Perturbative RGE systematics in precision observables

giuseppe bozzi

University and INFN, Cagliari

with Valerio Bertone and Francesco Hautmann

Phys. Rev. D 105, 096003 (2022)

Phys. Rev. D 111, 074005 (2025)

RGEs in QCD

Generic RGE in QCD:

$$\frac{d \ln R}{d \ln \mu} = \Gamma(\alpha_s(\mu))$$

$$\Gamma(\alpha_s(\mu)) = \sum_{n=0}^k \Gamma_n \alpha_s^{n+1}(\mu)$$

$$R = (\alpha_s, PDF, TMD)$$

 Γ = appropriate anomalous dimension

k = highest-order known in Γ -expansion

- Can be solved either analytically or numerically
- Both equally good from the point of view of perturbative accuracy
- Goal: devise a strategy to estimate truncation uncertainty in both cases

Analytic solutions

• Well known methodology borrowed from threshold and q_T resummation

Catani, Mangano, Nason, Trentadue NPB 478 (1996) Catani de Florian Grazzini Nason JHEP 07 (2003) GB Catani de Florian Grazzini NPB 737 (2006)

- Express $R(\mu)$ in closed analytic form in terms of $R(\mu_0)$
- ⇒ Perturbative series containing terms proportional to $L = \alpha_s(\mu_0) \ln(\mu/\mu_0)$
- Decompose $L = L_{\kappa} \alpha_s(\mu_0) \ln \kappa$ with $L_{\kappa} = \alpha_s(\mu_0) \ln(\kappa \mu/\mu_0)$

 $\kappa\mu$ resummation scale

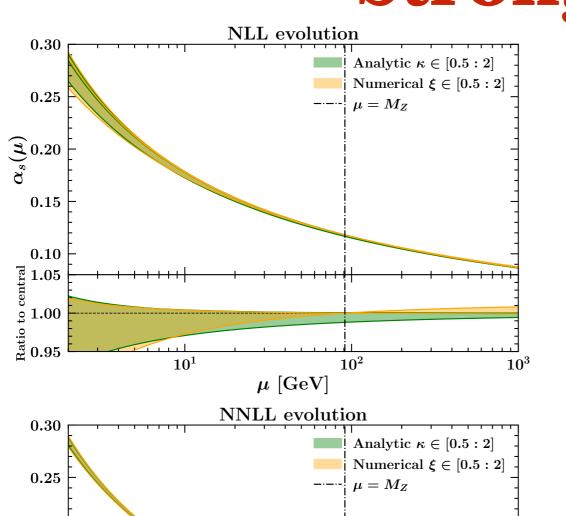
- Variations of κ in the vicinity of 1 generate sub-leading terms
- **→** Estimate of truncation uncertainty

Numerical solutions

- A "shifted kernel" approach:
 - introduce arbitrary sub-leading terms in Γ and solve RGE numerically
 - differences among numerical solutions obtained with different sub-leading terms —> truncation uncertainty
- More specifically:
 - consider a NLO kernel $\Gamma = \alpha_s(\mu)\Gamma_0 + \alpha_s^2(\mu)\Gamma_1$
 - make a RG transformation $\mu \to \xi \mu$
 - express $\alpha_s(\mu) = \alpha_s(\xi\mu) \alpha_s^2(\xi\mu)\beta_0 \ln \xi + \mathcal{O}(\alpha_s^3)$
 - $\rightarrow \overline{\Gamma} = \alpha_s(\xi\mu)\Gamma_0 + \alpha_s^2(\xi\mu)\left[\Gamma_1 \Gamma_0\beta_0\ln\xi\right] + \mathcal{O}(\alpha_s^3)$
 - solving RGE using Γ or $\overline{\Gamma}$ is equivalent from a perturbative perspective
 - →Estimate of truncation uncertainty

 $\xi\mu$ resummation scale (one-to-one correspondence between κ and ξ)

Strong coupling



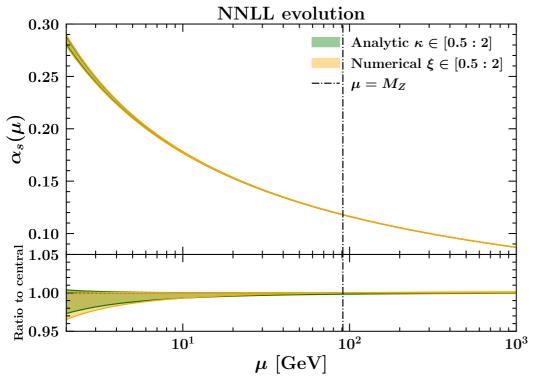
RGE
$$\frac{d \ln \alpha_s}{d \ln \mu} = \beta(\alpha_s(\mu)) = \sum_{n=0}^k \beta_n \alpha_s^{n+1}(\mu)$$

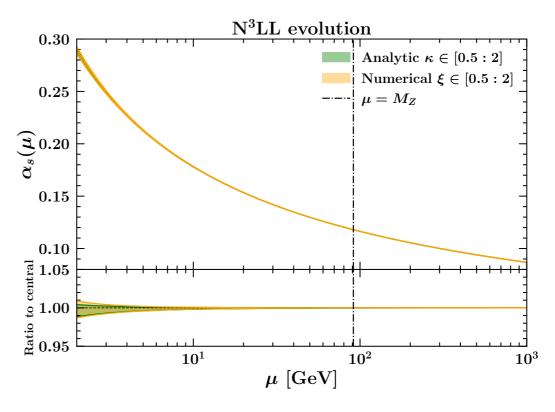
Analytic

$$\alpha_s^{N^k LL}(\mu) = a_s(\mu_0) \sum_{l=0}^{\kappa} a_s^l(\mu_0) g_{l+1}^{(\beta)}(\lambda, \kappa)$$

Numerical (NLO) $^{l=0}$

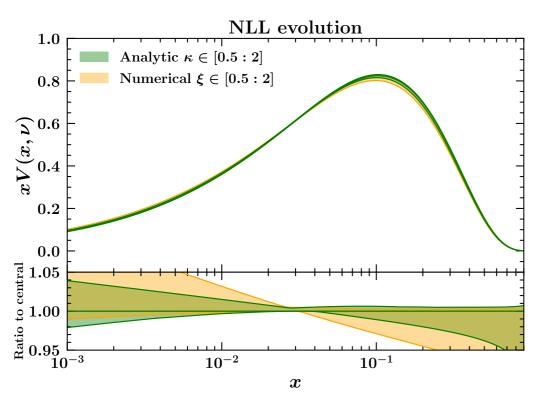
$$\beta(\alpha_s(\mu)) = \alpha_s(\xi\mu)\beta_0[1 + a_s(\xi\mu)(\frac{\beta_1}{\beta_0} - 2\beta_0 \ln \xi)] + \mathcal{O}(\alpha_s^3)$$





- Uncertainties of analytic/numerical solutions of the same order
- Good perturbative convergence

LL evolution $0.8 \quad \text{Numerical } \xi \in [0.5:2]$ $0.00 \quad \text{Numerical } \xi \in [0.5:2]$ $0.100 \quad \text{Numerical } \xi \in [0.5:2]$ $0.2 \quad \text{Numerical } \xi \in [0.5:2]$ $0.3 \quad \text{Numerical } \xi \in [0.5:2]$



PDFs

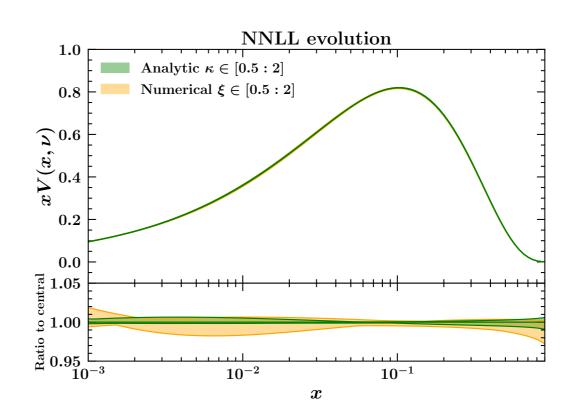
RGE
$$\frac{d \ln f}{d \ln \mu} = \gamma(\alpha_s(\mu)) = \sum_{n=0}^{k} \gamma_n \alpha_s^{n+1}(\mu)$$

Analytic

$$f^{N^kLL}(\mu) = g_0^{(\gamma),N^kLL}(\lambda,\kappa) \exp \left[\sum_{l=0}^k \alpha_s^l(\mu_0) g_{l+1}^{(\gamma)}(\lambda,\kappa) \right] f(\mu_0)$$

Numerical (NLO)

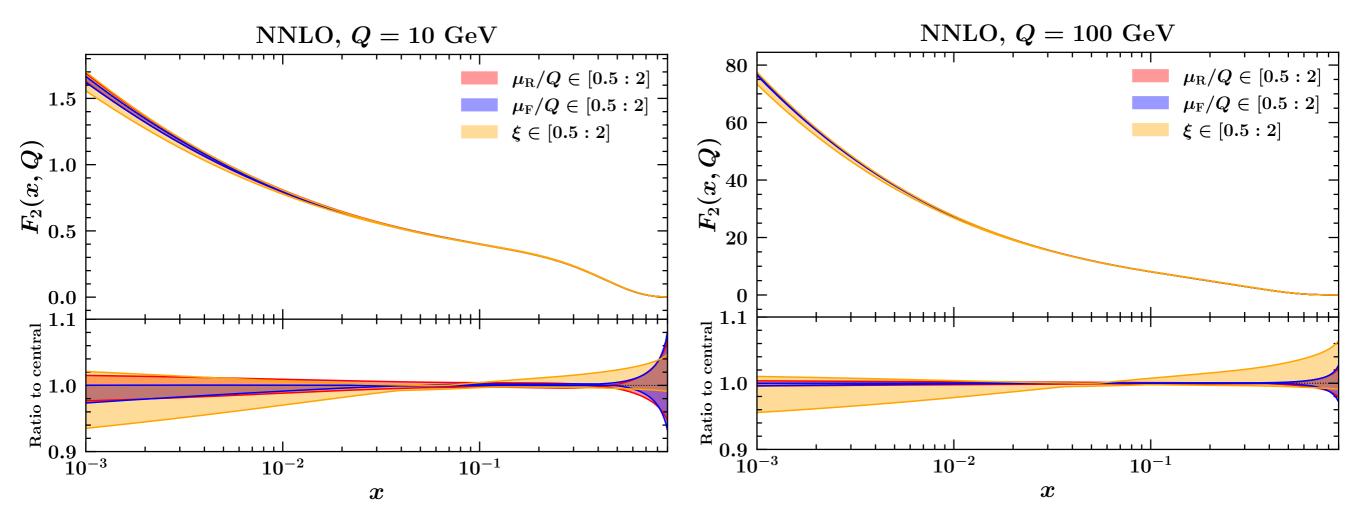
$$\gamma(\alpha_s(\mu)) = \alpha_s(\xi\mu)\gamma_0 + \alpha_s^2(\xi\mu) \left[\gamma_1 - \beta_0 \gamma_0 \ln \xi \right] + \mathcal{O}(\alpha_s^3)$$



- Total valence distribution evolved from $\mu = 2 \text{ GeV}$ to $\mu = 100 \text{ GeV}$
- Similar behavior for other PDFs and same considerations as before

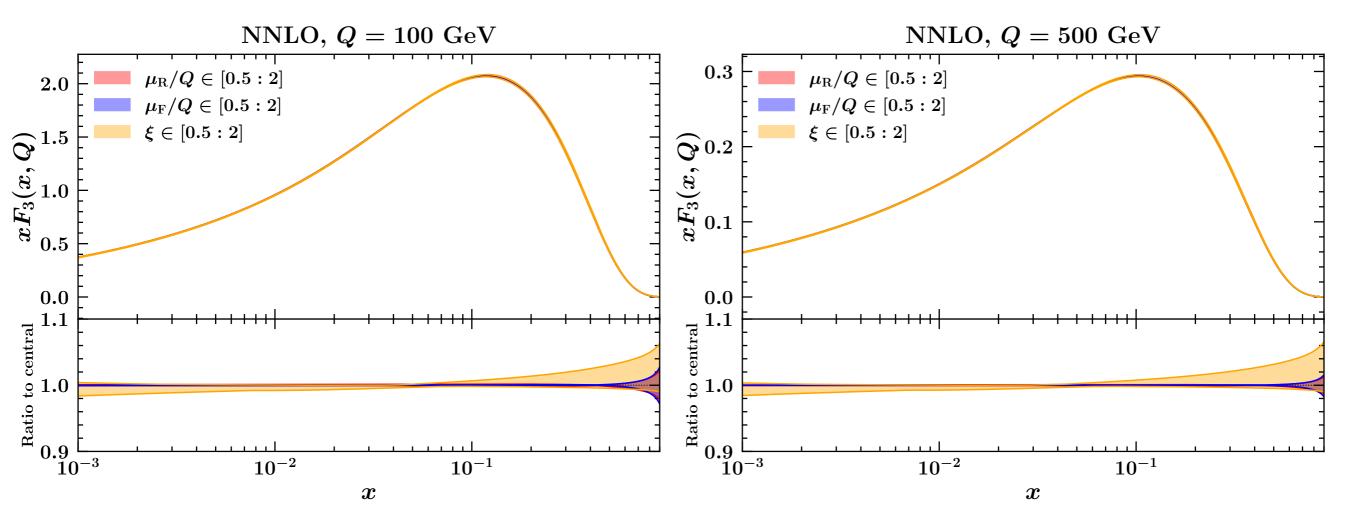
Structure functions

- Assess the impact of $\kappa(\xi)$ variation on physical observables relevant to PDF fits
- Structure function $\mathcal{F} = F_2, F_L, xF_3$ in unpolarized inclusive DIS
- $\Rightarrow \mathcal{F}(Q) = C_{\mathcal{F}}\left(\alpha_{s}(\mu_{R}; \xi), \mu_{R}/Q, \mu_{F}/Q\right) \otimes f(\mu_{F}; \xi)$
- \rightarrow (Q virtuality of vector boson, all non-scale dependencies omitted)
- N^kLO partonic $C_{\mathcal{F}}$ consistently combined with N^kLL evolution of α_s and PDFs
- Variations of (μ_R, μ_F, ξ) around (Q, Q, 1) by factor of 2
 - ullet μ_R and μ_F variations give an estimate of corrections to $C_{\mathcal{F}}$
 - ξ variations give an estimate of the uncertainty due to α_s and PDF evolution



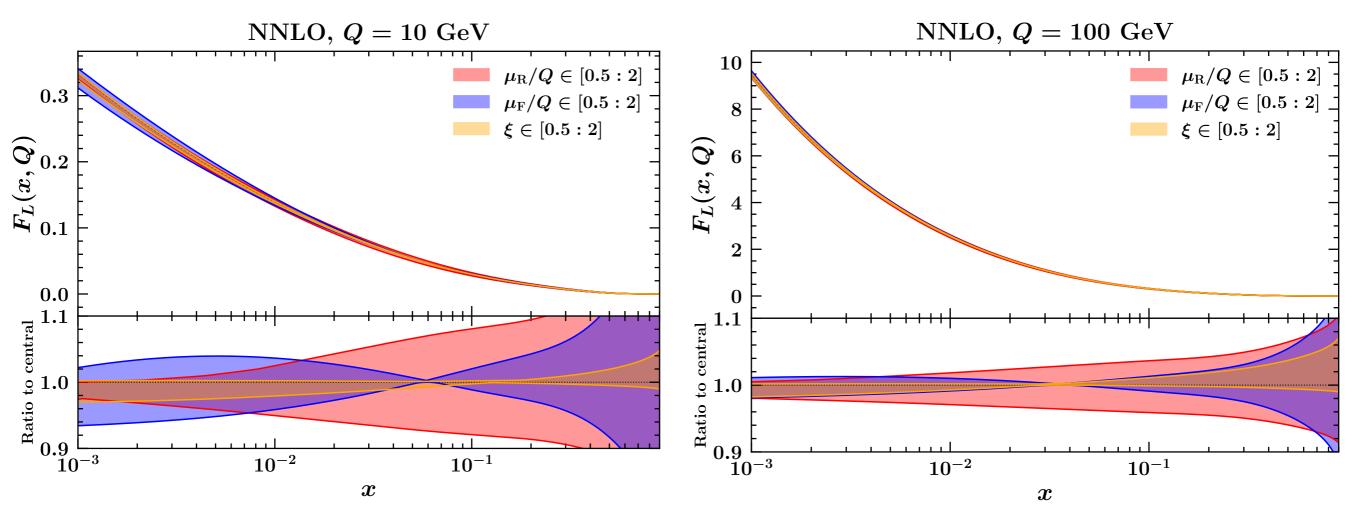
- Input for evolution: $\alpha_s(M_Z) = 0.118$ and MSHT20 at $Q_0 = 2$ GeV
- VFNS with $(m_c, m_b) = (1.4, 4.75) \text{ GeV}$
- Q = 10 GeV (γ -dominated) and Q = 100 GeV (Z-dominated)
- Sizable ξ bands, generally larger than μ_R , μ_F bands
- μ_R, μ_F bands shrink with increasing Q, ξ bands approximately same size

xF_3



- Input for evolution: $\alpha_s(M_Z) = 0.118$ and MSHT20 at $Q_0 = 2$ GeV
- VFNS with $(m_c, m_b) = (1.4, 4.75) \text{ GeV}$
- $Q = 100,500 \text{ GeV} (xF_3 \text{ suppressed by } Z \text{ propagator below } M_Z)$
- Sizable ξ bands, generally larger than μ_R , μ_F bands

F_L



- Input for evolution: $\alpha_s(M_Z) = 0.118$ and MSHT20 at $Q_0 = 2$ GeV
- VFNS with $(m_c, m_b) = (1.4, 4.75) \text{ GeV}$
- Q = 10 GeV (γ -dominated) and Q = 100 GeV (Z-dominated)
- Starts at $\mathcal{O}(\alpha_s)$: μ_R , μ_F bands generally larger than ξ bands
- μ_R, μ_F bands shrink with increasing Q, ξ bands approximately same size

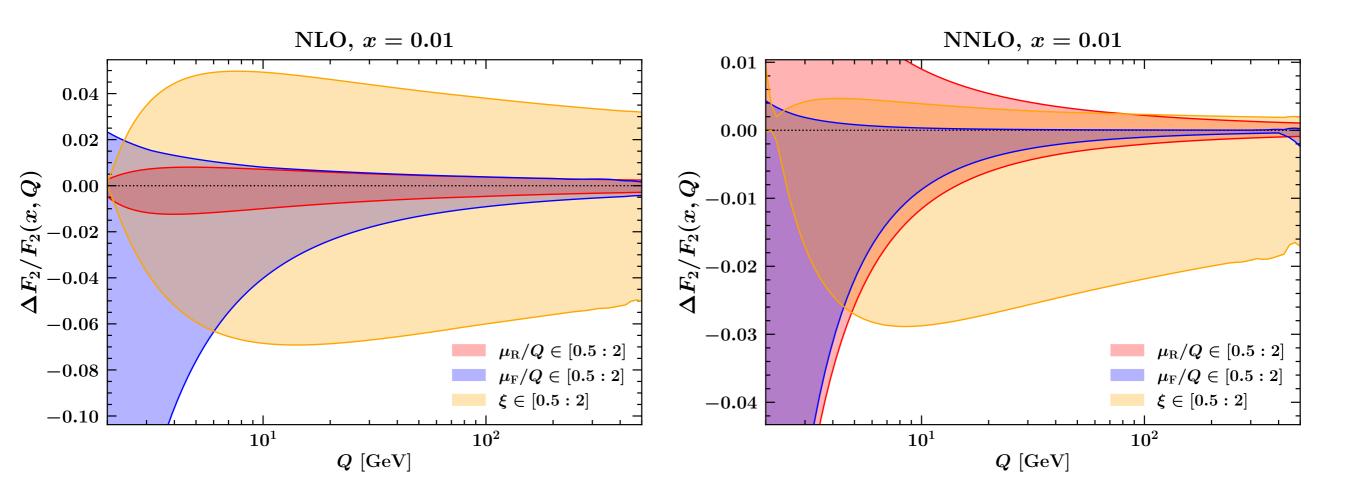
ξ vs. μ_R, μ_F

• Consider $f(\mu, \xi)$, a PDF evolved from μ_0 to μ at NLL with a choice of ξ

$$\Delta f(\mu, \xi) = f(\mu, \xi) - f(\mu, 1) = \left(\alpha_s^2(\mu) - \alpha_s^2(\mu_0)\right) \ln \xi \left(\gamma_1 + \frac{\beta_1}{2\beta_0}\gamma_0 - \frac{1}{2}\beta_0\gamma_0 \ln \xi\right) f(\mu) + \mathcal{O}(\alpha_s^3)$$

- Very distinctive behaviour:
 - Δf is $\mathcal{O}(\alpha_s^2)$, *i.e.* sub-leading at NLL accuracy.
 - Proportional to $\ln \xi$, thus approaches zero as $\xi \to 1$ as expected
 - Proportional to $\alpha_s^2(\mu) \alpha_s^2(\mu_0)$
 - For $\mu \sim \mu_0$, Δf small no matter how small is μ (how large is $\alpha_s(\mu)$)
 - For $\mu \gg \mu_0$, Δf dominated by $a_s(\mu_0)$, no matter how large is μ
- General scaling at N^kLL: $\alpha_s^{k+1}(\mu) \alpha_s^{k+1}(\mu_0)$
- ξ uncertainties scale **differently** from $\mu_{R,F}$ uncertainties (that scale as $\alpha_s^{k+1}(\mu_{R,F})$) "cumulative" uncertainty due to $\mu_0 \to \mu$ evolution

Uncertainty scaling in F_2



- μ_R and μ_F uncertainties large at small Q, decrease with growing Q
- ξ uncertainty grows and remain sizable at large Q
- Similar effect for other structure functions
- Impact expected in PDF fits —> Francesco's talk

TMDs

• TMDs (in b_T space) obey **two** evolution equations:

$$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}} = K(\mu_0) - \int_{\mu_i}^{\mu_f} \frac{d\mu'}{\mu'} \gamma_K(\alpha_s(\mu')) \qquad \qquad \frac{\partial \ln F}{\partial \ln \mu} = \gamma_F(\alpha_s(\mu)) - \gamma_K(\alpha_s(\mu)) \ln \frac{\sqrt{\zeta}}{\mu}$$

The solution is:

$$F(\mu_f, \zeta_f) = e^{S(\mu_f, \zeta_f; \mu_i, \zeta_i)} F(\mu_i, \zeta_i)$$

$$S(\mu_f, \zeta_f; \mu_i, \zeta_i) = K(\mu_i) \ln \frac{\sqrt{\zeta_f}}{\sqrt{\zeta_i}} + \int_{\mu_i}^{\mu_f} \frac{d\mu'}{\mu'} \left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu')) \ln \frac{\sqrt{\zeta_f}}{\mu'} \right]$$

Boundary conditions for evolution:

$$\mu_i = \sqrt{\zeta_i} = \mu_b = \frac{2e^{-\gamma_E}}{b_T}$$

Nullifies scale logs

 $\mu_f = \sqrt{\zeta}_f = M$

- M invariant mass of the partonic system
- Exact choice of ζ is immaterial $(\zeta_1\zeta_2 = M^4)$
- μ_f variations accounted for by κ variations

TMDs

$$F(M, M^2) = e^{S(M, \mu_b)} F(\mu_b, \mu_b^2)$$

$$S(M, \mu_b) = K(\mu_b) \ln \frac{M}{\mu_b} + \int_{\mu_b}^{M} \frac{d\mu'}{\mu'} \left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu')) \ln \frac{M}{\mu'} \right]$$

A perturbative expansion of the kernels:

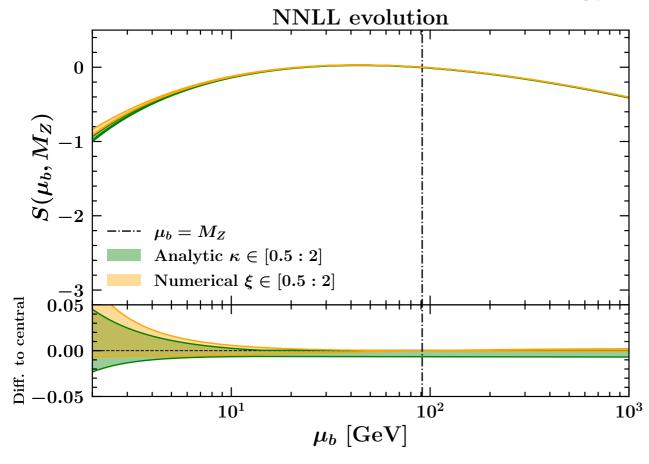
$$K(a_s(\mu)) = \sum_{n=0}^{\infty} a_s^{n+1}(\mu) K^{(n)} \quad \gamma_F(a_s(\mu)) = \sum_{n=0}^{\infty} a_s^{n+1}(\mu) \gamma_F^{(n)} \quad \gamma_K(a_s(\mu)) = \sum_{n=0}^{\infty} a_s^{n+1}(\mu) \gamma_K^{(n)}$$

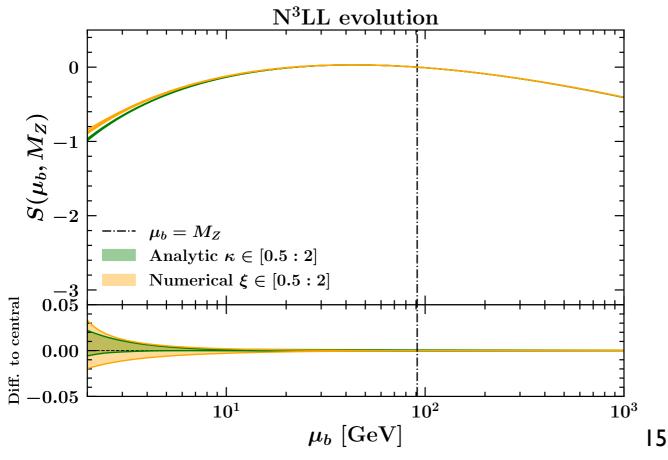
allows to compute S numerically or analytically (using analytic solutions of α_s):

$$\exp(S) = g_0(\alpha_s(\mu_0)) \exp \left[Lg_1(\lambda) + g_2(\lambda, \kappa) + \alpha_s(\mu_0)g_3(\lambda, \kappa) + \alpha_s^2(\mu_0)g_4(\lambda, \kappa) + \dots \right]$$

- Same λ as in α_s : agreement with GB Catani de Florian Grazzini NPB 737 (2006) by identifying $\mu_{\rm res} = \mu_0/\kappa$ and $\mu_R = \mu_0$ (μ_0 = boundary condition for α_s)
- Variation of the **resummation scale in** α_s propagate into the Sudakov and produce the usual q_T -resummation μ_{res} scale.

Sudakov





- Uncertainties of analytic/numerical solutions of the same order
- Good perturbative convergence
- From 3-4% in the small- μ_b region (where α_s is large) to sub-percent level at high μ_b values

Matching to PDFs

- At small b_T , matching of TMDs onto collinear PDFs: $F(\mu_b, \mu_b^2) = C(\alpha_s(\mu_b)) \otimes f(\mu_b)$
- "standard" implementation in TMD factorisation (S computed numerically)

$$F(M, M^2) = e^{S(M, \mu_b)} C(\alpha_s(\mu_b)) \otimes f(\mu_b)$$

- Estimate of theoretical uncertainties through variations of ξ in α_s
- Connection with q_T resummation: absorb DGLAP and C coefficient evolution into a modified Sudakov \tilde{S}

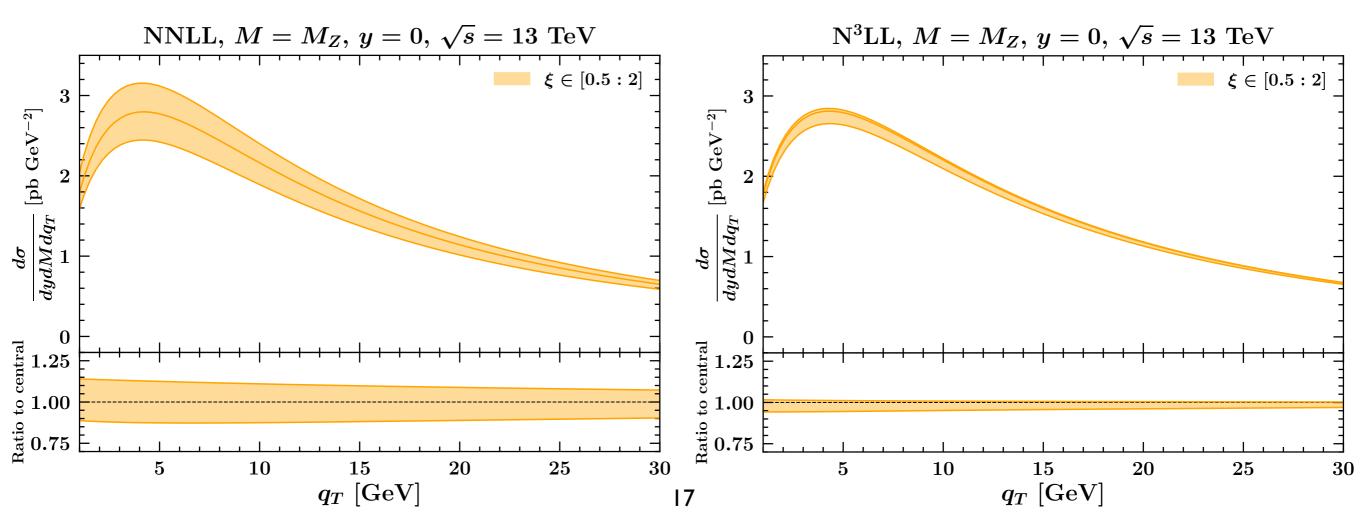
$$F(M, M^2) = e^{\tilde{S}(M, \mu_b)} \otimes \tilde{C}(\alpha_s(\mu_0)) \otimes f(\nu_0)$$

- Agreement with customary resummation formalism if ν_0 identified with the scale at which PDFs are measured (fitted) (just as μ_0 for α_s): $\nu_0 \sim \mathcal{O}$ (GeV)
- \circ correspondence of (μ_R, μ_F) in q_T resummation with (μ_0, ν_0) in this formalism

DY spectrum at $q_T \ll M$

$$\frac{d\sigma}{dq_T}(q_T, M, s) = \sigma_0 H(\alpha_s(M)) \int_0^\infty db \frac{b}{2} J_0(bq_T) F_1(b, M, M^2) F_2(b, M, M^2)$$

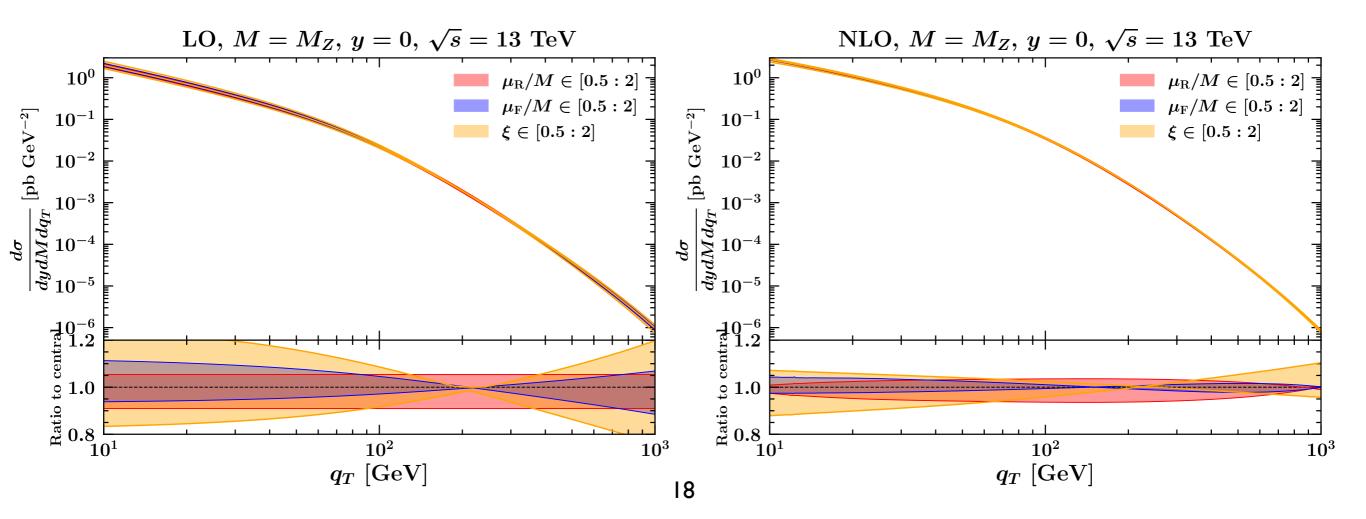
- Boundary conditions: $\alpha_s(M_Z) = 0.118, f(Q_0 = 2 \text{ GeV})$ from MSHT
- Accuracy of evolutions consistent with accuracy of cross section
- Role of μ_R and μ_F played by M_Z and Q_0 —> may *not* be changed
- In this formalism, the only parameter that encapsulates theory uncertainties is ξ , accounting for α_s , PDF and TMD evolution at once
- \rightarrow mild dependence on q_T , good perturbative convergence



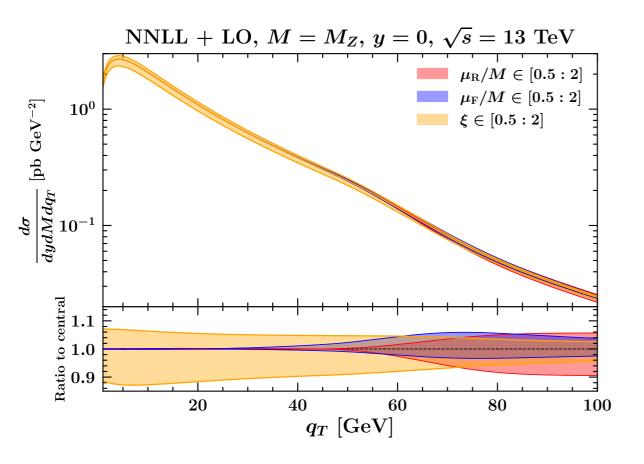
DY spectrum at $q_T \approx M$

$$\frac{d\sigma}{dq_T}(q_T, M, s) = \frac{d\hat{\sigma}}{dq_T}(q_T, M, \alpha_s(\mu_R), \mu_R, \mu_F) \otimes f_1(\mu_F) f_2(\mu_F)$$

- Collinear factorisation
- Computational details equivalent to DIS structure functions
- $\Rightarrow \xi$ bands of similar size of μ_R, μ_F bands, good perturbative convergence



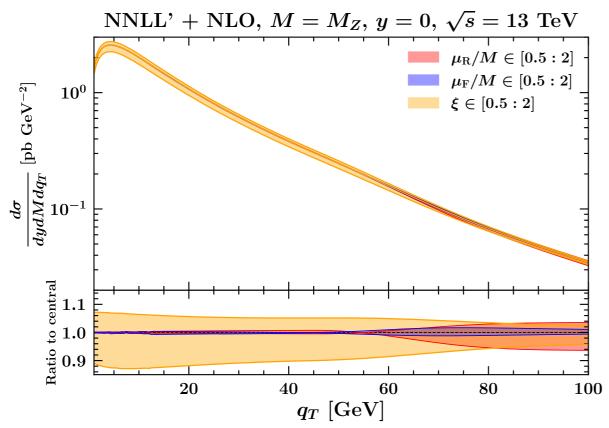
DY spectrum matched

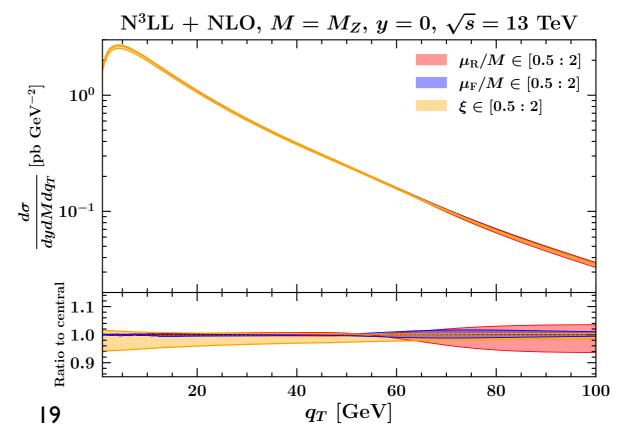


- Additive matching
- Damping function

$$f(q_T, M) = \left\{egin{array}{ll} q_T < kM, \ & \\ \exp\left[-rac{(kM-q_T)^2}{\delta^2 M^2}
ight] & q_T > kM, \ & \\ (k=0.5, \ \delta=0.25) \end{array}
ight.$$

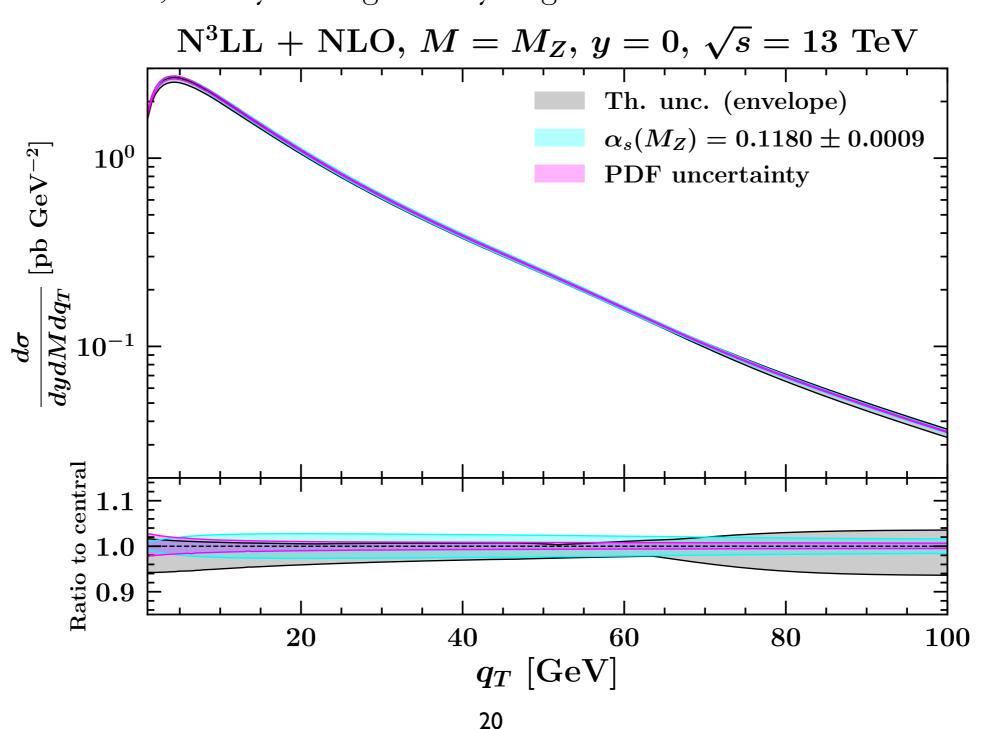
- ightharpoonup predominance of ξ bands at small and intermediate $q_T (\mu_R, \mu_F \text{ bands take over at large } q_T)$
- → ~5% uncertainty at N3LL





DY spectrum matched

- (Gray) Envelope of theoretical uncertainties
- (Cyan) Band associated Variation of boundary condition for α_s
- (Magenta) Band produced by error members of MSHT2020 at $\nu_0 = 2 \text{ GeV}$
- → bands of similar size, theory band generally larger



Conclusions

RGE solutions in pQCD carry an uncertainty:

- direct consequence of the perturbative **truncation** of the anomalous dimensions
- it can be estimated by introducing **resummation scales** (in both analytic and numerical solutions)
- We have studied the cases of α_s , **PDFs**, and **TMDs**.
- Study of F_2 , F_L , xF_3 as application to physical observables relevant for PDF fits
 - **distinctive behaviour** of resummation scale compared to μ_R and μ_F
 - relevant to **PDF extractions**.
- Formalism extended to **TMD double-logarithmic evolution**:
 - q_T -resummation formalism recovered
 - phenomenological application on Drell-Yan production at small q_T