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INTRODUCTION




LLARGE LOGARITHMS FROM BIG RAPIDITY GAPS

O In the forward limit s > ||, 1.¢. at large CoM energy vs. momentum transfer,

when final state emissions develop large rapidity gaps
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amplitudes are dominated by unphysically large logarithms

A=~ O(allog"(s/[t]))

O The BFKL kernel captures the exponentiation of these large logarithms,

allowing us to resum their contribution to the cross section. Fadin, Kuraev, Lipatov '75; Balitsky, Lipatov "78&

O In this kinematic limit, known as Multi-Regge Kinematics (MRK), an effective particle 1s

exchanged 1n the t-channel, a Reggeon, from which more rapidity-gapped radiation can be emitted.
Depending on whether the extra radiation 1s itseltf rapidity gapped we talk about next-to-MRK.



AMPLITUDE FACTORIZATION IN MRK AND NMRK

O In the (N)MRK we can picture the amplitude as follows

P2 p3 b2 P3

Images adapted from Byrne 23
where: the ziggly line is the Regge trajectory R, the green blobs are impact factors C, the blue

blob 1s a one-emission central vertex V,, and the gray blob 1s a two-emission central vertex V.
O Amplitudes factorise (very schematically, octet component only and up to Regge cuts)

«44%6726, A5%CRV9RC, AG%CRVQQRC

where each component admits an expansion 1in powers of o, thus e.g. Aff) gives us C (1) and R



KERNEL COMPONENTS
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L.EADING ORDER KERNEL COMPONENTS
Leading-Log (LL) Resummation: O (af log™(s/|t|))

O The two components of the leading order (LO) BFKL kernel,
required for resummation of leading logarithms (LL), are
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(a) (b)
Images from Byrne, Del Duca, Dixon, Gardi, Smillie 22

where pictured 1s a forward squared amplitude with a final-state cut.

(a) is a correction to the Regge trajectory RV
(b) 1s the leading order central emission vertex (CEV) Vg(,o) in MRK



NLO KERNEL

Next-To-Leading-Log (NLL) Resummation: O (a";” log™ ' (s/|¢ ))
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(b) one-loop correction to the one-emission CEV Vg(l) in MRK

(¢) leading two-emission CEV Vég)

(a) two-loop correction to the Regge trajectory, R

, this requires an next-to-MRK (NMRK) tree computation:

the two central gluons are not rapidity gapped



NNLO KERNEL

NNLL Resummation: O (o log™ *(s/[t]))
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(a) (b) (c) (d) (e)

(a) Three loop 2 — 2 MRK, from three Reggeons to three-loop correction to the trajectory, RG3)
Falcioni, Gardi, Maher, Milloy, Vernazza 21; Caola Chakraborty, Gambuti, von Manteuttel, Tancredi

(b) Two-loop correction to the central emission vertex V ) for one gluon
Abreu, GDL, Falcioni, Garda, Mllloy, Vernazza 24; Buccioni, Caola, Devoto, Gambuti

by expanding in the MRK limit the recently available two-loop five-parton amplitudes
GDL, Ita, Klinkert, Sotnikov "23; GDL, Ita, Sotnikov 23; Agarwal, Buccioni, Devoto, Gambuti, von Manteuftfel, Tancred1

(c) The CEV for one emission Vg ) (at higher orders in epsilon) Fadin, Fucilla, Papa

(d) The last missing component 1s the next-to-maximally-helicity-violiating (NMHYV) one-loop

two-gluon CEV Vﬁ)g, this requires expanding in NMRK the one-loop six-gluon amplitude
Byrne, GDL, Del Duca, Gardi, Smillie - in progress; GDL, Maitre

(e) The leading CEV for three emissions Vo) from an NNMRK limit at tree level
Byrne, Del Duca, Gardi, Mo, Smillie
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NMRK NUMERICAL EXPANSION




MINIMAL VARIABLES FOR (N)MRK

O The problem 1s most easily formulated in terms of lightcone momenta

(p+, D, P, ﬁl_)
(E _I_pza i) — Pzy Pz T Zpya Pz — Zpy)

p

O We can picture the MRK limit as follows

J <«— S93 = 19 —> 7'
Py 3
\\//T O 111C O O
T 9, 24 | 534 T 3 mc 0 0 0
| || q ‘7 o —I—
s = 4 P p; = p, X34 IC 1InNC mc
| 1 T p, mc 4 &
Sys = L + g1z q1?
I Ps :
Z— — 1 =y —> p mc = fixed by momentum conservation

O The MRK limit 1s a two-variable problem 2z, Z;
d1, (jl,pjf drop out by normalizing by the tree and X34 ~ Xy5 ~ 1/ > 1

O The NMRK limit is a five-variable problem z, Z, w, w, X = X(45), other variables drop out



CHALLENGE FROM SPURIOUS CANCELLATIONS

O Amplitudes take the form:
l

with ¢; rational functions, /; transcendental master integrals

o For Aéz) in the MRK limit we have:

C; —
C; R .cc L cio+O(x), Li~Iy,+zl;+ Oz

one spurious order in £ — 0 cancels between rational and transcendental.

o For A" in the NMRK limit we have (for the NMHV amplitude):

0 0
C; % C;
Ci =~ 5;_8 - /j Feio+O0(z), I = Iip+ Ox)

Problem: 8 orders of spurious cancellations in the (N)MRK parameter as € — 0



CHALLENGE FROM SPURIOUS CANCELLATIONS (2)

o The Aém coetficients are simple

> from antares results.jjj.ggggg.mhv 1import LTerms; LTerms

< [Terms("""+(1(4]5)%)/((1]2)(1|3)(2[3))"""), Terms("""+(1(4]5)3)/((1]2)2(3]14)(3]|5))"""), ...]

> len(str(lTerms[0])), max(map(len, map(str, 1lTerms)))

< 28, 0630

o The Aél) NMHYV coeftticients are much more complex

> from antares results.jjjj.gg9g9ggg.pmpmpm import coeffs; coeffs[ 'box(1l)"']

< Terms("""+(-1/2j(1]2)*[1]2]112|31(3|1+2|51%)/((1]|3)*[4]|5]1[5|61(1|2+3|4]1(3|1+2|6]s_123)""")

> len(str(coeffs['box(1l)'])), max(map(len, map(str, coeffs.values())))

< /6, 346853

Some coefficients (three mass triangles, bubbles, rational part) are very complicated!

X Analytic expansion is a no go. Run out of memory and time after 3 or 4 orders!
X Numerical expansion with floating-point numbers is also too complicated.
Say we input z ~ 10~ ” to have 10 digits to work with, we would lose (at least) 80 digits!



P-ADIC NUMBERS

O You may be familiar with finite field (integers modulo a prime)
von Manteuftfel, Schabinger "14; Peraro 16

aclF,:ac{0,...,p—1} with {+,—, %, +}

Limits (and calculus) are not well defined 1n Fp. We can make things zero, but not small:

alo =0if a = 0 else 1 a.k.a. the trivial absolute value.

O There exists just one more absolute value on the rationals, the p-adic absolute value.
Ostrowski's theorem 1916

O Let's start from p-adic integers, instead of working modulo p, expand 1n powers of p

In some sense we are correcting the finite field result with more (subleading) information.

o p-adic numbers @, allow for negative powers of p, (would be division by zero in If',!)

GEQp1a—up_y+"'+ao+a1pl+"'+O(Pn)
GDL, Page 22

O The p-adic absolute value 1s detined as |a|, = p”.

Think of p as a small quantity, €, even 1f 1t 1s a large prime (by the real absolute value, | [5).



THE r-ADIC (N)MRK LimiT

o The space of p-adic numbers 1s an ultrametric space, the triangle inequality 1s strengthened to:
d(z, z) < max{d(z,y),d(y, 2)}

This leads to better stability properties: adding two numbers can never result 1s a larger number!

o A general kinematic evaluation at a (2°' — 1)-adic phase space point

> from lips import Particles; from syngular import Field
> 0Ps = Particles(6, field=Field("padic", 2 ** 31 - 1, 9), seed=0) # create psp
> (1] * coeffs['bubble(l)'])(oPs) # evaluate the coefficient(s)

< 490010355 + 1085079429*214/7/483647 + 167/6653899*214748364772 + 726358851*2147438364773 + 1074867770*2147483
{ G 4

o Manipulate phase space: set the (N)MRK parameter controlling the rapidity gap to be z ~ p

0 < leading NMRK behavior < p — 1 + (0(2147483647")

v We still lose 1 digit per spurious pole (8 1n total), but the result 1s now exact.




ANALYTIC
RECONSTRUCTION




FUNDAMENTALS OF ANALYTIC RECONSTRUCTION

o Analytic reconstruction 1s a powerful alternative to symbolic manipulations:
x cancellations happen numerically, avoiding intermediate bottlenecks
x the cost 1s largely driven by the complexity of the final results

o We have aring in 5 independent variables over a field F(= Q,)

Ryruk = F|2z,Z,w, 0, X (= Xy5)

we need to recover rational functions from numerical samples:

{2,Z,w,w, X} € F° = BlackBox = ¢; € F — ¢; =

The real power of the approach 1s with polynomial quotient rings.

o The complexity 1s not driven just by the number of variables, but also by the sigularities

Da, = —4(—1+w)w(—1+ @) wX*(—1+ 2)z(-1+ 2)z+
(Xz(w+ 2z —wz + XZ)+ww— X(—1+2)z +0X(1 -z + 2(—1+ 272))))*

alone has degreee 10. It appears up to cubic pole, making denominators exceed degree 30.
By comparison the most complicated singularity for Aéz) was (z — z)



L.EAST CoOMMON DENOMINATOR

(1.e. geometry at codimension one)

O We can determine the least common denominators (LCDs),

’D:HDgﬁ(z,Z,w,’tD,X).
j

from a univariate slice j\(t) and guesses for the possible D;.
O The curve X(t) must intersect all varieties V' ({D;)), e.g.
z — z+c,t, zZ — zZ+ cst,
w — w—+ cgt, w —> w+czt, X — X +cxt

Thiele interpolation yields D(t), do univariate factorization

and match to factors from multivariate guesses.

O Open-source implementation in ANTARES, LIPS, SYNGULAR

Ring.univariate slice and num func.get lcd

Space has dimension 9,

D; = 0 have dimension 4,

—

)\(t)‘s have dimension 1.

Poles & Zeros < Irreducible Varieties < Prime Ideals

Physics Geometry

Algebra
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TowaRDS THE NMHY 2-EmissioN CEV

Much more can be said on reconstruction, 1n brief:

*x the LCD form of the coefficients 1s too complex (would require millions of evaluations to fit);

% simplifications arise from partial fraction decompositions and computational algebraic geometry.

Status:

% all amplitude coefticients have been reconstructed in the NMRK limit;

 after reconstruction, no more spurious cancellations in the NMRK parameter.

Checks:

*x The MRK limit (X45 — large) reproduces known results;

* We obtain the same result from ¢g"g g g g g and g7 g g g9 g (distinct in general kinematics);
* Reproduce known N = 4 and N = 1 SUSY results.

To do:

* Split result into contributions to trajectory, impact factors (known) and identify the (new) vertex.

Outlook:

*x The proposed method provides a scalable solution to more complex processes,

this calculation was performed entirely on a laptop.
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GDL, Maitre ('19)

MULTIVARIATE PARTIAL FRACTIONS GDL, Page (22)

O We want to determine whether a partial fraction decomposition 1s possible

N 1N2_|_N1
DDy Dy D

without knowing /" analytically. The complexity should not depend on N (besided numerical evaluations).
The complexity will depend on the irreducible polynomials Dy, Ds.

O Multivariate partial fraction decompositions follow from varieties where pairs of denominator factors vanish

N  + No N ? ?
— — Dy,Dy) 1.e. = N D D
D1D2 D1 -+ D2 N -~ < 1 2> 1. N Nl 1 ‘|‘N2 %

< Y+ (@ +y’ —2) =(zy’ +y’ — 22+ Y’ —2%) =2 — 2z —y)N (Y — 2%, z) N (2%, z + y)

This is a primary decomposition, it is the equivalent for polynomials of say: 12 = 2° x 3

If A vanishes on all branches, than the partial fraction decomposition exists.



GDL, Maitre ('19)
GDL, Page ('22)

ITERATED POLE SUBTRACTION Chawdhry (23)
Xia, Yang ('25)
O After we determine valid partial fraction decompositions, determine a numerator at a time, €.g.
N | N
D D

C;, —

[solate Ny by taking points in the limit D; — 0.

o0 To do this, we need to nest p-adic Iimits:
* set ¢ oc p°, get 5 digits for the leading NMRK behaviour

* set D1 o« p, as long as 1ts pole degree 1s less than 5, get a value for the residue.

o Example of explicit construction with syngular (on GitHub), a Python extension to Singular

> from syngular import Field, Ring, Ideal, RingPoint

> ring = Ring('Q"', ('z', 'zb', 'w', 'wb', 'X'), ‘'dp')

> I = Ideal(ring, ['(-4*%(-1+w)*w*(-1+wb)*wb*X**2*(-1+2z)*z*(-1+zb)*zb+(X*z*(wb+zb-wb*zb+X*zb)+w* (wl
> I.squash() # just expand the polynomial 1n this case

> point = RingPoint(ring, field=Field("padic", 2 ** 31 - 1, 9)) # a dictionary {'z': number,

> poilnt.singular variety(I, valuations=(1l, ), seed=0) # push the point on the surface

> polnt(I.generators[0])

< 206429729*2147483647 + ... + 0(2147483647"79)
{ G ———— 4



