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RGEs 1in QCD

© Generic RGE in QCD:

dInR
Ny w) R = (a,, PDF, TMD)
dlnpu

I" = appropriate anomalous dimension

k = highest-order known in I'-expansion

k
C(a(w) = ) T,ar(p)
n=0

~ (Can be solved either analytically or numerically
~ Both equally good from the point of view of perturbative accuracy

© Goal: devise a strategy to estimate truncation uncertainty in both cases



Analytic solutions

~ Well known methodology borrowed from threshold and g, resummation
Catani, Mangano, Nason, Trentadue NPB 478 (1996)
Catani de Florian Grazzini Nason JHEP 07 (2003)
GB Catani de Florian Grazzini NPB 737 (2006)

~ Express R(u) in closed analytic form in terms of R(u,)
= Perturbative series containing terms proportional to L = a,(ug)In(u/ uy)

© Decompose L = L. — a(u))lnx  with L= a,(uyln(ku/u)

Kl resummation scale

© Variations of « in the vicinity of 1 generate sub-leading terms

= [istimate of truncation uncertainty



Numerical solutions

© A “shifted kernel” approach:
© 1ntroduce arbitrary sub-leading terms in I' and solve RGE numerically

© differences among numerical solutions obtained with different sub-leading
terms —> truncation uncertainty

~ More spectfically:

© consider a NLO kernel I' = a (1)) + a2(u)I',

&y resummation scale

< make a RG transtormation y —» &y —* (one-to-one correspondence
between k and ¢&)

o express a,(1) = a(én) — a(EW)PyIn & + O(ay)
= I = a0y + al(Ew[T) = Tofiy In&] + O(ar)
© solving RGE using I or I is equivalent from a perturbative perspective

= Listimate of truncation uncertainty



Strong couphng

NLL evolutlon
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© Uncertainties of analytic/numerical solutions of the same order
© Good perturbative convergence



PDFs

LL evolution
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© Total valence distribution evolved from u = 2 GeV to u = 100 GeV

o Similar behavior for other PDFs and same considerations as before
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Structure functions

© Assess the impact of «(&) variation on physical observables relevant to PDF fits
o Structure function # = F,, F;, xF; in unpolarized inclusive DIS

= F(Q) = Cg (ot ). 1/ Q: i/ Q) ® flp: )

= O virtuality of vector boson, all non-scale dependencies omitted)

© N*LO partonic Cg consistently combined with N*LL evolution of a, and PDFs

© Vanations of (ug, 4p, &) around (Q, O, 1) by factor ot 2

o up and pp variations give an estimate of corrections to Cg

©  variations give an estimate of the uncertainty due to a, and PDF evolution



NNLO, Q = 10 GeV

NNLO, Q = 100 GeV
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© Input for evolution: a(M,) = 0.118 and MSHT20 at Q, = 2 GeV
o VFNS with (m_, my,) = (1.4,4.75) GeV
> Q=10 GeV (y-dominated) and Q = 100 GeV (Z-dominated)

© Sizable

o Up, ip bands shrink with increasing Q,

bands, generally larger than s, ¢ bands
bands approximately same size



eV
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~ Input for evolution: a(M,) = 0.118 and MSHT20 at Q, =2 GeV
o VENS with (m., my,) = (1.4,4.75) GeV
> Q0 =100,500 GeV (xF; suppressed by Z propagator below M)

o Sizable

bands, generally larger than s, ¢ bands
o Up, ip bands shrink with increasing Q,

bands approximately same size



NNLO, Q = 10 GeV
T . — T T T - — T T3
T pr/Q € 0.5 : 2] ]
N owurp/Q € (0.5 : 2] 7] 8 -
£ €0.5: 2] ] X

NNLO, Q = 100 GeV
LN ! L ! L
T pr/Q € [0.5 : 2] -
B pr/Q € 0.5 : 2] ]
€ €[0.5: 2] -

e
&o

FL(wa Q)

&
e
|

Ratio to central

© Input for evolution: a(M,) = 0.118 and MSH'T20 at Q, =2 GeV
< VENS with (m_, my) = (1.4,4.75) GeV
© 0 =10 GeV (y-dominated) and Q = 100 GeV (Z-dominated)

o Starts at O(a,): pp, i bands generally larger than = bands
o Up, i bands shrink with increasing O, bands approximately same size



S VS. Up, U

o Consider f(u, &), a PDF evolved from y, to u at NLL with a choice of &

1
Af(u, &) = flp, &) — fu,1) = (] (1) — al(up) ) In & <V1 + 2%}'0 - Eﬂo}’o In 5) () + O(axy)
0

© Very distinctive behaviour:
o Afis O(a?), i.e. sub-leading at NLL accuracy.
© Proportional to In &, thus approaches zero as £ — 1 as expected
- Proportional to (i) — a(1)

o For pu ~ py, Af small no matter how small 1s g (how large 1s a (1))

o For u > u,, Af dominated by a(4,), no matter how large is y

: .kt k+1
o General scaling at NfLL: o, (1) — o, (1)
© & uncertainties scale differently irom pu; » uncertainties (that scale as ask“(,uR, 7))

“cumulative” uncertainty due to y, — u evolution
¥



Uncertainty scaling in F,
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Hp and pp uncertainties large at small O, decrease with growing O
¢ uncertainty grows and remain sizable at large Q
Similar effect for other structure functions
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Impact expected in PDF fits —> Francesco’s talk


https://agenda.infn.it/event/43981/contributions/272873/

TMDs

o 'TMDs (in by space) obey two evolution equations:

Y dp” dln F
= K —_ —_— / _ _ Ve
Iiny/T (Hp) Li v vr(a(p')) T ye(a (1)) — ye(a,(u)ln p

o The solution 1s: S(u L
Flup. §p) = 5 F (u,, )

\/Zf o dy’ ‘/Zf
S0 ) = Koo~ J e
i Hi

© Boundary conditions for evolution:

26 —VE
H; = \/Zi = Uy, = ) © Nullifies scale logs
T
© M 1mvariant mass of the partonic system
. . . . . 4
M = \/Zf =M ~ Exact choice of {is immaternal (£,{, = M)

o pgvariations accounted for by k variations
13



TMDs

FM, M2) — eS(M’/“‘b)F(//tb,,ug

M M du’ , M
S(M, 1) = K(y)ln — + J i) = rxla(w))in —

Hb Hb H H |
© A perturbative expansion of the kernels:
Ka(w) = ) al™' WK™  yaw) =Y a'wr®  ydaw) =Y a' (wy®
n=0 n=0 n=0

allows to compute S numerically or analytically (using analytic solutions of «a,):

exp(S) = go(a,(Hy)) exp [Lg (D) + &, 1) + ay(u)g3(A, k) + a(4y)g4(A, k) + ]

Same 4 as 1n «a, : agreement with GB Catani de Florian Grazzini NPB 737 (2006)
by identitying ... = py/x and pp = p (g = boundary condition for «;)

© Variation of the resummation scale in s propagate into the Sudakov
and produce the usual gr-resummation 4, scale.

| 4



Diff. to central

Diff. to central

NNLL evolution

Sudakov
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© Uncertainties of analytic/numerical
solutions of the same order

© Good perturbative convergence

© From 3-4% 1n the small-u, region
(where a; 1s large) to sub-percent level
at high u, values



Matching to PDFs

o At small b, matching of TMDs onto collinear PDFs: F(u,, ,ulf) = Cla(up)) Q f(1,)

=  “standard” implementation in TMD factorisation (S computed numerically)
F(M, M?) = e*MWClay(,)) ® f(py)
© Estimate of theoretical uncertainties through variations of & in a,

~ Gonnection with gy resummation: absorb DGLAP and C coefficient evolution
into a modified Sudakov S

F(M, M?) = &™) @ Cla,(uy)) ® f(vy)

o Agreement with customary resummation formalism 1f v, identified with the scale
at which PDFs are measured (fitted) (just as y, for a,): vy ~ O (GeV)

© correspondence of (ug, 4r) In g resummation with (g, 1) 1n this formalism

|6



DY spectrum at g, < M

d > b
d—6<qT, M,s) = aoH<aS<M>>J db—Jo(bgr)F\ (b, M, M*)F (b, M, M?)
qr 0

© Boundary conditions: a(M,) = 0.118, f(Q, = 2 GeV) from MSH'T

© Accuracy of evolutions consistent with accuracy ot cross section

~ Role of ug and up played by M, and O, —> may not be changed

o In this formalism, the only parameter that encapsulates theory uncertainties 1s &,
accounting for a,, PDF and TMD evolution at once

= mild dependence on g, good perturbative convergence
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DY spectrum at g, ~ M

do do
—(q7r. M, s) = —(q7. M, a(ug), ig, pr) Q fi(up)r(ur)
dqy dqy

© Collinear factorisation
© Gomputational details equivalent to DIS structure functions
= £ bands of similar size of ug, ur bands, good perturbative convergence
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© Additive matching
© Damping function

f(QT7M)

(1 qr < kM,

< (k‘M — QT)Z
52 M2

(k =0.5, 6 =0.25)

exp [— ] qr > kM,

\

= predominance of £ bands at small and
intermediate g, (Ug, 4r bands take over at

large ¢;)
= ~5% uncertainty at N3LL
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= bands of similar size, theory band generally larger

N3LL 4+ NLO, M
Y

[pb GeV 2]

Ratio to central

DY spectrum matched

© (Gray) Envelope of theoretical uncertainties

© (CGyan) Band associated Variation of boundary condition for o
© (Magenta) Band produced by error members of MSH'T2020 at vy =2 GeV
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Conclusions

© RGE solutions in pQCD carry an uncertainty:
o direct consequence of the perturbative truncation of the anomalous dimensions

© 1t can be estimated by introducing resummation scales (in both analytic and
numerical solutions)

© We have studied the cases of a,, PDFs, and TMDs.

> Study of F,, F;,xF; as application to physical observables relevant for PDF fits
o distinctive behaviour of resummation scale compared to u, and u
© relevant to PDF extractions.

o Formalism extended to TMD double-logarithmic evolution:

o gr-resummation formalism recovered

© phenomenological application on Drell-Yan production at small g,
21



