

The Jefferson Lab of the Future

Mariangela Bondì

Jefferson Lab today

CEBAF delivers the world's highest intensity and highest precision multi-GeV electron beams and has been do so for more than 25 years

CEBAF upgrade completed in September 2017

- CW electron beam
- E_{max} = 12 GeV
- I_{max} = 90 µA
- Pol_{max} ~90%

Jefferson Image: Control of the con

Physics operation

 4 Halls running simultaneously since January 2018

Jefferson Lab today

HALL C - precision determination of valence quark properties in nucleons and nuclei

HALL B - understanding the 3D nucleon structure, hadron spectroscopy and nuclear effects

HALL D - exploring origin of confinement by studying exotic mesons

HALL A - form factors and PDFs, hyper nuclear physics, Physics BSM

- What is the role of gluon excitations in the spectroscopy of light mesons?
- Where is the missing spin in the nucleon?
- Can we reveal a novel landscape of nucleon substructure through 3D imaging at the femtometer scale?
- What is the relation between short range N-N correlation, the partonic structure of nuclei and the nature of the nuclear force?
- Can we discover evidence for physics beyond standard model of particle physics?

12 GeV experimental program is in full swing

- 33 experiments completed out of 91 approved
- ~8 years of physics ahead (~ 30 week/years)

Future opportunities • Higher energy @ CEBAF • High luminosity

Positron beam

Jefferson Lab 22 GeV

Why JLAB@22GeV?

- A new territory to explore: charm and light quarks in the same experiment
- A better insight into our current program: enhancement of the phase space
- A bridge between JLAB@12GeV and EIC: low to high energy theory validation with high precision
- Utilize largely existing or already-planned experimental halls equipment

Eur. Phys. J. A (2024) 60:173 https://doi.org/10.1140/epja/s10050-024-01282-x

THE EUROPEAN PHYSICAL JOURNAL A

Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab

A. Accardi¹, P. Achenbach², D. Adhikari³, A. Afanasev⁴, C. S. Akondi⁵, N. Akopov⁶, M. Albaladejo⁷ H. Albataineh⁸, M. Albrecht², B. Almeida-Zamora⁹, M. Amaryan¹⁰, D. Androić¹¹, W. Armstrong¹², D. S. Armstrong¹³, M. Arratia¹⁴, J. Arrington¹⁵, A. Asaturyan¹⁶, A. Austregesilo², H. Avakian², T. Averett¹ C. Ayerbe Gayoso¹³, A. Bacchetta¹⁷, A. B. Balantekin¹⁸, N. Baltzell², L. Barion¹⁹, P. C. Barry², A. Bashir² M. Battaglieri²¹, V. Bellini²², I. Belov²¹, O. Benhar²³, B. Benkel²⁴, F. Benmokhtar²⁵, W. Bentz²⁶, V. Bertone H. Bhatt²⁸, A. Bianconi²⁹, L. Bibrzycki³⁰, R. Bijker³¹, D. Binosi³², D. Biswas³, M. Boër³, W. Boeglin³³, S. A. Bogacz², M. Boglione³⁴, M. Bond²², E. E. Boos³⁵, P. Bosted¹³, G. Bozzi³⁶, E. J. Brash³⁷, R. A. Briceño³ P. D. Brindza¹⁰, W. J. Briscoe⁴, S. J. Brodsky³⁹, W. K. Brooks^{24,40,41}, V. D. Burkert², A. Camsonne², T. Cao² L. S. Cardman², D. S. Carman², M. Carpinelli⁴², G. D. Cates⁴³, J. Caylor², A. Celentano²¹, F. G. Celiberto⁴ L. S. Catulita, J. Changlé, P. Chatagoni, C. Chen^{46,67}, J.-P. Chen², T. Cherry³³, A. Christopher¹, E. Christy², E. Chudakor², E. Cisban²³, I. C. Cloët¹², J. J. Cobos-Martinez⁴⁸, E. O. Cohen^{49,50}, P. Colangelo⁵¹, P. L. Cole⁵⁷ M. Constantinou⁵³, M. Contalbrigo¹⁹, G. Costantini^{17,29}, W. Cosyn³³, C. Cotton⁴³, A. Courtoy¹⁶⁸, S. Covrig Dusa² V. Crede⁵, Z.-F. Cui⁵⁴, A. D'Angelo⁵⁵, M. Döring⁴, M. M. Dalton², I. Danilkin⁵⁶, M. Davydov³⁵, D. Day⁴³ F. De Fazio⁵⁷, M. De Napoli²², R. De Vita²¹, D. J. Dean², M. Defurne²⁷, W. de Paula⁷⁵, G. F. de Téram A. Deur², B. Devkota²⁸, S. Dhital¹, P. Di Nezza⁵⁸, M. Diefenthaler², S. Diehl^{59,60}, C. Dilks⁶¹, M. Ding⁶², C. Djalali⁶, S. Dobbs⁵, R. Dupré⁶⁴, D. Dutta²⁸, R. G. Edwards², H. Egiyan², L. Ehinger⁶⁵, G. Eichmann⁶⁶, M. Elaasar⁶⁷ L. Elouadrhiri², A. El Alaoui²⁴, L. El Fassi²⁸, A. Emmert⁴³, M. Engelhardt⁶⁸, R. Ent², D. J. Ernst⁶⁹, P. Eugenio G. Evans⁷⁰, C. Fanelli¹³, S. Fegan⁷¹, C. Fernández-Ramírez^{31,72}, L. A. Fernandez²⁰, I. P. Fernando⁴³, A. Filippi¹ C. S. Fischer⁵⁹, C. Fogler¹⁰, N. Fomin⁷⁴, L. Frankfurt⁴⁹, T. Frederico⁷⁵, A. Freese⁷⁶, Y. Fu⁷⁷, L. Gamberg L. Gan¹⁶, F. Gao⁷⁹, H. Garcia-Tecocoatzi²¹, D. Gaskell², A. Gasparian⁸⁰, K. Gates⁸¹, G. Gavalian², P. K. Ghoshal A. Giachino⁸², F. Giacosa⁸³, F. Giannuzzi⁵¹, G.-P. Gilfoyle⁸⁴, F.-X. Girod², D. I. Glazier⁸¹, C. Gleason⁸⁵, S. Godfrey⁸⁶, J. L. Goity^{1,2}, A. A. Golubenko³⁵, S. Gonzàlez-Solís⁸⁷, R. W. Gothe⁸⁸, Y. Gotra², K. Griffio O. Grocholski⁸⁹, B. Grube², P. Guèye⁷⁷, F.-K. Guo^{90,91}, Y. Guo⁹², L. Guo³³, T. J. Hague¹⁵, N. Ham J.-O. Hansen², M. Hattawy¹⁰, F. Hauenstein², T. Hayward⁶⁰, D. Heddle³⁷, N. Heinrich⁹³, O. Hen⁶⁵ D. W. Higinbotham², I. M. Higuera-Angulo⁹⁴, A. N. Hiller Blin⁹⁵, A. Hobart⁶⁴, T. Hobbs¹², D. E. Holmber T. Horn^{2,96}, P. Hoyer⁹⁷, G. M. Huber⁹³, P. Hurck⁸¹, P. T. P. Hutauruk⁹⁸, Y. Ilieva⁸⁸, I. Illari⁴, D. G. Ireland⁸ E. L. Isupov³⁵, A. Italiano²², I. Jaegle², N. S. Jarvis⁹⁹, D. J. Jenkins³, S. Jeschonnek¹⁰⁰, C.-R. Ji¹⁰¹, H. S. Jo¹⁰ M. Jones², R. T. Jones⁶⁰, D. C. Jones², K. Joo⁶⁰, M. Junaid⁹³, T. Kageya², N. Kalantarians¹⁰³, A. Karki²⁸ G. Karyan⁶, A. T. Katramatou¹⁰⁴, S. J. D. Kay⁷¹, R. Kazimi², C. D. Keith², C. Keppel², A. Kerbizi¹⁰⁵, V. Khachatryan¹⁰⁶, A. Khanal³³, M. Khandaker¹⁰⁷, A. Kim⁶⁰, E. R. Kinney¹⁰⁸, M. Kohl¹, A. Kotzinian B. T. Kriesten^{2,110}, V. Kubarovsky², B. Kubis¹¹¹, S. E. Kuhn¹⁰, V. Kumar⁹³, T. Kutz⁶⁵, M. Leali^{112,113} B. F. Lebed¹¹⁴, P. Lenisa¹¹⁵, L. Leskovce¹¹⁶, S. Li¹⁵, X. Li⁶⁵, J. Liao¹⁶, H. W. Lin⁷⁷, L. Lu⁵⁹, S. Liut¹⁴³, N. Liyanage⁴³, Y. Lu¹¹⁷, I. J. D. MacGregor⁸¹, D. J. Mack², L. Maiani¹¹⁸, K. A. Mamo¹², G. Mandaglio C. Mariani³, P. Markowitz³³, H. Marukyan⁶, V. Mascagna^{29,113}, V. Mathieu¹²⁰, J. Maxwell², M. Mazouz¹²¹, M. McCaughan², R. D. McKeown², B. McKinnon⁸¹, D. Meekins², W. Melnitchouk², A. Metz⁵³, C. A. Meyer⁵ Z.-E. Meziani¹², C. Mezrag¹², R. Michaels², G. A. Miller⁷⁶, T. Mineeva²⁴, A. S. Miramontes⁹⁴, M. Mirazita⁵ K. Mizutani², A. Mkrtchyan⁶, H. Mkrtchyan⁶, B. Moffit², P. Mohanmurthy⁶⁵, V. I. Mokeev², P. Monaghan³ G. Montaña², R. Montgomery³¹, A. Moretti¹²³, J. M. Morgado Chàvez²⁷, U. Mosel⁵⁹, A. Movsisyan⁶, P. Mus S. A. Nadeeshani²⁸, P. M. Nadolsky¹²⁶, S. X. Nakamura¹²⁴, J. Nazeer¹, A. V. Nefediev¹²⁵, K. Neupane⁸⁸, D. Nguyen², S. Niccolai⁶⁴, I. Niculescu¹²², G. Niculescu¹²², E. R. Nocera³⁴, M. Nycz⁴³, F. I. Olness¹²⁶, D. rsguyen', S. Niccolai, T. F. Nichescu⁻⁻, E. N. Nicera⁻⁻, N. R. Nocera⁻⁻, N. ryce⁻, F. I. Omes⁻⁻,
P. G. Ortega¹²⁷, M. Osipenko²¹, E. Pace⁵⁵, B. Pandey¹²⁸, P. Pandey¹⁰, Z. Papandreou³³, J. Papavassilou¹²⁹,
L. L. Pappalardo¹¹⁵, G. Paredes-Torres⁹⁴, R. Paremuzyan², S. Park², B. Parsamyan^{73,109}, K. D. Paschke⁴³,
B. Pasquini¹⁷, E. Passemar^{2,106,129}, E. Pasyuk², T. Patel¹, C. Paudel³³, S. J. Paul¹⁴, J.-C. Peng¹³⁰, L. Pentchev²,
R. Perrino⁵¹, R. J. Perry¹²⁰, K. Peters¹³¹, G. G. Petratos¹³², W. Phelps^{4,37}, E. Piasetzky⁴⁹, A. Pilloni^{22,119}, B. Pire¹³³,

White paper (~450 authors)

- Charmed and light hadron spectroscopy
- Structure of hadrons: Form Factors, PDFs, TMDs, GPDs, Fragmentation Functions, Fracture Functions
- QCD in Nuclei and associated Nuclear Modifications and Dynamics
- Low energy tests of the Standard Model
- BSM physics

Jefferson Lab positron beam

Why Ce+BAF?

- Electromagnetic form factors
- Generalized Parton Distribution GPD of nucleon
- Test of Standard model
- Beyond Standard Model physics: I.e. Light Dark Matter

A specific time structure of the beam is required to avoid e⁺ beam pile-up in the detector.

An active thick target completed with an hadronic calorimeter constitute the experimental set-up.

White paper (~250 authors)

The Positron Experimental Program at JLab has formally started with the C1 approval of 6 proposals validating the 3 pillars of the JLab Positron White Paper and constituting 3 calendar years of single hall running.

JLAB upgrades timeline

- Accelerator team has worked up an early schedule and cost estimate
 - Schedule assumptions based on a notional timing of when funds might be available (near EIC ramp down based on EIC V3 profile)
 - For completeness, Moller and SoLID (part of 12 GeV program) are shown; positron source dev shown
- Activities **Fiscal Year** 33 24 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40 41 42 Moller (MIE, 413.3B, CD-2/3) SoLID (LRP, Rec 4) Positron Source (R&D) CEBAF Upgrade preCDR/preplan Positron Project (potential) Transport e+ 22 GeV Development (R&D) 22 GeV Project (potential) EIC Project (V4.2, CD-1, CD-3A) **CEBAF Up**
- EIC Project is shown

Credit to D. Dean

JLAB secondary beam

- CEBAF provides a high-intensity e- beam for extracted-beam experiments
 - The machine can sustain up MW power (100 uA @10GeV, 200uA @5GeV)
 - Hall-A receives ~50-70uA @ 11GeV
- High-intensity secondary beams are produced in the dump(s) fully parasitically
 - Muons,
 - Neutrinos,
 - LDM particles (if exists)

Muon flux @ JLAB

Beam Energy	Flux μ/EOT			
	$100 \times 100 \text{ cm}^2$	$25 \times 25 \text{ cm}^2$	σ_x (cm)	σ_y (cm)
11 GeV	$9.8 imes10^{-7}$	1.5×10^{-7}	24.6	25.1
22 GeV	$7.6 imes 10^{-6}$	$1.9 imes 10^{-6}$	20.9	20.9

Jefferson Lab

- Exploiting muon beams would enable the search for a possible light gauge boson, which would couple predominantly to muons
 - Such a light boson could be either scalar or a vector mediator
 - Its existence would be a viable explanation of g-2 anomaly
 - μ3BDX @ JLAB
 - Fixed-target missing momentum experiment to probe invisibly decaying particle
 - μBDX @ JLAB
 - Muon beam dump experiment to probe the visible decay into e+e-(γγ)

Neutrino flux @ JLAB

- Neutrino flux estimated using FLUKA for 11 GeV and 22 GeV primary e- beam on Hall-A BD
- Low energy part due to pion and muon decay at rest
 - π decay produces a prompt 28.5 MeV v_µ along with a µ witch subsequently decays producing a v_e v_µ
- High energy v from in-flight pion and kaon decay

Beam Energy	Off-Axis Flux [v/EOT/m ²]	On-Axis Flux [<i>v</i> /EOT/m ²]
11 GeV	$6.7 imes10^{-5}$	$2.9 imes10^{-5}$
22 GeV	$1.9 imes10^{-4}$	$6.3 imes10^{-5}$

