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LHCb Experiment

● One of the 4 large HEP experiment at CERN 

● Produces large amount of data per second

○ 32 Tb/s data redout from front-end 
electronics

○ Impossible to store permanently all the raw 

○ Data is filtered and reduced to about 
10 GB/s written to tape

● Requires large computing infrastructure to 
support:

○ Data Acquisition

○ Analysis

○ Simulation
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● Modular Data Centre consisting of single row 
modules (shaped like a container)

○ 24 standard computing racks (48U) per module 

● LHCb site composed by 6 containers
○ 2 for Event Building + HLT1

○ 4 for HLT2, Alignement, Simulation

● In numbers:
○ ~5300 servers

○ ~270.000 CPUs

○ ~5000 HDDs (50 PB of raw storage) in JBODs

○ ~600 GPGPUs

○ ~600 Readout Boards (PCiE 40)

○ ~200 Network Switches

○ And more…

LHCb Computing Infrastructure

4



LHCb Computing Infrastructure

● Each module is design to operate at a maximum power consumption of 500 kW
○ Total Power consumption of the site 2.3 MW

○ 20 kW / rack on average (up to 40 kW /rack)

○ Produces a lot of heat that needs to be moved out of the Data Centre

● Free cooling: 3+1 Air Handler Units (AHU) placed on top of each container
○ AHU: it use external air and adiabatic water cooling to lower DC intake temperature  

○ Geneva temperature allow this solution to be effective

○ Each module is fully redundant: normal operation can be maintained with any 3 of the 4 AHUs

○ It adds some overhead in the total power consumption

● Fan speed and water-pump frequency are regulated by a standard PID controller

○ Proportional Integral Derivative controller largely used in the industry, easy to implement and tune

○ Requires retuning when operating conditions change and lacks predictive/optimal control
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LHCb Computing Infrastructure

● Key metric for energy efficiency: Power Usage Effectiveness

○ PUE = Total Facility Energy / IT Equipment Energy

● LHCb Data Centre is overall already very efficient

○ Average yearly PUE below 1.1 (less than 10% of total energy used for cooling)

○ Reports place the industry-wide average around 1.5
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LHCb Computing Infrastructure

● Computing resources are currently allocated by 
the experts according to the needs
○ Using WinCC OA or HTCondor as interface to run 

jobs

○ HLT2, Alignment and Calibration jobs driven by the 
LHC efficiency and Disk Buffer status

○ Opportunistic Monte Carlo simulations

○ Use of CPUs and GPUs for other purposes 

● Manual approach is not optimal as it relies on 
expert coordination and manual decisions
○ Lack of dynamic adaptation to workload changes or 

real-time priorities

○ Resources are often idling when operations are 
stopped (waste of energy)
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Monitoring Data

● Custom monitoring system:

○ Sensors for temperature, humidity, AHU status, 
power consumption, water usage

○ 5 years of history, 30 seconds granularity, ~300 GB 
of raw data

○ Overall suitable and easy adaptable for training AI 
and ML algorithms 
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AI for Cooling

● Improve the efficiency of the whole facility

○ Lowering the PUE 

○ Lowering water consumption

○ Improve temperature stability

● Can AI techniques outperform standard PID 
regulations?

○ In safety and efficiency 

○ AI-driven control can model complex thermal 
dynamics and interactions
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AI for Cooling

● Reinforcement Learning Agent:

○ Given a state, it takes an action to regulate the data center cooling system

○ Using RL where actions are guided by reward (lower PUE, critical parameters must staying within safety 
limits)

● No Direct Interaction with the Environment

○ The agent cannot interact directly with the real data center for training

○ Safety constraint: temperatures and operating conditions must remain within safe limits

● Offline Reinforcement Learning Approach 

○ Learn policies directly from the historical operational data 

○ No exploration in order to ensures safety and stability
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AI for Cooling

● Decision-making problem formulated by a Markov Decision Process

○  

○ State space: system conditions (temperatures, power, etc.), each expressed as a temporal vector

○ Action space: Controllable variables for the AHUs (fan speed and water pump frequency)

○ Transition function: Model system dynamics

○ Reward function: Reward function to balance energy saving and temperature regulation

○ Discount factor: Future rewards

● Learn optimized policy:

○ Based on offline Dataset
○ That maximize the discounted cumulative return
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AI for Cooling

● Data Centre Digital Twin for Simulation and Evaluation:

○ Virtual replica of the Data Centre

○ Enable simulation, testing, and further optimization of cooling

● Developing accurate Digital Twins is challenging:

○ Complex physics: airflow, heat transfer, fluid dynamics (CFD)

○ Dynamic workloads: variable compute demand and scheduling

○ External influences
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● There are already some initiatives and frameworks for developing Data Centre Digital Twins

○ Nvidia omniverse

○ Intertwin (EU project)



AI for Smart Allocation

● AI-driven system that dynamically manages 
computing resources 

○ Workload forecasting

○ Real-time utilization 

○ Priority handling (DAQ > Simulation)

○ Anomaly detection and failure prediction
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AI for Smart Allocation

● Goal: maximize efficiency and reduce total power consumption without affecting performance

○ Predict idle periods and shut down unused resources to save energy

○ Quickly react to changing conditions (DAQ is subjected to rapid changes according to LHC coordination)

○ Automatically exclude components that failed or that are about to fail

● Using telemetry data from different sources:

○ LHC efficiency and schedule

○ Disk buffer utilization

○ Network links usage

○ And more…
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Anomaly Detection

● Time Series Anomaly Detection techniques 

○ Time Series Metrics from computing nodes 
and AHUs units

○ Unsupervised problem

● Autoencoder based Neural Network

○ Using Multivariate Time Windows as input 

○   Learn the standard behaviour of a computing 
node

○ Higher the reconstruction loss, higher the 
probability of having an anomaly

○ ~96% accuracy on a benchmark dataset
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Failure Prediction

● Failure prediction:

○ Time Series forecasting

○ Similar approach to the anomaly detection 
architecture

○ The Neural Network learn to reconstruct the next 
Window

● Implement Predictive maintenance strategies:

○ We run old hardware 

○ At this scale we have device failing on a daily basis 

○ Reduce downtime 

○ Improve reliability of the whole infrastructure
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Conclusions

● AI can support all operational aspects essential to running large-scale experiments

● Intelligent control can significantly reduce power usage and improve the environmental 
sustainability of data centers.

● Dynamic, data-driven allocation enhances operational efficiency and minimizes idle resources

● Anomaly Detection and Predictive models can improve system reliability and reduce downtime
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