# $k_t$ -factorization in a variable-flavor-number scheme: heavy-hadron production

Benjamin Guiot
in collaboration with
Franco Barattini and Claudio Dib

REF25



## High-energy or $k_t$ factorization

Initially designed to resum large log(1/x) terms.

Seminal papers: Collins, Ellis: Nucl. Phys. B 360 (1991) 3-30; Catani, Ciafaloni, Hautmann: Phys. Lett. B242 (1990) 97, Nucl. Phys. B 366(1991) 135, Nucl. Phys. b427 (1994) 475

$$\frac{d\sigma}{dx_1 dx_2 d^2 p_t} = \int^{k_{max}^2} d^2 k_{1t} d^2 k_{2t} F_i(x_1, k_{1t}^2; \mu^2) F_j(x_2, k_{2t}^2; \mu^2) \hat{\sigma}_{ij}(k_{1t}^2, k_{2t}^2; \mu^2)$$

 $\hat{\sigma}$  is an off-shell cross section. The unintegrated PDFs,  $F(x,k_t^2;\mu^2)$ , are related to collinear PDFs by

$$f_i(x;\mu) = \int_0^{\mu^2} F_i(x,k_t^2;\mu^2) dk_t^2$$

 $F_i(x, k_t^2; \mu^2)$  obey the BFKL equation.

I use the event generator KaTie for  $d\sigma$ .

## Schemes and HF production

#### Fixed-flavor-number scheme

Proton made of gluon+light quarks

$$\sigma = \mathsf{PDF}^{\mathit{FFNS}}_{\mathsf{order}} \otimes \hat{\sigma}^{\mathit{FFNS}}_{\mathsf{order}}$$

Dominant process: gg o Qar Q

#### Variable-flavor-number scheme

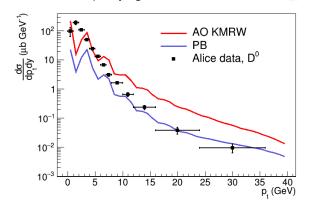
gluon+light quarks+heavy quarks

$$\sigma = \mathsf{PDF}^{\mathit{VFNS}}_{\mathsf{order}} \otimes \hat{\sigma}^{\mathit{VFNS}}_{\mathsf{order}}$$

Dominant processes:  $gQ \rightarrow gQ$  (for  $p_t > a$  few GeV).

- Typical calculations use  $\hat{\sigma}_{\mathsf{LO}}^{\mathit{FFNS}}$  with PDF $_{\mathsf{LO},\;\mathsf{NLO}}^{\mathit{VFNS}}$ .
- Expect better results with a VFNS at LHC energies (where you can reach  $P_t \gtrsim 5m_Q$ ).

#### Goal

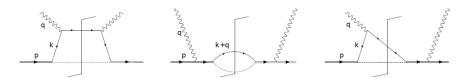

## Implementation of HEF within a variable-flavor-number scheme (VFNS):

Bring HEF closer in rigor to collinear factorization.

Most of modern PDFs extracted in a VFNS.

#### Issue:

KMRW UPDFs + KaTie + VFNS overestimates data. No publication found specifying which value is used for  $k_{max}$ .

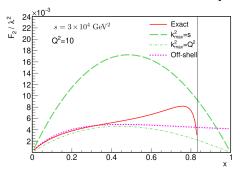



## $k_t$ factorization in a Yukawa theory

Inspired by "Basics of factorization in a scalar Yukawa field theory", Aslan, Gamberg, Gonzalez-Hernandez, Rainaldi, Rogers.

$$\mathcal{L} = \sum_{j} \frac{i}{2} \left[ \overline{\psi}_{j} \gamma^{\mu} \partial_{\mu} \psi_{j} - (\partial_{\mu} \overline{\psi}_{j}) \gamma^{\mu} \psi_{j} \right] - M_{j} \overline{\psi}_{j} \psi_{j} + \frac{1}{2} (\partial \phi)^{2} - \frac{m_{s}^{2}}{2} \phi^{2}$$
$$- \lambda \left( \overline{\psi}_{1} \psi_{2} \phi + \overline{\psi}_{2} \psi_{1} \phi \right)$$

The structure functions can be computed exactly = w/o factorization (but still in perturbation theory).




**Figure 1.** Order  $\mathcal{O}(\lambda^2)$  diagrams for the DIS on a quark target in the Yukawa theory.

## $k_t$ factorization in a Yukawa theory

Guiot, Hameren: JHEP 04 (2024) 085

Compute the KMRW UPDFs in the Yukawa theory.



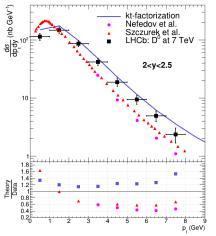
 $k_{max}^2 \sim s$  overshoots the exact result.

 $k_{max}^2 \sim Q^2$  is also justified by theoretical considerations.

Parton-Branching UPDFs: rapidly decreasing when  $k_t > Q$ :  $k_{max}^2 \to \infty$  is fine.

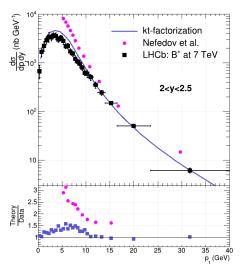
#### Implementation of the VFNS Guiot, Hameren: Phys.Rev.D 104 (2021)

- All partonic channels included, in particular the dominant Qg o Qg contribution.
- UPDFs obtained from CT14 PDFs following the KMRW formalism, but with  $k_{max} \sim Q$ .
- Peterson's fragmentation functions:


$$D_{Q \to H_Q}(z) \propto f(Q \to H_Q) \frac{1}{z \left(1 - \frac{1}{z} - \frac{\varepsilon_i}{1 - z}\right)^2}$$

Fixed scale  $\rightarrow$  partial implementation. Cacciari's fragmentation fractions. Standard value  $\varepsilon_c = 0.05$  and  $\varepsilon_b = 0.01$ .

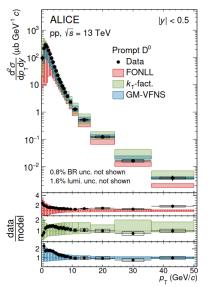
• Standard factorization scale  $\mu_i \simeq m_t$ .


#### Results: D mesons

Improved agreement between theory and data.



Nefedov et al.: *Phys. Rev. D 91 (2015) 5, 054009* Szczurek et al.: *Phys. Rev. D 87 (2013) 094022* 


#### Results: B mesons



Nefedov et al.: Int. J. Mod. Phys. A 30 (2015) 04n05, 1550023

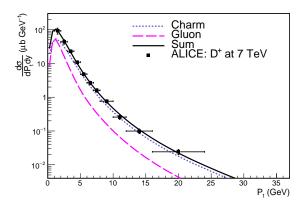
Fewer theoretical results are available for B mesons.

## Prediction for *D*-meson production at 13 TeV



More plots in: Alice Collaboration, JHEP 12 (2023) 086.

## Scale dependence of FFs


Barattini, Dib, Guiot: JHEP 05 (2025) 115

- Contributions:  $D_{Q \to H_Q}(z; \mu)$  and  $D_{g \to H_Q}(z; \mu)$ .
- Evolution with QCDNUM.
- Initial conditions:  $D_{g\to H_Q}(z;\mu_0)=0$  and  $D_{Q\to H_Q}(z;\mu_0)$  with Peterson parametrization

$$\begin{split} \frac{d\sigma(pp \to H_Q + X)}{dYd^2P_t}(Y, P_t) &= \sum_j \int_{z_{\mathsf{min}}}^1 \frac{dz}{z^2} D_{j \to H_Q}(z; \mu_f) \\ &\times \frac{d\sigma(pp \to j + X)}{dyd^2p_t} \left(y, \frac{P_t}{z}; \mu_f\right) \end{split}$$

$$\frac{d\sigma(pp\to j+X)}{dyd^2p_t} = \sum_{a,b} F_a(\mu_i^2) \otimes F_b(\mu_i^2) \otimes \hat{\sigma}_{ab\to j+X}(\mu_i,\mu_f)$$

#### Results: $D^+$ meson



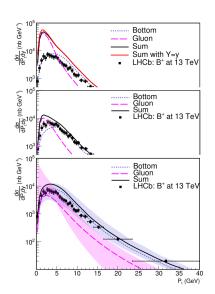
 $D_{g o D}$  improves the agreement between theory and data at small  $P_t$ .

#### Results: B meson

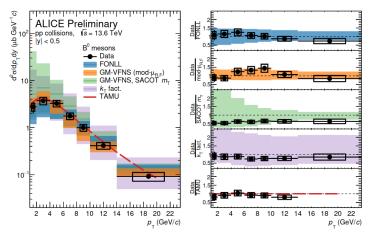
At small  $P_t$  the results are sensitive to the choice of factorization scales.

#### Default scheme:

$$\mu_i = \sqrt{p_t^2 + m_Q^2}$$
,  $\mu_f = \sqrt{P_t^2 + M^2}$ 


#### **BKKSS** scheme:

$$\mu_i = 0.49 \sqrt{p_t^2 + 4m_Q^2},$$
  

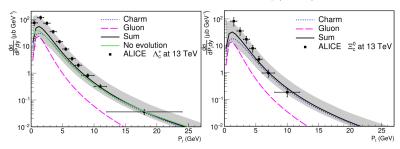

$$\mu_f = 0.49 \sqrt{P_t^2 + 4M^2}$$

#### **SACOT**- $m_T$ scheme:

Default scheme, but  $p_t$  replaced by  $m_t$  in the partonic X-section for e.g.  $gg \rightarrow gg$ 



## Prediction for *B*-meson production at 13.6 TeV

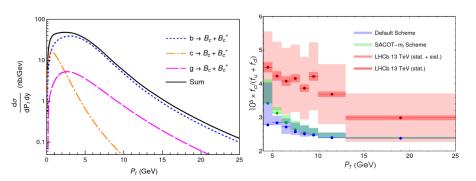



 $k_t$ -factorization: SACOT- $m_T$  scheme.

### Heavy-baryon production

Peterson FF with  $\varepsilon_c = 0.001$  (same as for *B* mesons):

$$f(c\to\Lambda_c^+)=0.1 \text{ and } f(c\to\Xi_c^0)=f(c\to\Lambda_c^+)\frac{f(c\to\Xi_c^0)\text{ALICE}}{f(c\to\Lambda_c^+)\text{ALICE}}$$




Usual underestimation of small- $P_t$  data by theory (even at NLO).

## $B_c$ production

Only fragmentation contribution included. Missing higher-power mechanisms explains the deficit at low  $P_t$ 

Leading order FF with color-singlet LDME.



### **Summary**

- Complete implementation of the HEF within a VFNS.
- Successful predictions for ALICE measurements of D and B mesons.
- Results for heavy baryons in agreement with collinear calculations.
- A single choice of factorization scales describes the whole dataset (we prefer SACOT- $m_T$ ). The B-meson cross section is sensitive to this choice at small  $P_t$ .
- The  $D_{g\to H_O}(z;\mu)$  FF helps at small  $P_t$ .

#### Thanks for your attention!