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Outline
e The High Performance DIRC (hpDIRC) at EIC

® Generative Models for Fast Simulation of Cherenkov Detectors at EIC (arxiv:2504.19042, MLST)

o  Hit-level learning for generative Al
o Acollection of SOTA generative models
o  Holistic Simulation pipeline - Generating the photon yield

o  Takeaways
® Towards Foundation Model for Readout Systems combining Discrete and Continuous Data (arxiv:2505.08736)

o  Towards FM in physics

m  Potential Issues with Tokenization

m  Combining Continuous and Discrete Data
o  Conditional Generation through prepended context

o Class Conditional Generation through conditional computing - Mixture of Experts

o  Takeaways WILLIAM
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https://arxiv.org/abs/2504.19042
https://iopscience.iop.org/article/10.1088/2632-2153/ae0f72
https://arxiv.org/pdf/2505.08736

hpDIRC at EIC

e Barrel geometry

o  16-sided polygonal barrel around the beam line (R=1m)
o  Divided into optically isolated sectors - a bar box and a readout box

o  Each bar box contains eleven fused silica radiator bars (~ 4m in length) - mirrored ends for photon reflection

Exiting photons are focused by a 3-layer spherical lens

O

e Pixelated Detector Plane . ) ticpire

Cherenkov Photon

Trajectories Expansion

Volume

o  4x6 PMTs - 16x16 pixels per PMT

slosusg

o  Provide spatial and timing information (100ps) Mirror L

Track

<)

e Operation Requirements

o 3o separation for /K at 6 GeV/c

[1] Kalicy G 2022 Developing high-performance DIRC detector for the Future Electron Ion Collider Image taken from [1]
Experiment (arXiv:2202.06457) URL https: //arxiv.org/abs/2202.06457 WILLIAM
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https://github.com/rdom/eicdirc
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senerative Models for Fast Simulation of Cherenkov
Detectors at the Electron Ion-Collider
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[1] Giroux, James, Michael Martinez, and Cristiano Fanelli. "Generative Models for Fast Simulation of
Cherenkov Detectors at the Electron-Ion Collider." arXiv:2504.19042 (2025).
(Accepted into IOP - Machine Learning Science and Technology) WILLIAM
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Learning at the Hit Level

e Difficulties in working with Cherenkov detectors for Generative Al

o  Lack of fixed input sizes - dynamic photon yield dependent on kinematic parameters

o  Pixelated (discrete) spatial readout system - algorithms are designed for continuous spaces

WILLIAM

e Ot | DaTA scieNce



Learning at the Hit Level

e Difficulties in working with Cherenkov detectors for Generative Al

o  Lack of fixed input sizes - dynamic photon yield dependent on kinematic parameters

o  Pixelated (discrete) spatial readout system - algorithms are designed for continuous spaces
e Abstract away from fixed input sizes

o  Remain agnostic to the photon yield
e [Lcarning at the hit level, conditional on < |p|, @ >

o  Treating individual Cherenkov photons in a track as ~ independent
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Learning at the Hit Level

e Difficulties in working with Cherenkov detectors for Generative Al

o  Lack of fixed input sizes - dynamic photon yield dependent on kinematic parameters

o  Pixelated (discrete) spatial readout system - algorithms are designed for continuous spaces

e Abstract away from fixed input sizes

o  Remain agnostic to the photon yield By [ Mpyr./6] - 16 + [ Npiger./16]
’ (MPMT. % 6) -16 + (Npmel_ % 16)
e [Lcarning at the hit level, conditional on < |p|, @ >
o  Treating individual Cherenkov photons in a track as ~ independent
e Use physical sensor dimensions to remove discrete representation in space

o DIRC readout has a fixed “row,col” coordinate system "’ @

1
z =2+ Dj - puiath. + (Mpur. % 6) - gap, + =Pwidth.

o  Transform to X,y coordinate system (mm) @ 2

1
Yy =2+ D; - preight. + | Mpur. / 6] - 82Dy, + = Dheight.

o  Smear uniformly over individual PMT pixels 2
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Learning at the Hit Level Cont’d...

e What does this look like during training?

ID Xx(mm) y(mm) t(ns) |[p] 0

1 3.0 5.0
1 3.0 50
N 4.0 7.0
N 4.0 7.0
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Learning at the Hit Level Cont’d...

e What does this look like during training?

ID Xx(mm) y(mm) t(ns) |[p] 0

1 3.0 5.0
1 3.0 50
N 4.0 7.0
N 4.0 7.0

Generated Photon: 1

e What does this look like at inference (generation)?

o Our models are trained to generate individual photons
o  We aggregate multiple forward calls to generate tracks

o  These are not sequential - batch processing of Ny
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Learning at the Hit Level Cont’d...

e What does this look like during training?

ID x(mm) y(mm) t(ns) |p| 0

1 3.0 5.0

1 3.0 5.0 .

. . . . . " mmmmmmw

N 4.0 7.0 iy RIS
N 4.0 7.0

Generated Photon: 1

e What does this look like at inference (generation)?

©  Our models are trained to generate individual photons Integrate over
o  We aggregate multiple forward calls to generate tracks ggcli‘(s to create
o  These are not sequential - batch processing of Ny

WILLIAM
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A collection of SOTA Generative Models

Method Transformation
Discrete Normalizing Flows i = folz,k) = fon 0 fon, 0 ofor (20, k)
. .« . dZ — 0
Continuous Normalizing Flows g = Vel ki)
Ztg = T
.« . . dZ — 0
Conditional Flow Matching q = e k5 0)
Ztg = T

T
Denoising Diffusion Probabilistic Models | ps(zo.r|k) := plar H (21|21, k)

Score Based Generative Models do = [f(@,t) — g(t)2V, log py(2)]dt + g(t)dm

11

Objective

ming By pyo.o () [~ 10g Do (z]k)]
ming Epp,.ro () [~ 108 po(z]k)]

ming B p(a,, 1k).q: (oo o) 106(T, k) — we(@|zey, K)|

ming By 4, [|le — ea(v/@xo + /1 — dre, t, k)||?]
g 5Ernellso(@ 1k) — <7
ming 9 t,x,el||90\L5 Ly o

WILLIAM
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A collection of SOTA Generative Models  Discrete Normalizing Flows

Pion Fast Simulated Hit Pattern Pion Geant4 Hit Pattern Pion Fast Simulated Hit Pattern Pion Geant4 Hit Pattern

-« R L

so i - s £ " .r A > £ % ¥ 1:2%?.!‘%
7] : _ T s e 2 i AR e

100 200 300 % 100 200 300 0 100 200 100 200 300 o 100 200 300
X (mm) X (mm) X (mm) X (mm) X (mm) X (mm)
[ —— Geant4 [ —— Geant4 —— Geant4
1071 —— FastSim. 1071 —— FastSim. 1071 —— FastSim.
. 1] = 6 GeV/c : 1| = 6 GeV/c . 16| = 6 Gevic
p} —20° ] —0&° D — .
<107 o=30 <10-3 0=95 <103 6=150
107 50 100 150 107 50 160 150 107 50 100 150
Time (ns) Time (ns) Time (ns)
Visualization of Generations at 6 GeV/c and various polar angle WILLIAM
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Quantitative Evaluation through PID Metrics

e Translate simulation quality metrics to a more meaningful representation

o  Separation power through KDE based PID method (FastDIRC)

Pion Geant4 Hit Pattern

200
150
100

50

0

0 100 200 300
X (mm) X (mm)
1P| = 6 GeV/c
107 6=100"
. — Geant4
2 —— FastSim.
< q10-3
-5
10 0 50 100 150
Time (ns)

[3] Hardin, John, and Mike Williams. "FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC
detectors." Journal of Instrumentation 11.10 (2016): P10007. WILLIAM
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Quantitative Evaluation through PID Metrics

e Translate simulation quality metrics to a more meaningful representation

o  Separation power through KDE based PID method (FastDIRC)

Create large reference populations of & / K (support _ Pl et b pettem
200
PDF) il 150
100
50
00 100 200 300
X (mm) X (mm)
1071 laﬁizlosogewc
310 s —— FastSim.
107 0 50 100 150
Time (ns)

[3] Hardin, John, and Mike Williams. "FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC
detectors." Journal of Instrumentation 11.10 (2016): P10007. WILLIAM
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Quantitative Evaluation through PID Metrics

e Translate simulation quality metrics to a more meaningful representation

o  Separation power through KDE based PID method (FastDIRC)

Create large reference populations of & / K (support _ Pion Geantd ik atters
PDF) = 200

150

100

50

For each photon in a track, calculate likelihood: LSRR

X (mm) X (mm)

2
. T i . pwé)dth 3 0 8 10| |eﬁl:1060(§eV/c
log p(xr]/|k)IC7r OC (337/ - M’C”r) E (wl - /’L’C'IT) 9 o ph@lght 2 5 . Gean‘t4
O 0 o-t 3 - —— FastSim.
107 0 50 100 150
Time (ns)

[3] Hardin, John, and Mike Williams. "FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC
detectors." Journal of Instrumentation 11.10 (2016): P10007. WILLIAM

I & ARy | PR SCIENCE




16

Quantitative Evaluation through PID Metrics

e Translate simulation quality metrics to a more meaningful representation

o  Separation power through KDE based PID method (FastDIRC)

Create large reference populations of & / K (support _ Pl et b pettem
. 200
PDF) g P 150
100
For each photon in a track, calculate likelihood: ”
0 100 200
p'?uidth 0 0 g 16l =6 Gev: T
e AT — g T S [ iy — 2 1071 6=100"
log p(Zilk)icr < (& — frr)” 27 (&5 — fics) , = 8 pheowht ¢ | i
(o 210 s —— FastSim.
Perform DLL: w0l 150
Time (ns)

N N
Alog Lix = Y _logp(Fik, K) — > log p(&;k, )

[3] Hardin, John, and Mike Williams. "FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC
detectors." Journal of Instrumentation 11.10 (2016): P10007. WILLIAM
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Quantitative Evaluation through PID Metrics

e Evaluate at fixed kinematics
o 3,6 GeV/c -5 degree bins over acceptance range

e For each bin, fit a Gaussian distribution to both
PID’s in the DLL space

e (alculate the separation between distributions

Separation [s.d.]

Separation [s.d.]

15

12

Discrete Normalizing Flows

MV ‘

—J— FastSim. (800k) - 6=9.94 —J— Geant4. (400k) - 6=10.73
—J— Geant4. (800k) - 6=10.76 —J— Geant4. (200k) - 6=10.71
—— Geant4. (500k) - 6=10.75 —}— Geant4. (100k) - 6=10.62

\|,5|=GGeV}

—F— FastSim. (800k) - 6=2.91 —J— Geant4. (400k) - 6 = 3.69
—f— Geant4. (800k)-6=3.71  —}— Geant4. (200k) - 6 = 3.63
—f— Geant4. (500k)-5=3.70  —}— Geant4. (100k) - =3.51

40 60 80 100 120 140
Polar Angle [deg.]

WILLIAM
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Holistic Simulation - Photon Yield Generation

e Low dimensional problem f:R*— Z,
e Must be fast - approximately zero overhead, preferably CPU bound
e A simple Look-Up-Table (LUT) does the trick - 100 MeV/c, 1 degree bins

True Kaons True Pions

____True Pions

e

Photon Yield
Photon Yield
Photon Yield
Photon Yield

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

E 1

E 1

2 3 4 5 6 7 8 9 10 08010012140: 1 2 3 4 5 6 7 8 9 10 "4 e 80 100 120 140

Momentum [GeV/c] Polar Angle [Degrees] H Momentum [GeV/c] Polar Angle [Degrees]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Sampled Kaons

Sampled Kaons Sampled Pions

Sampled Pions
= e e

Photon Yield
Photon Yield
Photon Yield
Photon Yield

7 8 9 10 40 60 80 100 120 140
[GeV/c] Polar Angle [Degrees]
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Key Takeaways

O 19
All code is open source and pre-trained Github

models are provided.

e All Cherenkov Rings (underlying PDF’s) generated by our models are “correct”

o  Ring and time structures follow correct kinematic dependencies for both PIDs

o  We incur a smoothing effect - can cause different PIDs to appear more similar

e Beyond usage in Physics environments

o  We have created an open source suite of SOTA algorithms for the hpDIRC (easily adapted to other detectors)

o  Our fast simulation is self contained, fast and capable of being run on CPU or GPU

1.0
@ o8 AMD EPYC 7313P - Single Core
é 0.6 ~0.58s
=
; 0.4 ~0.34s
£ 02 0,145 ~0.14s [
= 00 ~0.03s

' S D X e N &

S KL PN SR S

Track Generation (CPU)

Time / Detected Photon (us)

103

~2030us

PDF Generation (GPU
I © ARy | DATA SCIENCE


https://github.com/wmdataphys/FM4DIRC/tree/main
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Towards Foundation Models for Experimental
Readout Systems Combining Discrete and
Continuous Data

o
o
g
| b b
" a2 e
. = b
il -
w | ] =
o " T .
n Hi il J‘ Yy
) L | i |
.. Lim S =
T e . =
1‘\;‘ : & .
y = = = i
Ll
X

t.

[4] Giroux, James, and Cristiano Fanelli. "Towards Foundation Models for Experimental Readout
Systems Combining Discrete and Continuous Data." arXiv preprint arXiv:2505.08736 (2025).
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Foundation Models in Physics

e Foundation Models (FM) are becoming increasingly popular in the Physics community

o  Relatively large pre-trained models

o  Capable of supporting multiple downstream tasks - e.g., fast simulation, reconstruction, etc.
e Different approaches have emerged (focusing on two recent ones)

o  Diffusion Transformer (DiT) style (see [3])
o  GPT style (see [4])
e In both cases, they work with relatively high level features

o  Facilitating generation and classification of Jets through their constituents (4-vector like quantities)

[3] Mikuni, Vinicius, and Benjamin Nachman. "OmniLearn: A method to simultaneously facilitate all jet physics
tasks." arXiv preprint arXiv:2404.16091 (2024).

[4] Birk, Joschka, Anna Hallin, and Gregor Kasieczka. "OmniJet-a: the first cross-task foundation model for
particle physics." Machine Learning: Science and Technology 5.3 (2024): 035031. WILLIAM
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Foundation Models in Physics cont’d...
e More recently [5] has shown very nice, and promising results using GPT style models to

generate point clouds in calorimeters

o  Treat cells and energy as tokenized representations

o  Generate the shower forward in time, predicting the next token given the previous (context)

o  This is akin to modern LLMSs such as ChatGPT

Geant4 L2L-Flows CaloClouds Il (CM) Omnijet-ac

10! MeV

y [cells]

10° MeV

107" MeV Figure from [5]

[5] Birk, Joschka, et al. "OmniJet-{\alpha_{C}}: Learning point cloud calorimeter simulations using generative
transformers." arXiv preprint arXiv:2501.05534 (2025). WILLI AM
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Potential Issues with Tokenization

e Tokens in the context of LLM are discrete integers representing a “word”
o  The vocabulary of the LLM is then the discrete set of tokens it is able to learn and generate
e What if we want to use next token prediction in continuous domains?

o  For example to generate images, or detector response (location and some value)
o  We can first learn the discretized codebook through some external model e.g., a Vector Quantized

Variational Autoencoder (VQ-VAE)

e! eZeJ eK
Embedding
Space

1
1
1
; 1
N /\\ & v.
oL . N ) ‘ % I Zq(x) 2 2
1 ‘ ) 1 =
) el vL N = ) | z,(x)
. - q(z|x) > —I 5 B CNN I
CNN LN ; Vadh 4 ZHl 4 p(xiz,) 1
N\ » 3 7 Fss g 1 z,(x) ~ q(z|x)
= 2 z (x) a o
A z . = Figure from [6]
Encoder Decoder
[6] Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural
information processing systems 30 (2017). WILLIAM
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Potential Issues with Tokenization cont’d
e A VQ-VAE like model solves the issue of allowing next token prediction style models to
operate in continuous domains

e But it does come with drawbacks

o There is inherent information loss in the encoding procedure
o  The reconstruction is limited by the granularity of the codebook

o  Potential inconsistencies or artifacts - crucial in high precision applications

WILLIAM
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Combining Discrete and Continuous Data

e In attempt to circumvent these potential issues, we devise an alternative strategy
o In our Cherenkov data - we have a pixel (discrete integer) and a continuous time associated with each hit
e We utilize two vocabularies - two prediction heads

o A discrete set of pixels

o A discrete set of time bins - a linear binning at 4 the timing resolution of the readout system

e As aresult, our data structure for a given track is of the form

spatial — { SOS,, p1,- .., Pn, EOS,}
time — { SOSt,tl,...,tn,EOSt}

e We have still discretized the continuous variate - but in a controlled manner

WILLIAM
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Conditional Generation

® Cherenkov hits in particular are highly dependent on external kinematic parameters
o  Spatial location (ring structures in PDFs), and time distributions are highly variable

e While these variates are also continuous, we do not need to tokenize (discretize them)

e We instead embed them through linear projections and prepended as context

spatial — {|p],0,SOS,,p1,...,pn, EOS,}
time — {|ﬁ‘, 9, SOSt, t1y...,tln, EOSt}

e The prepending strategy allows the kinematics to guide sequence generation forward in
time

WILLIAM
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Towards FM for Pixelated Readout Systems

e Our vocabularies operate adjacent to one another - providing next pixel and time through
independent prediction heads

e We combine information through Causal Cross Attention

o  Time drives the sequence - at a given time, query the pixel space for possible locations

/¥ Kinematic Embedding
Spatial Embedding Temporal Query

I! —f
| | p
L — J I — i

+ + [Layer Norm] [Layer Norm] [

N Layer Norm ]

Spatial Te |

Decoder Block oporal || LTempora;
(CMHCA) <O (v Iz Az v 7
*
Decoder Block ( Masked Cross Attention ] [ Masked Self Attention ]

x2 T T

(M |-||.SA) [ Linear Projection ] [ Linear Projection ]

[ Layer Norm ] [ Layer Norm ]

Causal implies we apply a mask to

—
i 1
| [Next]| [Next] : - ( FENN ] FENN )
I : . ! Cl fi ! . C.
[ Pixel J [ Time | | — 9 <D prevent seeing forward in time

______________

Generator Head WILLIAM
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Example Generations
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Autoregressive (Next Token)

100 200

X (mm) X (mm)
" — Geant4 " — Geant4 .
10” —— FastSim. 10” —— FastSim. 107
=5 |5|_=306nGeV/c =S |5|_=56DGeV/c 5
<1073 <10-3 <10-3
_s -5 -5
10 50 100 150 10 0 50 100 150 10 0
Time (ns) Time (ns)

— Geant4
—— FastSim.
|p| = 6 GeV/c
6=150"

Visualization of Generations at 6 GeV/c and various polar angle

50 100 150
Time (ns)
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Quantitative Evaluation through PID Metrics

Autoregressive (Next Token)
15

e FEvaluate at fixed kinematics

|pl =3 GeV
12 E ;s - o
9

31 —— FastSim. (Transformer) - 6=9.96 —— Geant4.-6=10.84
—F— FastSim. (NF) - 5=9.94

o 3,6 GeV/c -5 degree bins over acceptance range

Separation [s.d.]
)]

e For each bin, fit a Gaussian distribution to both

S+ 1 5 -
PID’s in the DLL space ~ 151=6 Gev|
. .. . T 4 W

e (alculate the separation between distributions &, %
2
2
S
g 1 —— FastSim. (Transformer) - 6 =2.57 —— Geant4.-6=3.72

—— FastSim. (NF) - 6=2.91

40 60 80 100 120 140
Polar Angle [deg.]

WILLIAM
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Class Conditional Generation

e (Generations shown prior are from independent models (7/K)

o How do we combine multiple classes under a single model?

WILLIAM
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Class Conditional Generation
e (Generations shown prior are from independent models (7/K)
o How do we combine multiple classes under a single model?

e Standard Gen. Al

o Build conditional probability distribution p(x|k,c)
o  Difficult given merging of n/K PDFs as momentum increases

o  Modes collapse together - fidelity decreases

WILLIAM
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Class Conditional Generation
e (Generations shown prior are from independent models (7/K)
o How do we combine multiple classes under a single model?

e Standard Gen. Al

o Build conditional probability distribution p(x|k,c)
o  Difficult given merging of n/K PDFs as momentum increases

o  Modes collapse together - fidelity decreases
e Autoregressive (next token)

o We can prepend additional context (class label)

o  Same issues as before - modes collapse together

WILLIAM
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A Mixture of Experts - Conditional Computing

77 Kinematic Embedding
Spatial Embedding Temporal Query

e e g
| | [ @ity @il [ ALLtiites

Dectnder F.:Iock [La(yse;a':‘z;;n] [L(aTye?;nNoorZB] ( Layer Norm )
(CMHCA) 7 7 7 7
:
Decoder Block X2 [ Masked Cross Attention ] [ Masked Self Attention ]
1 i
(MI—}'SA) [ Linear Projection ] [ Linear Projection ]
LS g
_______ \ * [ Layer Norm ] [ Layer Norm ]
" \ ( FFNN ] ( FFNN )
|| Next| |[ Next| ! —
[bea) [pe ,
\ ;

______________

Generator Head
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A Mixture of Experts - Conditional Computing

/ Kinematic Embedding
Spatial Embeddlng Temporal Query

’/l/'f{; 7 /‘:1,4 4 £ f LA /,‘,4’,‘, R S -
! v v + — (P (Y \ | L
o ) () || |C—mrermom—) L eeSTNTTIIISSIIIeesssiiessiiiesssioessooeos
(CMHCA) 7 z - 7 /’ \
; ' \
Decoder Block %2 [ Masked Cross Attention ] [ Masked Self Attention ] [ FFNN ]
(M |-iSA) [ Linear Pf"ojection ] [ Linear Plrojection ]
72z (K'K 7z {— 5 Replace a single FFNN with many (experts)
[ Layer Norm ] [ Layer Norm
_____________ ‘
'
! Nex Next : ( FFNN ] ( FFENN
i !
. @ Time ' M = &b [ Expert 1 ] [ Expert 2 ] Expert n
! )

1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1

______________

Generator Head

WILLIAM
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A Mixture of Experts - Conditional Computing

7/ Kinemati

¢ Embedding

Spatial Embeddlng Temporal Query

y l/'ff VAT AT LT :: 7 e

& S

Decoder Block
(CMHCA)

Decoder Block

v
X2

(MHSA)
i

/K/(K'Kr’(f

_____________

Next
Tlme

______________

Generator Head

I
1
! Classmer
1
1

(Y |

(Spatial)

[Layer Norm] [Layer Norm] [

WY\ (L

(Temporal) Layer

Norm

02 02

A 07
5 () (0

[ Masked Cross Attention ] [ Masked Self Attention ]
1
[ Linear Projection ] [ Linear Projection
\\
[ Layer Norm ] [ Layer Norm
( FFNN ] ( FFENN
! Van)
4@ D

1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
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| FFNN

Replace a single FFNN with many (experts)

[ Expert 1 ][ Expert 2 ]

In our case - two classes implies two experts

Pion
Expert

Kaon
Expert

WILLIAM
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A Mixture of Experts - Conditional Computing

e The general idea
o Turn of/on parts of the network given a specific type of particle we want to generate - fixed routing
o  Majority of parameters are shared - only experts are aligned with a specific class
o  Capture general relationship through attention blocks
o Apply fine grained corrections through class conditional experts

e [Extension in multiple ways

o  Multiple particles - n/K/e

o  Multiple experts per class (see [4] for more details)

WILLIAM
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A Mixture of Experts - Conditional Computing

Separation [s.d.]

Separation [s.d.]

15

12

Bl =3 GeV |

—— FastSim. (Transformer) - 6 =9.96+0.02
—}— FastSim. (MoE - 2 Experts) - 6=9.93+0.02
—}— FastSim. (MoE - 4 Experts) - 6=9.95+0.02

—F— FastSim. (NF) - 6 =9.94+0.02
—J— Geant4. - 6=10.84+0.02

\i|5| =6 GeV

—— FastSim. (Transformer) - 6 = 2.57+0.02
—}— FastSim. (MoE - 2 Experts) - 6=2.55+0.02
—}— FastSim. (MoE - 4 Experts) - 6 =2.59+0.02

—— FastSim. (NF) - §=2.91+0.02
—— Geant4. - 6=3.72+0.02

40 60 80 100 120 140
Polar Angle [deg.]

Generation Quality does not degrade w.r.t.
Independent models

— Geant4
—— FastSim.

18] = 6 GeV/c
=25°

0 50

— Geant4
—— FastSim.

5 Bl =56ﬂGeV/c

105 ‘ _ i

0 50 Time (nls(;o 150
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Key Takeaways
e (Proto) Foundation Model operating directly on low level detector signals O
Github

o  QGeneralizable to other detectors with discrete + continuous data streams

e Four core innovations All code is open source and pre-trained

: 1 1ded.
o  Dual Vocabularies for spatial and temporal data - fused through Cross Attention models are provided

o Scaleable, higher resolution tokenization with joint vocab inflation - our resolutions correspond to 36M tokens in a
joint vocabulary

o  Continuous conditioning using prepending kinematic embeddings

o  Class conditional generation through a Mixture of Experts

e (apable of multiple downstream tasks

o  QGeneration shown here.

I & MRy | PR SCIENCE



https://github.com/wmdataphys/FM4DIRC/tree/main

