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LHCb DAQ System
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LHCb Computing Infrastructure & b ()

Modular Data Centre consisting of single row
modules (shaped like a container)

o 24 standard computing racks (48U) per module

LHCb site composed by 6 containers
o 2 for Event Building + HLT1

o 4 forHLT2, Alignement, Simulation

In numbers:;

O ~B300 servers

o ~270.000 CPUs

o  ~5000 HDDs (50 PB of raw storage) in JBODs
o ~600 GPGPUs

o  ~600 Readout Boards (PCIE 40)

o  ~200 Network Switches

o And more..
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Each module is design to operate at a maximum power consumption of 500 kW
o  Total Power consumption of the site 2.3 MW/

o 20 kW / rack on average (up to 40 kW /rack)

o Produces a lot of heat that needs to be moved out of the Data Centre

Free cooling: 3+1 Air Handler Units (AHU) placed on top of each container
o AHU: it use external air and adiabatic water cooling to lower DC intake temperature
o  Geneva temperature allow this solution to be effective
o  Each module is fully redundant: normal operation can be maintained with any 3 of the 4 AHUs

o It adds some overhead in the total power consumption

Fan speed and water-pump frequency are regulated by a standard PID controller
o  Proportional Integral Derivative controller largely used in the industry, easy to implement and tune

o Requires retuning when operating conditions change and lacks predictive/optimal control
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e Key metric for energy efficiency: Power Usage Effectiveness

o  PUE = Total Facility Energy / IT Equipment Energy

e | HCb Data Centre is overall already very efficient
o  Average yearly PUE below 1.1 (less than 10% of total energy used for cooling)

o  Reports place the industry-wide average around 1.5
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LHCb Computing Infrastructure

Computing resources are currently allocated by
the experts according to the needs

o _U%ing WinCC OA or HTCondor as interface to run
jobs

o HLT2, Alignment and Calibration jobs driven by the
LHC efficiency and Disk Buffer status

o  Opportunistic Monte Carlo simulations

o Use of CPUs and GPUs for other purposes

Manual approach is not optimal as it relies on
expert coordination and manual decisions

o Lack of dynamic adaptation to workload changes or
real-time priorities

o Resources are often idling when operations are
stopped (waste of energy)
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Monitoring Data
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e Custom monitoring system:

o  Sensors for temperature, humidity, AHU status,
power consumption, water usage

o  5years of history, 30 seconds granularity, ~300 GB
of raw data

o  Overall suitable and easy adaptable for training Al
and ML algorithms
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e Improve the efficiency of the whole facility

Schematic of a standard PIDcontrol system

o  Lowering the PUE

_ . Proportional
o  Lowering water consumption ) ’
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e Can Al techniques outperform standard PID
regulations?

RL control approach

o In safety and efficiency

RL Agent Data Centre Environment
action a,

o Al-driven control can model complex thermal
dynamics and interactions

reward r, [
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e Reinforcement Learning Agent:
o  Given a state, it takes an action to regulate the data center cooling system

o Using RL where actions are guided by reward (lower PUE, critical parameters must staying within safety
limits)

e No Direct Interaction with the Environment
o  The agent cannot interact directly with the real data center for training

o  Safety constraint: temperatures and operating conditions must remain within safe limits

e Offline Reinforcement Learning Approach
o  Learn policies directly from the historical operational data

o No exploration in order to ensures safety and stability
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e Decision-making problem formulated by a Markov Decision Process
o M=(SAT,r7)

o  State space: system conditions (temperatures, power, etc.), each expressed as a temporal vector
o Action space: Controllable variables for the AHUs (fan speed and water pump frequency)

o  Transition function: Model system dynamics

o  Reward function: Reward function to balance energy saving and temperature regulation

o Discount factor: Future rewards
e | earn optimized policy:

0
0  Based on offline Dataset R(W) — v Z 7’5 T(St, az)
O  That maximize the discounted cumulative return t=0
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Al for Cooling S ik

e Data Centre Digital Twin for Simulation and Evaluation:
o Virtual replica of the Data Centre

o  Enable simulation, testing, and further optimization of cooling

e Developing accurate Digital Twins is challenging:

o Complex physics: airflow, heat transfer, fluid dynamics (CFD)

o  Dynamic workloads: variable compute demand and scheduling

o Externalinfluences

e There are already some initiatives and frameworks for developing Data Centre Digital Twins
o Nvidia omniverse

o Intertwin (EU project)
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e Al-driven system that dynamically manages ML Services
i (anomaly detection,
computing resources anomaly detectio

failure prediction)

o  Workload forecasting ? Qi

o  Real-time utilization DeC|S|on
Englne
. . . . Telemetry

o Priority handling (DAQ > Simulation)

o Anomaly detection and failure prediction ? ZR K

DAQ Calibration Simulation
Jobs
P
Control Framework
(Kubernetes, Openstack, WinCC OA..)

b J
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HPC FARM
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Al for Smart Allocation S W )
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Goal: maximize efficiency and reduce total power consumption without affecting performance
o  Predict idle periods and shut down unused resources to save energy
o Quickly react to changing conditions (DAQ is subjected to rapid changes according to LHC coordination)

o Automatically exclude components that failed or that are about to fail

Using telemetry data from different sources:
o  LHC efficiency and schedule

Disk buffer utilization

(0]

(©]

Network links usage

o And more..
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e Time Series Anomaly Detection techniques

o Time Series Metrics from computing nodes
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and AH US UﬂitS Input Encoder Represetation Decoder Output
o Unsupervised problem ny HE -
'Y 1 :
(N Lo, \ ;
; 5\\ r’l»‘o’2 : ) L /;\ (
e Autoencoder based Neural Network NI ) Ll R .
. o . . . (=] HE ) == 1kC ; ;
o Using Multivariate Time Windows as input ¢ ? % %LE g =
e S =
. . \\ \/ —H [ Lstm /J: 1 (Lo N [ L LSTM «R N i
o  Learn the standard behaviour of a computing S = ‘ti % - HH
node j( oo G P : ; [T.;T";‘]}* -
o  Higher the reconstruction loss, higher the \ J
probability of having an anomaly MSE = 3 XL (@ = )
I
o ~96% accuracy on a benchmark dataset Reconstruction Loss

15
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e Failure prediction:
o  Time Series forecasting

o Similar approach to the anomaly detection
architecture

o  The Neural Network learn to reconstruct the next
Window

e Implement Predictive maintenance strategies:

o  We run old hardware

) . . . . E Collected Time Series B Predicted Time Series
o Atthis scale we have device failing on a daily basis

o  Reduce downtime

o Improve reliability of the whole infrastructure
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Al can support all operational aspects essential to running large-scale experiments

Intelligent control can significantly reduce power usage and improve the environmental
sustainability of data centers.

Dynamic, data-driven allocation enhances operational efficiency and minimizes idle resources

Anomaly Detection and Predictive models can improve system reliability and reduce downtime
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