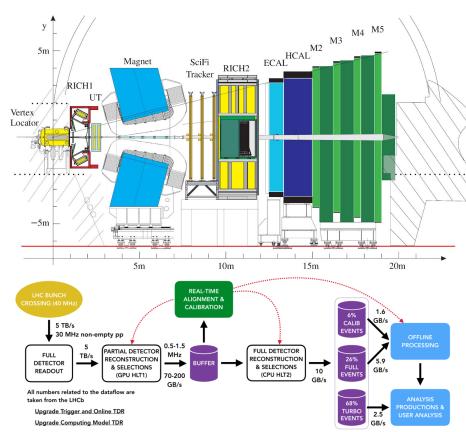
Al for Data Center Cooling and Resource Allocation in LHCb

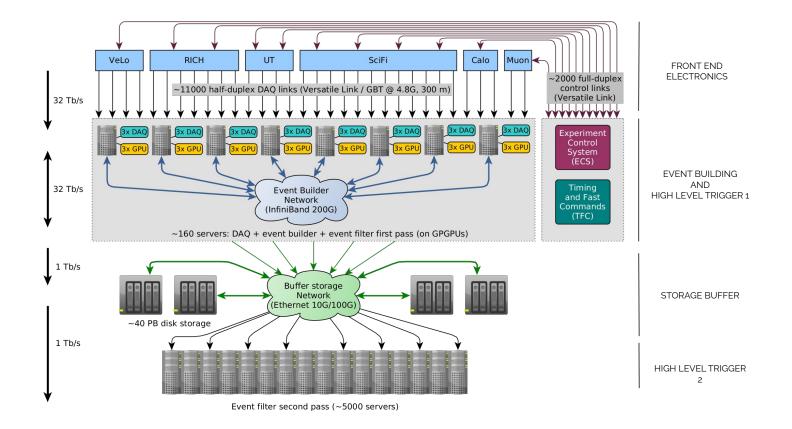
Pierfrancesco Cifra

LHCb Experiment

- One of the 4 large HEP experiment at CERN
- Produces large amount of data per second
 - 32 Tb/s data redout from front-end electronics
 - o Impossible to store permanently all the raw
 - Data is filtered and reduced to about 10 GB/s written to tape
- Requires large computing infrastructure to support:
 - Data Acquisition
 - Analysis
 - Simulation



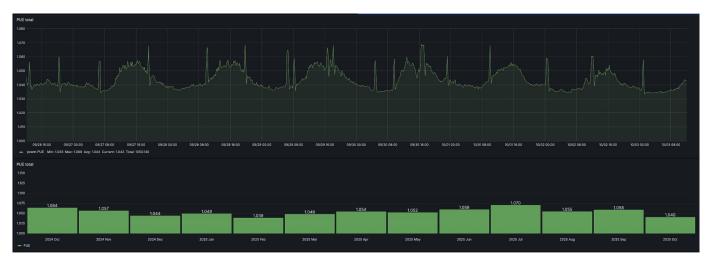
LHCb DAQ System



- Modular Data Centre consisting of single row modules (shaped like a container)
 - 24 standard computing racks (48U) per module
- LHCb site composed by 6 containers
 - 2 for Event Building + HLT1
 - 4 for HLT2, Alignement, Simulation
- In numbers:
 - ~5300 servers
 - o ~270.000 CPUs
 - ~5000 HDDs (50 PB of raw storage) in JBODs
 - ~600 GPGPUs
 - ~600 Readout Boards (PCiE 40)
 - ~200 Network Switches
 - And more...

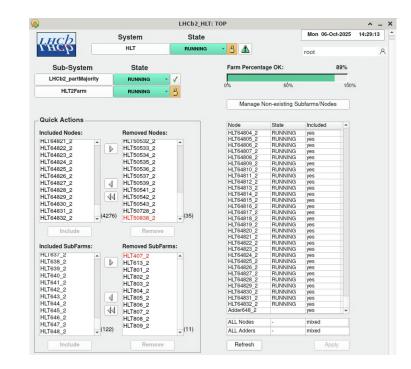
- Each module is design to operate at a maximum power consumption of 500 kW
 - Total Power consumption of the site 2.3 MW
 - 20 kW / rack on average (up to 40 kW /rack)
 - Produces a lot of heat that needs to be moved out of the Data Centre
- Free cooling: 3+1 Air Handler Units (AHU) placed on top of each container
 - AHU: it use external air and adiabatic water cooling to lower DC intake temperature
 - Geneva temperature allow this solution to be effective
 - Each module is fully redundant: normal operation can be maintained with any 3 of the 4 AHUs
 - It adds some overhead in the total power consumption
- Fan speed and water-pump frequency are regulated by a **standard PID controller**
 - o Proportional Integral Derivative controller largely used in the industry, easy to implement and tune
 - Requires retuning when operating conditions change and lacks predictive/optimal control

- Key metric for energy efficiency: Power Usage Effectiveness
 - PUE = Total Facility Energy / IT Equipment Energy
- LHCb Data Centre is **overall already very efficient**
 - Average yearly PUE below 1.1 (less than 10% of total energy used for cooling)
 - Reports place the industry-wide average around 1.5



- Computing resources are currently allocated by the experts according to the needs
 - Using WinCC OA or HTCondor as interface to run jobs
 - HLT2, Alignment and Calibration jobs driven by the LHC efficiency and Disk Buffer status
 - Opportunistic Monte Carlo simulations
 - Use of CPUs and GPUs for other purposes

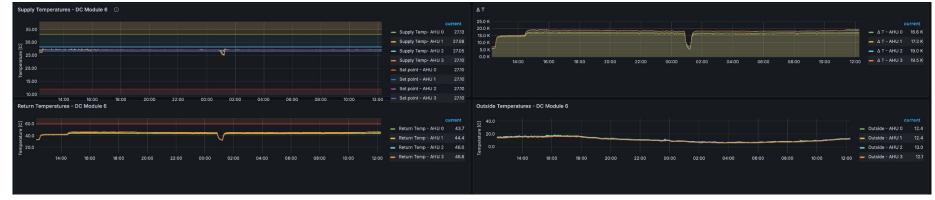
- Manual approach is **not optimal** as it relies on expert coordination and manual decisions
 - Lack of dynamic adaptation to workload changes or real-time priorities
 - Resources are often idling when operations are stopped (waste of energy)



Monitoring Data

Custom monitoring system:

- Sensors for temperature, humidity, AHU status, power consumption, water usage
- 5 years of history, 30 seconds granularity, ~300 GB of raw data
- Overall suitable and easy adaptable for training AI and ML algorithms

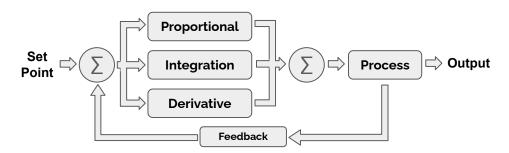


Al for Cooling

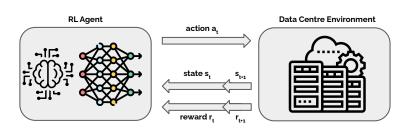
- Improve the efficiency of the whole facility
 - Lowering the PUE
 - Lowering water consumption
 - Improve temperature stability

- Can AI techniques outperform standard PID regulations?
 - In safety and efficiency
 - AI-driven control can model complex thermal dynamics and interactions

Schematic of a standard PIDcontrol system



RL control approach



Al for Cooling

Reinforcement Learning Agent:

- o Given a state, it takes an action to regulate the data center cooling system
- Using RL where actions are guided by reward (lower PUE, critical parameters must staying within safety limits)

No Direct Interaction with the Environment

- The agent cannot interact directly with the real data center for training
- Safety constraint: temperatures and operating conditions must remain within safe limits

Offline Reinforcement Learning Approach

- Learn policies directly from the historical operational data
- No exploration in order to ensures safety and stability

AI for Cooling

- Decision-making problem formulated by a Markov Decision Process
 - \circ $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{T}, r, \gamma)$
 - State space: system conditions (temperatures, power, etc.), each expressed as a temporal vector
 - Action space: Controllable variables for the AHUs (fan speed and water pump frequency)
 - Transition function: Model system dynamics
 - Reward function: Reward function to balance energy saving and temperature regulation
 - Discount factor: Future rewards
- Learn optimized policy:
 - o Based on offline Dataset
 - That maximize the discounted cumulative return

$$R(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \, r(s_t, a_t)\right]$$

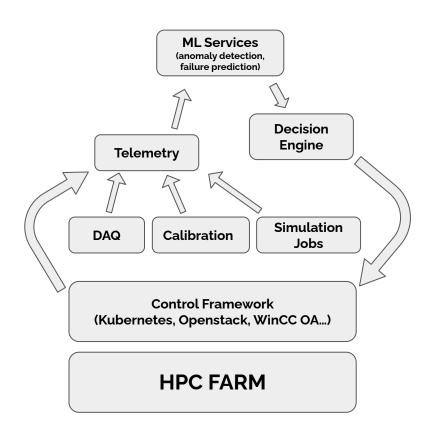
Al for Cooling

- **Data Centre Digital Twin** for Simulation and Evaluation:
 - Virtual replica of the Data Centre
 - Enable simulation, testing, and further optimization of cooling
- Developing accurate Digital Twins is challenging:
 - Complex physics: airflow, heat transfer, fluid dynamics (CFD)
 - o Dynamic workloads: variable compute demand and scheduling
 - External influences

- There are already some initiatives and frameworks for developing Data Centre Digital Twins
 - Nvidia omniverse
 - Intertwin (EU project)

AI for Smart Allocation

- Al-driven system that dynamically manages computing resources
 - Workload forecasting
 - Real-time utilization
 - Priority handling (DAQ > Simulation)
 - Anomaly detection and failure prediction



Al for Smart Allocation

- Goal: maximize efficiency and reduce total power consumption without affecting performance
 - Predict idle periods and shut down unused resources to save energy
 - Quickly react to changing conditions (DAQ is subjected to rapid changes according to LHC coordination)
 - Automatically exclude components that failed or that are about to fail 0
- Using telemetry data from **different sources**:
 - LHC efficiency and schedule
 - Disk buffer utilization 0
 - Network links usage
 - And more... 0

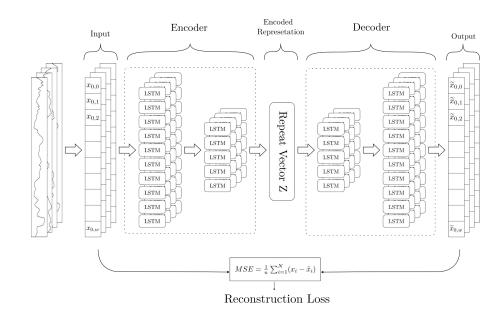
Anomaly Detection

• Time Series Anomaly Detection techniques

- Time Series Metrics from computing nodes and AHUs units
- Unsupervised problem

• Autoencoder based Neural Network

- Using Multivariate Time Windows as input
- Learn the standard behaviour of a computing node
- Higher the reconstruction loss, higher the probability of having an anomaly
- ~96% accuracy on a benchmark dataset



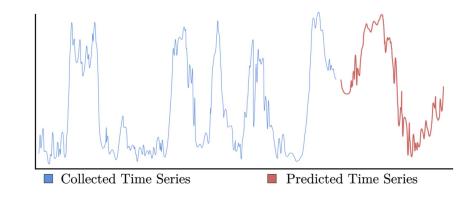
Failure Prediction

Failure prediction:

- Time Series forecasting
- Similar approach to the anomaly detection architecture
- The Neural Network learn to reconstruct the next Window

Implement Predictive maintenance strategies:

- We run old hardware
- At this scale we have device failing on a daily basis
- Reduce downtime
- Improve reliability of the whole infrastructure



Conclusions

- All can support all operational aspects essential to running large-scale experiments
- Intelligent control can significantly reduce power usage and improve the environmental sustainability of data centers.
- Dynamic, data-driven allocation enhances operational efficiency and minimizes idle resources
- Anomaly Detection and Predictive models can improve system reliability and reduce downtime

Thank you for your attention

