

Theory considerations about **Physics beyond the Standard Model**: opportunities at future experimental facilities

> Fulvia De Fazio INFN – Bari

Why BSM?

The SM: many unanswered questions:

- > why 3 generations
- hierarchy among the fermion masses
- structure of the mixing matrices
- > values of the parameters (fermion masses and mixings, gauge couplings, Higgs potential parameters...)

Present directions

the attempt to answer the questions + hints of deviations from SM (*anomalies, tensions*) → intense search for extensions of the SM (**BSM**) (new particles, new interactions)

ENERGY FRONTIER: direct searches at colliders

- New particles directly produced on-shell
- Identified through their decay modes

THEORY: keyword precision

- sharpen SM predictions
- a suitable BSM interpretation required

INTENSITY FRONTIER: through quantum effects

- > New particles contribute as virtual states
- > Deviations from SM predictions can emerge
- Might be sensitive to large mass scales (e.g. new massive mediators)

Which BSM?

Main lessons from LHC:

- The SM is correct up to energies of few TeV The Higgs boson has been found!
- Before LHC : find a single NP answering all the fundamental problems of the SM, e.g. susy No other particle has been found
 - Many NP models in trouble
 - New attitude towards the search for BSM required
- Interplay among particle physics/astroparticle/cosmology
 - → new particles not necessarily heavy but also weakly coupled
 → new experimental facilities required
 - scan different energy ranges
 - > precision is as fundamental as energy
 - to identify New Physics
 - to sharpen our present knowlkedge

Precision is a discovery tool

Often (but not always...) theory has highlighted the path to discovery

Warsaw basis

r,p=1,2,3 generation indices

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A u}_\mu G^{B ho}_ u G^{C\mu}_ ho$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	Q_{darphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$					
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{arphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p\sigma^{\mu\nu}e_r)\tau^I\varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^\dagger i \overset{\leftrightarrow}{D}_\mu \varphi) (\bar{l}_p \gamma^\mu l_r)$	
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{arphi W}$	$arphi^\dagger arphi rac{W^I}{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu \nu} T^A u_r) \widetilde{\varphi} G^A_{\mu \nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{arphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{arphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{p})$	
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p\sigma^{\mu\nu}d_r)\tau^I\varphiW^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{arphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{\left(1 ight)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$	
$Q_{qq}^{\left(3 ight)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$	
$Q_{lq}^{\left(1 ight)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{\left(1 ight)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{\left(8 ight)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating			
Q_{ledq} $(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$		Q_{duq}	$Q_{duq} \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(q_s^{\gamma j})^T C l_t^k \right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$TCq_r^{\beta k} \left[(u_s^{\gamma})^T Ce_t \right]$		
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{\left(1 ight)}$	$Q_{qqq}^{(1)} \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$			
$Q_{lequ}^{\left(1 ight)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk}(\bar{q}_s^k u_t)$	$Q_{qqq}^{\left(3 ight)}$	$Q_{qqq}^{(3)} = \varepsilon^{\alpha\beta\gamma} (\tau^I \varepsilon)_{jk} (\tau^I \varepsilon)_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma} \left[(d_p^{lpha})^T \right]$	$Cu_r^{\beta} \left[(u_s^{\gamma})^T Ce_t \right]$		

Huge work of de Blas et al. JHEP 03 (2018) 109

- ➤ 48 possible new particles generate previous operators
- > Not all of them contribute to all operators

Recipe to identify NP once a deviation is found in a given process

- 1. figure out which NP operators can contribute to the process
- 2. determine experimentally the coefficients (bottom-up approach)
- 3. scrutinize which models predict the obtained values

- Higgs Sector
- > Flavour
- ➢ QCD

Search for BSM at Future colliders

EU Strategy 2020: An electron-positron Higgs factory is the highest-priority next collider

Higgs Sector
Flavour
QCD

Unique features

- > The only interaction not described as a gauge theory related to a local symmetry
- > No quantised charges
- Connected to space time vacuum structure

The discovery of the Higgs not an arrival point but a starting point

- Is it the SM Higgs? (needs e.g. measuring fermion Yukawas, H self-couplings)
- Is H an elementary particle? (Many composite models say no)
- > A role in the big bang?
- Connection with other issues (DM, matter/antimatter asymmetry and CP violation...)

Future colliders (FCC will be an Higgs factory) can investigate these correlations

Search for BSM at Future colliders

Higgs Sector
Flavour
QCD

EU Strategy 2020: An electron-positron Higgs factory is the highest-priority next collider

- ➢ Is it the SM Higgs?
- Production of H as s-channel resonance \rightarrow direct access to e- Yukawa
- Check of Yukawas and self-couplings \rightarrow ID card of H_{SM}
- Running at different energies: distinction between anomalous ZH coupling or H self coupling

Heinemann and Nir

Observable	Current range	HL-LHC	ILC250	ILC250+500	CLIC380	CLIC3000	CEPC	FCC240	FCC365	LHeC
			$\delta y/y ~(\%)$							
$y_t/y_t^{\rm SM}$	$1.02^{+0.19}_{-0.15}$ [35] $1.05^{+0.14}_{-0.12}$ [36]	3.4	_	6.3	_	2.9	_	_	_	_
$y_b/y_b^{\rm SM}$	$\begin{array}{c} -0.13 \\ 0.91 \\ -0.16 \\ 0.85 \\ -0.14 \\ -0.14 \\ \end{array} \begin{bmatrix} 35 \\ 36 \end{bmatrix}$	3.7	1.0	0.60	1.3	0.2	1.0	1.4	0.67	1.1
$y_{\tau}/y_{\tau}^{\mathrm{SM}}$	0.93 ± 0.13 [35] 0.95 ± 0.13 [36]	1.9	1.2	0.77	2.7	0.9	1.2	1.4	0.78	1.3
$y_c/y_c^{\rm SM}$	< 104 [40]	—	1.8	1.2	4.1	1.3	1.9	1.8	1.2	3.6
$y_{\mu}/y_{\mu}^{\rm SM}$	$ \begin{array}{c} 0.72^{+0.50}_{-0.72} [35] \\ < 1.63 \ [36] \end{array} $	4.3	4.0	3.8	_	5.6	5.0	9.6	3.4	_
$y_e/y_e^{\rm SM}$	< 611 [41]	—	_		_	_	_	_	$< 1.6^{(+)}$	_

Search for BSM at Future colliders

Higgs Sector

Flavour

> QCD

FLAVOUR ANOMALIES

- in loop induced (rare decays)
- in tree level decays (R(D^(*)) LFU violation?)

CKM-related issues

- puzzle: tension in exclusive vs inclusive determinations of V_{cb} and V_{ub}
- Cabibbo anomaly: unitarity of CKM (first row)

CP violation

ε'/ε

- Strong CP violation?
- correlated pattern of deviations from SM predictions?
- common origin of the anomalies?

ex. $V_{\mbox{\scriptsize cb}}$, $\,V_{\mbox{\scriptsize ub}}$ puzzles correlated with anomalies in tree-level modes?

□ look for new modes/observables/correlations

□ Null tests of the SM: LFV decays $\tau \rightarrow 3\mu, \mu \rightarrow e\gamma ...$ □ Null tests of the SM: $D^0 \rightarrow \mu^+\mu^-$ (SM predicts BR ~10⁻²¹)

$$\mathcal{R}^{0}(D) = \frac{\mathcal{B}(\bar{B}^{0} \to D^{+} \tau^{-} \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^{0} \to D^{+} \ell^{-} \bar{\nu}_{\ell})}$$
$$\mathcal{R}^{0}(D^{*}) = \frac{\mathcal{B}(\bar{B}^{0} \to D^{*+} \tau^{-} \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^{0} \to D^{*+} \ell^{-} \bar{\nu}_{\ell})}$$

1) FCC-ee main features

- We're speaking of 10⁵ Z/s, 10⁴ W/h, 1.5 10³ H and top /d, in a very clean environment: no pile-up, controlled beam backgrounds, E and p constraints, ~w/o trigger loss.
- In particular, you do the LEP in a minute!

4

1) FCC-ee specifics for Flavour Physics.

A- Particle production at the *Z* pole:

- About 15 times the Belle II anticipated statistics for B⁰ and B⁺.
- All species of *b*-hadrons are produced.

• Expect ~4.10⁹ B_c-mesons assuming $f_{B_c}/(f_{B_u}+f_{B_d})\sim 3.7\cdot 10^{-3}$

Working point	Lumi. / IP $[10^{34} \text{ cm}^{-2}.\text{s}^{-1}]$	Total lumi. (2 IPs)	Run time	Physics goal
Z first phase	100	26 ab^{-1} /year	2	
${\cal Z}$ second phase	200	52 ab^{-1} /year	2	$150 {\rm ~ab^{-1}}$

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

Higgs Sector

Flavour

> QCD

FCC-ee @Zpole

- large improvement in the statistics in particular $b\overline{b}$ and $\tau\overline{\tau}$ pairs
- heavily boosted \rightarrow possible topological reconstruction of modes with missing energy
 - b-hadrons at BELLE II modest boost almost at rest
 - \succ τ decays: missing energy modes difficult at LHCb
 - \succ recent anomaly in B \rightarrow K v \overline{v} missing energy mode

Higgs Sector
Flavour

Anomalies: in b \rightarrow s $\mu^+ \mu^-$ high luminosity: b \rightarrow s $\tau^+ \tau^-$ (out of the reach of LHCb, BelleII)

Anomalies: R(D), R(D*)→ Lepton Flavour Universality (LFU) violation

- modes not accessible/difficult to measure
 - observables sensitive to baryon polarization ($\Lambda_{\rm b}$) SPIF- BA
 - LFU violation in baryon decays
 - $B_c \rightarrow \tau \ \overline{\nu}_{\tau}$ (out of the reach of LHCb and Belle II)
- new heavy mediators e.g. Z' coupling differently to the 3 generations
- \blacktriangleright determination of G_F from tau decays

Lepton Flavour Violation (LFV)

▷ B(τ→ 3 μ) < 2 x 10⁻⁸ (Belle)
 < 3 x 10⁻¹⁰ (Belle II)
 < 10⁻¹¹ (FCC-ee)

CMS-Bari + SPIF BA involved

SPI

> LFV in B decays $B_s \rightarrow \mu \tau$, B $\rightarrow K^* \mu \tau$

SPIF- BA involved

SPIF-BA

involved

Decay mode/Experiment	Belle II $(50/ab)$	LHCb Run I	LHCb Upgr. (50/fb)	FCC-ee
EW/H penguins				
$B^0 \rightarrow K^*(892)e^+e^-$	~ 2000	~ 150	~ 5000	~ 200000
$\mathcal{B}(B^0 \to K^*(892)\tau^+\tau^-)$	~ 10			~ 1000
$B_s \rightarrow \mu^+ \mu^-$	n/a	~ 15	~ 500	~ 800
$B^0 ightarrow \mu^+ \mu^-$	~ 5		~ 50	~ 100
$\mathcal{B}(B_s \to \tau^+ \tau^-)$				
Leptonic decays				
$B^+ ightarrow \mu^+ u_{mu}$	5%	-	-	3%
$B^+ \to \tau^+ \nu_{tau}$	7%	-	-	2%
$B_c^+ \to \tau^+ \nu_{tau}$	n/a	-	-	5%
CP / hadronic decays	2011 C	100 B	8 M L	
$B^0 \to J/\Psi K_S (\sigma_{\sin(2\phi_d)})$	$\sim 2. * 10^6 \ (0.008)$	41500(0.04)	$\sim 0.8 \cdot 10^6 \ (0.01)$	$\sim 35 \cdot 10^6 \ (0.006)$
$B_s \rightarrow D_s^{\pm} K^{\mp}$	n/a	6000	~ 200000	$\sim 30\cdot 10^6$
$B_s(B^0) \to J/\Psi \phi \ (\sigma_{\phi_s} \ \text{rad})$	n/a	96000 (0.049)	$\sim 2.10^{6}~(0.008)$	$16 \cdot 10^6 \ (0.003)$

Grojean 2024

Higgs Sector **Flavour** > QCD

SPIF-BA ♦ Anomalies: $(g-2)_{\mu} \rightarrow (g-2)_{\tau}$ involved

♦ (g-2)_µ implies enhancement of $H \rightarrow \mu^+ \mu^- \rightarrow look$ at the τ case

♦ LFV in H,Z decays : $H \rightarrow \mu e, Z \rightarrow \mu e$ (in the SM with lepton mixing <10⁻⁵⁰)

CKM studies:

UT triangle \rightarrow improved determination of α

inclusive decays: V_{cb} , V_{ub}

Search for BSM at Future colliders

interplay with anomalies in v physics

SPIF- BA involved

- fixing $\boldsymbol{\nu}$ oscillation parameters
- tension between T2K and NOvA (long baseline v exp)
- possible solution: flavor changing non-standard \boldsymbol{v} interactions
- hint of Z'?

TASP- BA involved

Semileptonic b \rightarrow U ℓv U=u,c decays in SMEFT

$$\begin{aligned} H_{\text{eff}}^{b \to U\ell\nu} &= \frac{G_F}{\sqrt{2}} V_{Ub} \left[(1 + \epsilon_V^\ell) (\bar{U}\gamma_\mu (1 - \gamma_5)b) (\bar{\ell}\gamma^\mu (1 - \gamma_5)\nu_\ell) \\ &+ \epsilon_S^\ell (\bar{U}b) (\bar{\ell}(1 - \gamma_5)\nu_\ell) + \epsilon_P^\ell (\bar{U}\gamma_5 b) (\bar{\ell}(1 - \gamma_5)\nu_\ell) \\ &+ \epsilon_T^\ell (\bar{U}\sigma_{\mu\nu} (1 - \gamma_5)b) (\bar{\ell}\sigma^{\mu\nu} (1 - \gamma_5)\nu_\ell) \\ &+ \epsilon_R^\ell (\bar{U}\gamma_\mu (1 + \gamma_5)b) (\bar{\ell}\gamma^\mu (1 - \gamma_5)\nu_\ell) \right] + h.c. \; . \end{aligned}$$

determining which of the SMEFT coefficients contribute

selecting viable NP candidates

new operators contribute to different processes

	ϵ_V^ℓ	ϵ_S^ℓ	ϵ_P^ℓ	ϵ^ℓ_T
$B^- o \ell^- \bar{\nu}_\ell$	\checkmark		\checkmark	
$\bar{B} \to \pi \ell^- \bar{\nu}_\ell$	\checkmark	\checkmark		\checkmark
$\overline{B \to \rho \ell \bar{\nu}_{\ell}}$	\checkmark		√	√
$B \to a_1 \ell \bar{\nu}_\ell$	\checkmark	\checkmark		\checkmark

Semileptonic b \rightarrow U ℓ v U=u,c decays in SMEFT

$$\begin{split} H_{\text{eff}}^{b \to U\ell\nu} &= \frac{G_F}{\sqrt{2}} V_{Ub} \left[(1 + \epsilon_V^\ell) (\bar{U}\gamma_\mu (1 - \gamma_5)b) (\bar{\ell}\gamma^\mu (1 - \gamma_5)\nu_\ell) \\ &+ \epsilon_S^\ell (\bar{U}b) (\bar{\ell}(1 - \gamma_5)\nu_\ell) + \epsilon_P^\ell (\bar{U}\gamma_5 b) (\bar{\ell}(1 - \gamma_5)\nu_\ell) \\ &+ \epsilon_T^\ell (\bar{U}\sigma_{\mu\nu} (1 - \gamma_5)b) (\bar{\ell}\sigma^{\mu\nu} (1 - \gamma_5)\nu_\ell) \\ &+ \epsilon_R^\ell (\bar{U}\gamma_\mu (1 + \gamma_5)b) (\bar{\ell}\gamma^\mu (1 - \gamma_5)\nu_\ell) \right] + h.c. \; . \end{split}$$

high statistics required

 $\begin{aligned} \frac{d^4\Gamma(\bar{B} \to V(P_1P_2)\ell^-\bar{\nu}_\ell)}{dq^2 d\cos\theta d\phi d\cos\theta_V} \\ &= \mathcal{C}|\vec{p}_V| \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \left\{I_{1s}\sin^2\theta_V + I_{1c}\cos^2\theta_V + (I_{2s}\sin^2\theta_V + I_{2c}\cos^2\theta_V)\cos 2\theta + I_{3}\sin^2\theta_V\sin^2\theta\cos 2\phi + I_4\sin 2\theta_V\sin 2\theta\cos\phi + I_5\sin 2\theta_V\sin\theta\cos\phi + (I_{6s}\sin^2\theta_V + I_{6c}\cos^2\theta_V)\cos\theta + I_7\sin 2\theta_V\sin\theta\sin\phi + I_8\sin 2\theta_V\sin 2\theta\sin\phi + I_9\sin^2\theta_V\sin^2\theta\sin 2\phi\right\},\end{aligned}$

Higgs Sector
Flavour
QCD

Foreseen directions

SPIF- BA

- Hadron spectroscopy involved
- Parton distribution functions
- QCD phase diagram SPIF- BA involved

Huge theoretical efforts required:

- multiloop calculations
- understanding non-perturbative dynamics: prerequisite for most of flavour analyses

