eventually would like to integrate over the rapidity (or the angle ✓), one would
have to include everything that is not part of the jets. However, to simplify, we will only consider
a rectangular region that cuts off at the outer radius of the jets [3]. Figure 3 shows a schematic of
what that looks like. The gap lies between y1 and y2, so the rapidities of jet 1 and 2 (or, in the
simplified case we will be using, the outer limits of the jets). If we use the center of mass frame, then
y1 = �y2. Generally, we can define a gap via �Y = |y2 � y1|.
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σ ∼ fi,H fj,H ̂σi,j
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Collinear factorization
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time-like splitting

factorization works!

space-like splitting

factorization violated!
Catani, de Florian, Rodrigo, ’12

Dominik Schwienbacher, REF 2025

See also Daniel’s and 
Prasanna’s talks!



Observable
• Look at gap-in-between-jets cross section with veto scale  

• Jet scale  and gap 

Q0

Q ΔY

Q

Q0

↵
�Y
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Factorization sensitive 
observable!

σ ∼ σB + αs ln((Q/Q0)) + α2
s ln2(Q/Q0) + …+ α4

s ln5(Q/Q0) + …

Dominik Schwienbacher, REF 2025



Evolution

5

μ

Q

ΛQCD

SLL evolution

DGLAP ?

Q0

Double-logarithmic evolution

single-log evolution?

Requires highly non-trivial 
interplay for consistency 
with DGLAP!

???
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Upshot of the talk
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soft-collinear factorization  
breaking by Glauber modes  

at μ = Q0
x

= PDF factorization 
for μ < Q0

“factorization restoration”

Collinear factorization  
breaking at μ = Q

Dominik Schwienbacher, REF 2025



Outline

• Factorization theorem and appearance of SLLs  

• RG-evolution & implications 

• RG-consistency for the low-energy matrix element 

• Explicit 3-loop check 

• Outlook

7

Dominik Schwienbacher, REF 2025



Wm

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

— bb

�i

�—
j

�̄i

�̄j

• For  we can deriveQ0 ≪ Q
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• Factorization between hard and soft-collinear physics 

Resummation
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σ2→M =
∞

∑
m=M

∫dΠm ∫ dx1 dx2 ⟨⟨[ℋij→m]ab | āb̄
αβ | ᾱβ̄

({p}, Q, μ) [𝒲ij→m]ab | āb̄
αβ | ᾱβ̄

({n}, Q0, x1, x2, μ)⟩⟩ ,
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• For  we can deriveQ0 ≪ Q

σ2→M(Q0) = ∫dx1 ∫dx2

∞

∑
m=2+M

⟨ℋm({n}, s, x1, x2, μ) ⊗ 𝒲m({n}, Q0, x1, x2, μ)⟩

9
• Factorization between hard and soft-collinear physics 

Becher, Neubert, Shao, ’21+Stillger’23

Resummation
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ΓH = γcusp(αs)( Γc ln μ2

Q2
+ VG) +

αs

4π
Γ + ΓC

purely soft

purely 
collinear

cusp-piece 
soft+collinear

 
Glauber
∝ iπ

generates SLLs

matrix in multiplicity 
and color space

generates NGLs

d
d lnμ

ℋm = −
m

∑
l=m0

ℋl ΓH
lm

RG- evolution
• Renormalized hard functions fulfill RG equation 

• One-loop hard anomalous dimension:

10

generates DGLAP
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Cusp terms
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Figure 4: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m+ 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 5: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

Vm = 2
∑

(ij)

(

Ti,L · Tj,L + Ti,R · Tj,R

)

∫

dΩ(nk)

4π
W

k
ij ,

Rm = −4
∑

(ij)

Ti,L ◦ Tj,R W
m+1
ij Θhard(nm+1) , (1)

the Glauber terms are given by

V
G = −8 iπ

(

T1,L · T2,L − T1,R · T2,R
)

, (2)

and the coefficients of the cusp logarithms are

V
c
i = Γ0Ci 1 ,

R
c
i = −Γ0Ti,L ◦ Ti,R δ(nm+1 − ni) .
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Vm = 2
∑

(ij)

(

Ti,L · Tj,L + Ti,R · Tj,R

)

∫

dΩ(nk)

4π
W

k
ij ,

Rm = −4
∑

(ij)

Ti,L ◦ Tj,R W
m+1
ij Θhard(nm+1) , (1)

the Glauber terms are given by

V
G = −8 iπ

(

T1,L · T2,L − T1,R · T2,R
)

, (2)

and the coefficients of the cusp logarithms are

R
c
i = −4Ti,L ◦ Ti,R δ(nm+1 − ni)

V
c
i = 4Ci 1

3• These are only present for initial states  , for final states they cancel i = 1,2

time-like splitting from 
before

space-like splitting from 
before

• They are multiplied by  and give rise to double-logarithmic running!ln
μ2

Q2

SLLs are directly connected 
to factorization violation!
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SLLs from RG evolution
• Evolve hard function from  to   μh ∼ Q μs ∼ Q0

σ(Q, Q0) =
∞

∑
m,l=m0

∫ dξ1dξ2 ⟨ℋm (Q, μh)Uml (μh, μs) ⊗ 𝒲l (Q0, μs)⟩

U(μh, μs) = P exp [∫
μh

μs

dμ
μ

ΓH(μ)]
= 1 + ∫

μh

μs

dμ1

μ1
ΓH(μ1) + ∫

μh

μs

dμ1

μ1 ∫
μh

μ1

dμ2

μ2
ΓH(μ1) ΓH(μ2)

 achieves resummation of logarithmsU(μh, μs) 12

Q0

Q

μ

d
d lnμ

ℋm = −
m

∑
l=m0

ℋl ΓH
lm

„tower“ of anomalous 
dimensions

Dominik Schwienbacher, REF 2025



SLLs
• For finite  Glauber phases spoil collinear cancellations 

• Appearance of super-leading logarithms 

• Only very few structures possible

Nc

σSLL ∼ ⟨ℋ (Γc)n−r VG (Γc)r VG Γ ⟩

single emission into the gap

Glauber phase ∼ iπ

 insertions of cusp termn

13

[Γc, Γ] = 0

⟨ℋ VG⟩ = ⟨ℋ Γc⟩ = 0

[Γc, VG] ≠ 0

Dominik Schwienbacher, REF 2025



Outline

• Factorization theorem and appearance of SLL & formalism 

• RG-consistency check for the low-energy matrix element 

• Know that must be finite! 

• Use

⟨ℋm({n}, s, x1, x2, μ) ⊗ 𝓦m({n}, Q0, x1, x2, μ)⟩

14

⟨ℋbare
m 𝓦bare

m ⟩ = ⟨(ℋbare
m Z−1)

finite

(Z𝓦bare
m

finite

⟩ 𝓦bare = 𝓘bare * f bare f bare = 𝓘bare * Z−1
PDF * f f
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𝓘bare
m = 1 +

αs

4π
Γ
2ε

+ ( αs

4π )
2

( VG Γ
2ε2

+ …) + ( αs

4π )
3

[ ΓcVG Γ
3ε3 ( 11

6ε
+ ln

μ2
s

Q2
+

9
2

ln
μ2

s

Q2
0 ) +

VGVG Γ
3ε3

+ [ΓC, VG] Γ
12ε3

+ …]

• Renormalization factor  given by Z

15

Z = 1 +
αs

4π (−
Γ′￼0

4ε2
−

Γ0

2ε ) + ( αs

4π )
2

( Γ′￼0Γ0

32ε3
+

Γ2
0

8ε2
+ …) + ( αs

4π )
3

(−
Γ′￼0Γ2

0

288ε4
−

Γ3
0

48ε3
+ …) + 𝒪(α4

s )

Becher, Neubert’09

• Soft-collinear matrix element has to be rendered finite    such that𝒲m(μ) = Z ⋅ 𝒲bare
m

derivative w.r.t. μ

RG-consistency

+𝒪(α4
s )

Dominik Schwienbacher, REF 2025
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• Look at tree-level, one-loop & two-loop level

i jls

i

k jls

with one-loop soft current
Catani, Grazzini ’00

Jμ,a(0) =
m

∑
i=1

Ta
iL

nμ
i

ni ⋅ ls
∼ Jμ,a(0)Ja(0)†

μ

eikonal factor
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qc

k

j

iRG-consistency

• Does not match all terms

𝓘bare
m = 1 +

αs

4π
Γ
2ε

+ ( αs

4π )
2

( VG Γ
2ε2

+ …) + ( αs

4π )
3

[ ΓcVG Γ
3ε3 ( 11

6ε
+ ln

μ2
s

Q2
+

9
2

ln
μ2

s

Q2
0 ) +

VGVG Γ
3ε3

+ …] + 𝒪(α4
s )
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RG-consistency
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• Now, go one loop further

i

k jls
k

m
i

jls

dipole terms tripole terms

Duhr, Gehrmann ’13 / Dixon, Herrmann, Yan, Zhu ’20

• Does not match all terms

𝓘bare
m = 1 +

αs

4π
Γ
2ε

+ ( αs

4π )
2

( VG Γ
2ε2

+ …) + ( αs

4π )
3

[ ΓcVG Γ
3ε3 ( 11

6ε
+ ln

μ2
s

Q2
+

9
2

ln
μ2

s

Q2
0 ) +

VGVG Γ
3ε3

+ [ΓC, VG] Γ
12ε3

+ …]

Large logarithm

+𝒪(α4
s )

Color-aware 
DGLAP
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Three options to get ln Q

18

1. Perturbative on-shell modes with virtuality below  

• e.g. Ultra-soft modes or soft-collinear modes

Q0

2. A collinear anomaly inducing rapidity logarithms 

• In our case, the collinear alone is scaleless                 Glauber is needed

3. Non-Perturbative low-energy interactions among incoming hadrons 

• Complete breaking of PDF factorization! Non perturbative two-nucleon matrix 
elements

Dominik Schwienbacher, REF 2025



• Look at terms we do not match
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2

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2

⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

�(Q0) =
1X

m,l=m0

Z
d⇠1d⇠2

⌦
Hm(Q,µh)Uml(µh, µs)⌦W l(Q0, µs)

↵
,

H(µh)P exp

 Z
µh

µs

dµ

µ
�H

�
= H(µh) +

Z
µh

µs

dµ1

µ1
H(µh)�

H(µ1)

+

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
H(µh)�

H(µ2)�
H(µ1) + . . . ,

(1)

P exp

 Z
µh

µs

dµ

µ
�H

�
= 1+

Z
µh

µs

dµ1

µ1
�H(µ1) +

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
�H(µ2)�

H(µ1) + . . . , (2)

U(µh, µs) = P exp

 Z
µh

µs

dµ

µ
�H(µ)

�

= 1+

Z
µh

µs

dµ1

µ1
�H(µ1) +

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
�H(µ2)�

H(µ1) + . . . ,

(3)

wherem0 = 2+M is the number of partons at Born-level,
⇠i are the momentum fractions of the initial-state par-
tons, and the sum includes all partonic subprocesses. The
hard functions Hm are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
over the energies of the final-state particles, while keeping
the parton directions {n} = {n1, . . . , nm} fixed. Their
explicit form can be found in (2.3) of [14]. The inte-
gration over the final-state parton directions is indicated
by the symbol ⌦ in (??). The color indices of the hard
partons are kept open and h. . . i denotes the color trace,
which is taken after combining the hard functions with
the low-energy matrix elements Wm, which contain the
dynamics associated with the perturbative scale Q0, as
depicted in Fig. 1, as well as non-perturbative QCD ef-
fects. The main result of our Letter is that, at least up
to three-loop order, the perturbative part of Wm is con-
sistent with PDF factorization.

The SLL analysis in [13, 14] was based on the
renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [32]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V G

⌘
+

↵s

4⇡
�+ �C , (4)
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k
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

d

d lnµ
Hm = �

mX

l=m0

Hl �
H

lm
. (5)

where �cusp = ↵s/⇡+ . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.

𝓘bare
m ∋ ( αs

4π )
3 1

3ε3 ( 11
6ε

+ ln
μ2

s

Q2
+

9
2

ln
μ2

s

Q2
0 ) Γc VG Γ

collinear emission Glauber? soft emission

Dominik Schwienbacher, REF 2025
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Effective Glauber vertex
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• Soft-collinear mode decouples 

• Only contribution due to Glauber exchange 

• Either use expanded QCD or effective vertex using Glauber SCET
Rothstein, Stewart ’16
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Calculate the diagram & matching
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𝓘bare
m ∋

iα3
s

12π2ε3 ( μ2
s

Q2
0 )

3ε

f abc f ade ∑
j>2

Jj[Td
2LTe

2RTb
1LTc

jR ( 1
α

+ ln
νp̄+

c̄

Q2
0

−
11
6ε

+
𝒫q→q

2
+ …) + Td

1LTe
1RTb

2LTc
jR (−

1
α

− ln
ν

p−
c

+
𝒫q→q

2
+ …)]

 integral not well-
defined in dim. reg. alone
qc

Introduce rapidity regulator ( ν
qc− )

α

• -poles cancel in between collinear and anti-collinear sector 

• For gluonic contributions new structures 

α

∝ nμ
j⊥nμ̄

j⊥

−(L ↔ R)

Dominik Schwienbacher, REF 2025
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( αs

4π )
3 1

3ε3 ( 11
6ε

+ ln
μ2

s

Q2
+

9
2

ln
μ2

s

Q2
0 ) Γc VG Γ

⟨ℋm({n}, s, x1, x2, μ) ⊗ 𝓘m({n}, Q0, x1, x2, μ)⟩

Under color trace we arrive at

Perturbative Glauber contribution yields 

• Correct  term  

• Correct   pole 

• Correct DGLAP

ln Q

1
ε4 }  consistent with both 

SLL and DGLAP evolution!
𝓘bare

m

( αs

4π )
3 1

12
⟨𝓗 [ΓC, VG] Γ⟩ =

α3
s

24
𝒫i→iπNc f abc ∑

j>2

′￼

Jj⟨𝓗Ta
1Tb

2Tc
j ⟩

𝓘bare
m ∋
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What happens below  ?Q0
• Soft-collinear mode cancelled 

• No modes probing physics below Q0

• Match onto collinear fields  , along with their Wilson lines 

• Below  the process becomes inclusive 

• Soft Wilson lines cancel 

• Collinear fields match onto PDFs 

• Operators & effective theory same as for Drell-Yan 

• Glauber modes cancel from CSS arguments 

 

k2 ∼ Λ2
QCD

Q0

CSS, ’85/’88

 Bauer, Fleming, Pirjol, Rothstein and Stewart ’02
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Conclusion

24

μ

Q

ΛQCD

SLL evolution

DGLAP

Q0

phase factors soft+collinear contributions 
double-log evolution

soft-collinear interaction Glauber contribution 

“factorization restoration”

single-log evolution
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Outlook
• Showed consistency of PDF factorization at least up to 3 loops 

• All elements of factorization breaking are present but cancel in exactly the right way

25

• Look at higher loops e.g.  ? 𝓘(4)
m

• All-order structure of Glauber terms 

• Proof of factorization? 

• Implications for other observables e.g. global event shapes & factorization theorems? 

Dominik Schwienbacher, REF 2025



Backup



One loop soft current

Jμ,a(1) = −
1

(4π)2

Γ3(1 − ε) Γ2(ε)
Γ(1 − 2ε)

× if abc ∑
i≠j

Tb
iLTc

jL (
nμ

i

ni ⋅ ls
−

nμ
j

nj ⋅ ls ) [
2π ni ⋅ nj e−iλijπ

ni ⋅ ls nj ⋅ ls e−iλilπ e−iλjlπ ]
ε

27
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4

To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. 1. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop integral
over k, which can be mapped onto box and pentagon
structures, as depicted in Fig. 2 for the latter case. This
allows for a direct comparison of the regions results and
the known full expressions, thus ascertaining that all re-
gions are correctly identified. To perform the analysis, we
introduce a small power-counting parameter � = Q0/Q
and two light-cone vectors n and n̄ (with n2 = n̄2 = 0 and
n · n̄ = 2) along the directions of pc and p̄c̄. The external
legs carry collinear momenta pc, qc, whose components
scale as (n · pc, n̄ · pc, pc?) ⌘ (p+

c
, p�

c
, pc?) ⇠ Q(�2, 1,�),

an anti-collinear momentum p̄c̄ ⇠ Q(1,�2,�), and a soft
momentum ls ⇠ Q(�,�,�). In the following, we focus on
the two pentagon structures, for which a complete set of
invariants is given by si,i+1 = (pi + pi+1)

2 and m2 = p25
for inflowing external momenta pi associated with the
external lines. At leading power in �, they are given by
(choosing pc? = p̄c̄? = 0)
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c
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� q�
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(10)

for the upper graph in Fig. 2. For the lower graph
s23 = �p�

c
l+
s

and s51 = p�
c
p̄+
c̄ , while all other invariants

remain the same. Before studying the physical case, we
consider Euclidean kinematics, where all si,i+1 < 0 and
m2 < 0. To identify the contributing regions, we utilize
pySecDec [39] and translate the parameter-space output
into momentum regions. At leading power in �, the only
non-zero contribution for both pentagon integrals stems
from the soft-collinear region k ⇠ Q(�,�2,�3/2) [40]. For
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.

example, the upper diagram in Fig. 2 corresponds to

Isc = i(4⇡)2�"

Z
ddk

(2⇡)d
1

k2 + i0

1
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�m2
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, (11)

with sij ⌘ sij + i0 and m2
⌘ m2+ i0. Expressed in these

variables, the result also holds for the lower diagram.
After expanding in ", it agrees with the � expansion of
the full expression for this pentagon integral given in (5.8)
of [41], confirming that the leading-power contribution is
fully captured by the soft-collinear region. The diagram
where the virtual gluon is attached to the quark line after
the collinear emission (not shown in Fig. 2) corresponds
to a box with two massive adjacent legs. We find that
two regions, the soft and the soft-collinear, fully account
for the entire contribution in Euclidean kinematics.
We now analytically continue to the physical region,

in which all the light-cone components are positive and
p�
c

> q�
c
. An interesting feature of the expressions for

the diagrams in Fig. 2 are combinations that entail the
cancellation of two O(�) terms, resulting in an O(�2)
contribution, e.g. for the kinematics (10) belonging to
the upper diagram in Fig. 2, with p2

T
⌘ �p2? > 0,

s45s51| {z }
�

�m2s23| {z }
�

= p�
c
p̄+
c̄

�
qcT + lsT

�2
| {z }

�2

> 0 . (12)
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While this has no non-trivial consequences in Euclidean
kinematics, a subtlety arises upon performing the ana-
lytic continuation to physical kinematics. To illustrate
this fact, we consider the full result for the pentagon in-
tegral, which contains �-suppressed terms with prefactor

P =
s45s51

s45s51 � p25s23| {z }
��1


1�ei⇡"⇥

✓
1+

p25s23 � s45s51
s45s51| {z }

�

◆�"�
,

⇥ ⌘ ✓(p25) + ✓(s23)� ✓(s45)� ✓(s51)

P ⇠

⇢
1 for ⇥ = 0

��1 for ⇥ 6= 0

This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
only arise between incoming lines involving a space-like
splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (??). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
the form (with implicit +i0 prescriptions)

Ig = i(4⇡)2�"

Z
ddk

(2⇡)d
1

�k2
T

1

k+ q�c � k2
T
� 2kT · qcT

⇥
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T
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⇤

⇥
1

p̄+
c̄ (k� � l�s )

1

�l+s k� � k2
T
+ 2kT · lsT

and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
Evaluating the remaining two-dimensional Euclidean tri-
angle integral, one obtains [42]

Ig = �
2⇡ i
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, (12)

with sT = lsT + qcT [43].

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [44]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scal-
ing (x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). The
associated F polynomial factorizes to leading power,

F =
�
�q�

c
x1 + (p�

c
� q�

c
)x5

�
| {z }

��2

�
l+
s
x3 � p̄+

c̄
x4

�
| {z }

��1

. (13)

For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur and

the hidden Glauber pinch appears when both brackets
in (14) vanish individually, in accordance with the Lan-
dau equations [26, 28]. The double cancellation with
unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].

With this understanding of the appearance of the
Glauber region in the context of the scalar example, we
now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [46] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-

Glauber contribution

• Leads to a „hidden“ region with  for physical scattering region 

• Couples soft and collinear sectors   collinear factorization breaking

k ∼ (λ2, λ, λ)

29

• Perform  and  integral via residues 

• Well-defined without additional regulators

k+ k−

Euclidean of-shell triangle 
in d − 2ε

• In Euclidean region  only soft-collinear region with  

• Cancels after  integration!

sij = (pi + pj)2 < 0, p2
5 < 0 k ∼ (λ2, λ, λ3/2)

qc

Dominik Schwienbacher, REF 2025
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While this has no non-trivial consequences in Euclidean
kinematics, a subtlety arises upon performing the ana-
lytic continuation to physical kinematics. To illustrate
this fact, we consider the full result for the pentagon in-
tegral, which contains �-suppressed terms with prefactor
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
only arise between incoming lines involving a space-like
splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (??). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
the form (with implicit +i0 prescriptions)

Ig = i(4⇡)2�"
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and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
Evaluating the remaining two-dimensional Euclidean tri-
angle integral, one obtains [42]
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with sT = lsT + qcT [43].

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [44]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scal-
ing (x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). The
associated F polynomial factorizes to leading power,
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For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur and

the hidden Glauber pinch appears when both brackets
in (13) vanish individually, in accordance with the Lan-
dau equations [26, 28]. The double cancellation with
unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].

With this understanding of the appearance of the
Glauber region in the context of the scalar example, we
now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [46] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.

tegral, which contains �-suppressed terms with prefactor
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⇥ ⌘ ✓(m2) + ✓(s23)� ✓(s45)� ✓(s51) . (12)

This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes

the form (with implicit +i0 prescriptions)
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and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
Evaluating the remaining two-dimensional Euclidean tri-
angle integral, one obtains [40]
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.
It is interesting to understand the appearance of this

“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
(x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). For the
associated F polynomial, one finds
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The first four terms constitute the leading power contri-
bution, which using (8) can be factorized in the form
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For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
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While this has no non-trivial consequences in Euclidean
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
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splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
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must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
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with sT = lsT + qcT [43].

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [44]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scal-
ing (x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). The
associated F polynomial factorizes to leading power,

F =
�
�q�

c
x1 + (p�

c
� q�

c
)x5

�
| {z }

��2

�
l+
s
x3 � p̄+

c̄
x4

�
| {z }

��1

. (13)

For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur and

the hidden Glauber pinch appears when both brackets
in (13) vanish individually, in accordance with the Lan-
dau equations [26, 28]. The double cancellation with
unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].

With this understanding of the appearance of the
Glauber region in the context of the scalar example, we
now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [46] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by

Can perform region analysis in Schwinger or Lee-Pomeransky parameter 
space (like Asy and PySecDec) 

The Glauber region corresponds to a pinch due to cancellations in the  
polynomial

ℱ
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Euclidean region
• Introduce kinematics
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4

To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. 1. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop integral
over k, which can be mapped onto box and pentagon
structures, as depicted in Fig. 2 for the latter case. This
allows for a direct comparison of the regions results and
the known full expressions, thus ascertaining that all re-
gions are correctly identified. To perform the analysis, we
introduce a small power-counting parameter � = Q0/Q
and two light-cone vectors n and n̄ (with n2 = n̄2 = 0 and
n · n̄ = 2) along the directions of pc and p̄c̄. The external
legs carry collinear momenta pc, qc, whose components
scale as (n · pc, n̄ · pc, pc?) ⌘ (p+

c
, p�

c
, pc?) ⇠ Q(�2, 1,�),

an anti-collinear momentum p̄c̄ ⇠ Q(1,�2,�), and a soft
momentum ls ⇠ Q(�,�,�). In the following, we focus on
the two pentagon structures, for which a complete set of
invariants is given by si,i+1 = (pi + pi+1)

2 and m2 = p25
for inflowing external momenta pi associated with the
external lines. At leading power in �, they are given by
(choosing pc? = p̄c̄? = 0)

s12 = �p�
c
q+
c
, s23 = q�

c
l+
s
, s45 = �(p�

c
� q�

c
)l+
s
,

s34 = �p̄+
c̄
l�
s
, s51 = �q�

c
p̄+
c̄
, p25 = (p�

c
� q�

c
)p̄+

c̄

for the upper graph in Fig. 2. For the lower graph
s23 = �p�

c
l+
s

and s51 = p�
c
p̄+
c̄ , while all other invariants

remain the same. Before studying the physical case, we
consider Euclidean kinematics, where all si,i+1 < 0 and
m2 < 0. To identify the contributing regions, we utilize
pySecDec [39] and translate the parameter-space output
into momentum regions. At leading power in �, the only
non-zero contribution for both pentagon integrals stems
from the soft-collinear region k ⇠ Q(�,�2,�3/2) [40]. For
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.

example, the upper diagram in Fig. 2 corresponds to

Isc = i(4⇡)2�"

Z
ddk

(2⇡)d
1

k2 + i0

1

�l+s k� + i0

1

q�c k+ + i0

⇥
1

p̄+
c̄ (k� � l�s ) + i0

1⇥
�(p�c � q�c )k+ � p�c q

+
c + i0

⇤

=
�2(")�(1� ")

s45s51
2F1(1, 1; 1� "; 1�

m2s23
s45s51

)

⇥ (�s12)
�1�" (�s34)

�1�"
�
�m2

�1+"

, (10)

with sij ⌘ sij + i0 and m2
⌘ m2+ i0. Expressed in these

variables, the result also holds for the lower diagram.
After expanding in ", it agrees with the � expansion of
the full expression for this pentagon integral given in (5.8)
of [41], confirming that the leading-power contribution is
fully captured by the soft-collinear region. The diagram
where the virtual gluon is attached to the quark line after
the collinear emission (not shown in Fig. 2) corresponds
to a box with two massive adjacent legs. We find that
two regions, the soft and the soft-collinear, fully account
for the entire contribution in Euclidean kinematics.
We now analytically continue to the physical region,

in which all the light-cone components are positive and
p�
c

> q�
c
. An interesting feature of the expressions for

the diagrams in Fig. 2 are combinations that entail the
cancellation of two O(�) terms, resulting in an O(�2)
contribution, e.g. for the kinematics (??) belonging to
the upper diagram in Fig. 2, with p2

T
⌘ �p2? > 0,

s45s51| {z }
�

� p25s23| {z }
�

= p�
c
p̄+
c̄

�
qcT + lsT

�2
| {z }

�2

> 0 . (11)

• In Euclidean region  only soft-collinear region with  

• Also found by Asy2.1 & pySecDec 

• Compatible with option 1) 

• But decouples completely after  integration

sij = (pi + pj)2 < 0, p2
5 < 0 k ∼ (λ2, λ, λ3/2)

qc

Dominik Schwienbacher, REF 2025



Physical region
• For physical region extra terms due to cancellation
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4

To identify the relevant mechanism and clarify whether
it is perturbative or non-perturbative, we have performed
a method-of-regions analysis of the three-loop QCD di-
agrams contributing to Wm, specifically those that can
produce the structure �cV G �. These graphs feature
a soft-gluon emission into the gap, a collinear emission,
and a virtual gluon exchange with, as of yet, unspecified
kinematic scaling of its loop-momentum k. In dimen-
sional regularization, diagrams of this type vanish due
to scalelessness, unless the soft emission is directly ra-
diated o↵ a virtual gluon connecting the collinear and
anti-collinear sectors, as depicted in Fig. 1. Two other
relevant diagrams are obtained by attaching the virtual
gluon to the upper quark line either before or after the
collinear gluon emission.

We begin our investigation by stripping o↵ the tensor
structure of the numerators and considering the regions
decomposition of the dimensionally regulated scalar in-
tegrals. As the scaling of the real emissions is restricted
by the external kinematics, we focus on the loop integral
over k, which can be mapped onto box and pentagon
structures, as depicted in Fig. 2 for the latter case. This
allows for a direct comparison of the regions results and
the known full expressions, thus ascertaining that all re-
gions are correctly identified. To perform the analysis, we
introduce a small power-counting parameter � = Q0/Q
and two light-cone vectors n and n̄ (with n2 = n̄2 = 0 and
n · n̄ = 2) along the directions of pc and p̄c̄. The external
legs carry collinear momenta pc, qc, whose components
scale as (n · pc, n̄ · pc, pc?) ⌘ (p+

c
, p�

c
, pc?) ⇠ Q(�2, 1,�),

an anti-collinear momentum p̄c̄ ⇠ Q(1,�2,�), and a soft
momentum ls ⇠ Q(�,�,�). In the following, we focus on
the two pentagon structures, for which a complete set of
invariants is given by si,i+1 = (pi + pi+1)

2 and m2 = p25
for inflowing external momenta pi associated with the
external lines. At leading power in �, they are given by
(choosing pc? = p̄c̄? = 0)

s12 = �p�
c
q+
c
, s23 = q�

c
l+
s
, s45 = �(p�

c
� q�

c
)l+
s
,

s34 = �p̄+
c̄
l�
s
, s51 = �q�

c
p̄+
c̄
, p25 = (p�

c
� q�

c
)p̄+

c̄

for the upper graph in Fig. 2. For the lower graph
s23 = �p�

c
l+
s

and s51 = p�
c
p̄+
c̄ , while all other invariants

remain the same. Before studying the physical case, we
consider Euclidean kinematics, where all si,i+1 < 0 and
m2 < 0. To identify the contributing regions, we utilize
pySecDec [39] and translate the parameter-space output
into momentum regions. At leading power in �, the only
non-zero contribution for both pentagon integrals stems
from the soft-collinear region k ⇠ Q(�,�2,�3/2) [40]. For
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.

example, the upper diagram in Fig. 2 corresponds to

Isc = i(4⇡)2�"

Z
ddk

(2⇡)d
1

k2 + i0

1

�l+s k� + i0

1

q�c k+ + i0

⇥
1

p̄+
c̄ (k� � l�s ) + i0

1⇥
�(p�c � q�c )k+ � p�c q

+
c + i0

⇤

=
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s45s51
2F1(1, 1; 1� "; 1�

m2s23
s45s51

)

⇥ (�s12)
�1�" (�s34)

�1�"
�
�m2

�1+"

, (10)

with sij ⌘ sij + i0 and m2
⌘ m2+ i0. Expressed in these

variables, the result also holds for the lower diagram.
After expanding in ", it agrees with the � expansion of
the full expression for this pentagon integral given in (5.8)
of [41], confirming that the leading-power contribution is
fully captured by the soft-collinear region. The diagram
where the virtual gluon is attached to the quark line after
the collinear emission (not shown in Fig. 2) corresponds
to a box with two massive adjacent legs. We find that
two regions, the soft and the soft-collinear, fully account
for the entire contribution in Euclidean kinematics.
We now analytically continue to the physical region,

in which all the light-cone components are positive and
p�
c

> q�
c
. An interesting feature of the expressions for

the diagrams in Fig. 2 are combinations that entail the
cancellation of two O(�) terms, resulting in an O(�2)
contribution, e.g. for the kinematics (??) belonging to
the upper diagram in Fig. 2, with p2

T
⌘ �p2? > 0,

s45s51| {z }
�

� p25s23| {z }
�

= p�
c
p̄+
c̄

�
qcT + lsT

�2
| {z }

�2

> 0 . (11)

•  Terms (proportional to a prefactor) arise

5

While this has no non-trivial consequences in Euclidean
kinematics, a subtlety arises upon performing the ana-
lytic continuation to physical kinematics. To illustrate
this fact, we consider the full result for the pentagon in-
tegral, which contains �-suppressed terms with prefactor

P =
s45s51

s45s51 � p25s23| {z }
��1


1�ei⇡"⇥

✓
1+

p25s23 � s45s51
s45s51| {z }

�

◆�"�
,

⇥ ⌘ ✓(p25) + ✓(s23)� ✓(s45)� ✓(s51)

This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
only arise between incoming lines involving a space-like
splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (??). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
the form (with implicit +i0 prescriptions)

Ig = i(4⇡)2�"

Z
ddk

(2⇡)d
1

�k2
T

1

k+ q�c � k2
T
� 2kT · qcT

⇥
1⇥

�k+ (p�c � q�c )� q+c p�c � k2
T
� 2kT · qcT

⇤

⇥
1

p̄+
c̄ (k� � l�s )

1

�l+s k� � k2
T
+ 2kT · lsT

(12)

and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
Evaluating the remaining two-dimensional Euclidean tri-
angle integral, one obtains [42]

Ig = �
2⇡ i

p̄+
c̄ p�c

"
�
l2
sT

+ q2
cT

+ s2
T

�✓1

"
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q2
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s2
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+ 2l2
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ln l2
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+ 2q2
cT

ln q2
cT

+ 2s2
T
ln s2

T

#
e�"�E

l2
sT

q2
cT

s2
T

, (13)

with sT = lsT + qcT [43].
It is interesting to understand the appearance of this

“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more

precisly the closely related Lee-Pomeransky space [44]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scal-
ing (x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). The
associated F polynomial factorizes to leading power,

F =
�
�q�

c
x1 + (p�

c
� q�

c
)x5

�
| {z }

��2

�
l+
s
x3 � p̄+

c̄
x4

�
| {z }

��1

. (14)

For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur and

the hidden Glauber pinch appears when both brackets
in (14) vanish individually, in accordance with the Lan-
dau equations [26, 28]. The double cancellation with
unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [46] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by

W
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m

3
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While this has no non-trivial consequences in Euclidean
kinematics, a subtlety arises upon performing the ana-
lytic continuation to physical kinematics. To illustrate
this fact, we consider the full result for the pentagon in-
tegral, which contains �-suppressed terms with prefactor

P =
s45s51

s45s51 � p25s23| {z }
��1


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P ⇠

⇢
1 for ⇥ = 0

��1 for ⇥ 6= 0

This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since p25, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase
e2i⇡", leading to a power enhancement in (??), which
compensates the power suppression and thus induces ad-
ditional leading-order terms. More generally, such terms
only arise between incoming lines involving a space-like
splitting and a virtual gluon attached to both the soft
and the split-o↵ gluon, as is indeed the case for the up-
per, but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (??). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
the form (with implicit +i0 prescriptions)

Ig = i(4⇡)2�"

Z
ddk

(2⇡)d
1

�k2
T

1

k+ q�c � k2
T
� 2kT · qcT

⇥
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⇤

⇥
1

p̄+
c̄ (k� � l�s )

1

�l+s k� � k2
T
+ 2kT · lsT

(12)

and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
Evaluating the remaining two-dimensional Euclidean tri-
angle integral, one obtains [42]

Ig = �
2⇡ i

p̄+
c̄ p�c
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with sT = lsT + qcT [43].

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [44]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scal-
ing (x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). The
associated F polynomial factorizes to leading power,

F =
�
�q�

c
x1 + (p�

c
� q�

c
)x5

�
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��2

�
l+
s
x3 � p̄+
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. (14)

For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur and

the hidden Glauber pinch appears when both brackets
in (14) vanish individually, in accordance with the Lan-
dau equations [26, 28]. The double cancellation with
unequal coe�cients of the parameters xi may be the
reason why we were unable to find this region using
Asy2.1 [22, 45].

With this understanding of the appearance of the
Glauber region in the context of the scalar example, we
now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (9) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [46] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-

Power enhancement in physical region, due to complex phase!

k ∼ (λ2, λ, λ3/2)

 soft-collinear 

Dominik Schwienbacher, REF 2025



Off-diagonal splitting

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

j

µ µ̄

pc

Q0
qck

ls

𝓘 ∋
16

3 ϵ3 ( αs

4π )
3

πf dbc ∑
j>2

′￼

Tr(tatdta)Tb
2Tc

j Jj 𝒫q→g(z)

• Reproduces color-aware DGLAP 

• @ leading pole simple Lorentz structure  

• @ sub-leading poles new structures  

• Generalized factorization theorem

∝ gμμ̄

∝ nμ
j⊥nμ̄

j⊥
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