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Outline
● The High Performance DIRC (hpDIRC) at EIC

● Generative Models for Fast Simulation of Cherenkov Detectors at EIC (arXiv:2504.19042, MLST)

○ Hit-level learning for generative AI

○ A collection of SOTA generative models

○ Holistic Simulation pipeline - Generating the photon yield

○ Takeaways

● Towards Foundation Model for Readout Systems combining Discrete and Continuous Data (arXiv:2505.08736)

○ Towards FM in physics

■ Potential Issues with Tokenization

■ Combining Continuous and Discrete Data

○ Conditional Generation through prepended context

○ Class Conditional Generation through conditional computing - Mixture of Experts

○ Takeaways
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https://arxiv.org/abs/2504.19042
https://iopscience.iop.org/article/10.1088/2632-2153/ae0f72
https://arxiv.org/pdf/2505.08736


hpDIRC at EIC
● Barrel geometry 

○ 16-sided polygonal barrel around the beam line (R=1m)

○ Divided into optically isolated sectors - a bar box and a readout box

○ Each bar box contains eleven fused silica radiator bars (~ 4m in length) - mirrored ends for photon reflection

○ Exiting photons are focused by a 3-layer spherical lens

● Pixelated Detector Plane
○ 4x6 PMTs - 16x16 pixels per PMT

○ Provide spatial and timing information (100ps)

● Operation Requirements
○ 3σ separation for 𝜋/𝘒 at 6 GeV/c
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Image taken from [1]

EICDIRC

[1] Kalicy G 2022 Developing high-performance DIRC detector for the Future Electron Ion Collider 
Experiment (arXiv:2202.06457) URL https: //arxiv.org/abs/2202.06457 

https://github.com/rdom/eicdirc
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Generative Models for Fast Simulation of Cherenkov 
Detectors at the Electron Ion-Collider

[1] Giroux, James, Michael Martinez, and Cristiano Fanelli. "Generative Models for Fast Simulation of 
Cherenkov Detectors at the Electron-Ion Collider." arXiv:2504.19042 (2025). 
(Accepted into IOP - Machine Learning Science and Technology)



Learning at the Hit Level
● Difficulties in working with Cherenkov detectors for Generative AI

○ Lack of fixed input sizes - dynamic photon yield dependent on kinematic parameters

○ Pixelated (discrete) spatial readout system - algorithms are designed for continuous spaces
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Learning at the Hit Level
● Difficulties in working with Cherenkov detectors for Generative AI

○ Lack of fixed input sizes - dynamic photon yield dependent on kinematic parameters

○ Pixelated (discrete) spatial readout system - algorithms are designed for continuous spaces

● Abstract away from fixed input sizes
○ Remain agnostic to the photon yield

● Learning at the hit level, conditional on < |𝙥| , 𝜃 >
○ Treating individual Cherenkov photons in a track as ~ independent

● Use physical sensor dimensions to remove discrete representation in space
○ DIRC readout has a fixed “row,col” coordinate system

○ Transform to x,y coordinate system (mm)

○ Smear uniformly over individual PMT pixels
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● What does this look like during training?

-90.

Learning at the Hit Level Cont’d…
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● What does this look like during training?

● What does this look like at inference (generation)?
○ Our models are trained to generate individual photons

○ We aggregate multiple forward calls to generate tracks

○ These are not sequential - batch processing of N𝛾
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● What does this look like during training?

● What does this look like at inference (generation)?
○ Our models are trained to generate individual photons

○ We aggregate multiple forward calls to generate tracks

○ These are not sequential - batch processing of N𝛾
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Integrate over 
tracks to create 
PDF



A collection of SOTA Generative Models
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Transformation ObjectiveMethod

Discrete Normalizing Flows

Continuous Normalizing Flows

Conditional Flow Matching

Denoising Diffusion Probabilistic Models

Score Based Generative Models



A collection of SOTA Generative Models
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Discrete Normalizing Flows

Visualization of Generations at 6 GeV/c and various polar angle



Quantitative Evaluation through PID Metrics
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● Translate simulation quality metrics to a more meaningful representation
○ Separation power through KDE based PID method (FastDIRC)

[3] Hardin, John, and Mike Williams. "FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC 
detectors." Journal of Instrumentation 11.10 (2016): P10007.
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● Translate simulation quality metrics to a more meaningful representation
○ Separation power through KDE based PID method (FastDIRC)

[3] Hardin, John, and Mike Williams. "FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC 
detectors." Journal of Instrumentation 11.10 (2016): P10007.

Create large reference populations of 𝜋 / K (support 
PDF)

For each photon in a track, calculate likelihood:

,

Perform DLL:



Quantitative Evaluation through PID Metrics
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● Evaluate at fixed kinematics

○ 3,6 GeV/c - 5 degree bins over acceptance range

● For each bin, fit a Gaussian distribution to both 

PID’s in the DLL space

● Calculate the separation between distributions

Discrete Normalizing Flows



Holistic Simulation - Photon Yield Generation
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● Low dimensional problem

● Must be fast - approximately zero overhead, preferably CPU bound

● A simple Look-Up-Table (LUT) does the trick - 100 MeV/c, 1 degree bins 



Key Takeaways
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● All Cherenkov Rings (underlying PDF’s) generated by our models are “correct”
○ Ring and time structures follow correct kinematic dependencies for both PIDs

○ We incur a smoothing effect - can cause different PIDs to appear more similar

● Beyond usage in Physics environments
○ We have created an open source suite of SOTA algorithms for the hpDIRC (easily adapted to other detectors)

○ Our fast simulation is self contained, fast and capable of being run on CPU or GPU

Track Generation (CPU) PDF Generation (GPU)

GithubAll code is open source and pre-trained 
models are provided.

AMD EPYC 7313P - Single Core

https://github.com/wmdataphys/FM4DIRC/tree/main
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Towards Foundation Models for Experimental 
Readout Systems Combining Discrete and 

Continuous Data

[4] Giroux, James, and Cristiano Fanelli. "Towards Foundation Models for Experimental Readout 
Systems Combining Discrete and Continuous Data." arXiv preprint arXiv:2505.08736 (2025).



Foundation Models in Physics
21

● Foundation Models (FM) are becoming increasingly popular in the Physics community
○ Relatively large pre-trained models 

○ Capable of supporting multiple downstream tasks - e.g., fast simulation, reconstruction, etc.

● Different approaches have emerged (focusing on two recent ones)
○ Diffusion Transformer (DiT) style (see [3])

○ GPT style (see [4])

● In both cases, they work with relatively high level features
○ Facilitating generation and classification of Jets through their constituents (4-vector like quantities)

[3] Mikuni, Vinicius, and Benjamin Nachman. "OmniLearn: A method to simultaneously facilitate all jet physics 
tasks." arXiv preprint arXiv:2404.16091 (2024).

[4] Birk, Joschka, Anna Hallin, and Gregor Kasieczka. "OmniJet-α: the first cross-task foundation model for 
particle physics." Machine Learning: Science and Technology 5.3 (2024): 035031.



Foundation Models in Physics cont’d…
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● More recently [5] has shown very nice, and promising results using GPT style models to 

generate point clouds in calorimeters
○ Treat cells and energy as tokenized representations

○ Generate the shower forward in time, predicting the next token given the previous (context)

○ This is akin to modern LLMs such as ChatGPT

[5] Birk, Joschka, et al. "OmniJet-{\alpha_ {C}}: Learning point cloud calorimeter simulations using generative 
transformers." arXiv preprint arXiv:2501.05534 (2025).

Figure from [5]



Potential Issues with Tokenization
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● Tokens in the context of LLM are discrete integers representing a “word”
○ The vocabulary of the LLM is then the discrete set of tokens it is able to learn and generate

● What if we want to use next token prediction in continuous domains?
○ For example to generate images, or detector response (location and some value)

○ We can first learn the discretized codebook through some external model e.g., a Vector Quantized 

Variational Autoencoder (VQ-VAE)

[6] Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning." Advances in neural 
information processing systems 30 (2017).

Figure from [6]



Potential Issues with Tokenization cont’d
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● A VQ-VAE like model solves the issue of allowing next token prediction style models to 

operate in continuous domains

● But it does come with drawbacks
○ There is inherent information loss in the encoding procedure

○ The reconstruction is limited by the granularity of the codebook

○ Potential inconsistencies or artifacts - crucial in high precision applications



Combining Discrete and Continuous Data 
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● In attempt to circumvent these potential issues, we devise an alternative strategy
○ In our Cherenkov data - we have a pixel (discrete integer) and a continuous time associated with each hit

● We utilize two vocabularies - two prediction heads
○ A discrete set of pixels

○ A discrete set of time bins - a linear binning at ¼ the timing resolution of the readout system

● As a result, our data structure for a given track is of the form

● We have still discretized the continuous variate - but in a controlled manner



Conditional Generation
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● Cherenkov hits in particular are highly dependent on external kinematic parameters
○ Spatial location (ring structures in PDFs), and time distributions are highly variable

● While these variates are also continuous, we do not need to tokenize (discretize them)

● We instead embed them through linear projections and prepended as context

● The prepending strategy allows the kinematics to guide sequence generation forward in 

time 



Towards FM for Pixelated Readout Systems
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● Our vocabularies operate adjacent to one another - providing next pixel and time through 

independent prediction heads

● We combine information through Causal Cross Attention
○ Time drives the sequence - at a given time, query the pixel space for possible locations

Causal implies we apply a mask to 

prevent seeing forward in time



Example Generations
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Autoregressive (Next Token)

Visualization of Generations at 6 GeV/c and various polar angle



Quantitative Evaluation through PID Metrics
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● Evaluate at fixed kinematics

○ 3,6 GeV/c - 5 degree bins over acceptance range

● For each bin, fit a Gaussian distribution to both 

PID’s in the DLL space

● Calculate the separation between distributions

Autoregressive (Next Token)



Class Conditional Generation
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● Generations shown prior are from independent models (𝝅/K)
○ How do we combine multiple classes under a single model?
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● Generations shown prior are from independent models (𝝅/K)
○ How do we combine multiple classes under a single model?

● Standard Gen. AI
○ Build conditional probability distribution p(x|k,c) 

○ Difficult given merging of π/K PDFs as momentum increases

○ Modes collapse together - fidelity decreases



Class Conditional Generation
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● Generations shown prior are from independent models (𝝅/K)
○ How do we combine multiple classes under a single model?

● Standard Gen. AI
○ Build conditional probability distribution p(x|k,c) 

○ Difficult given merging of π/K PDFs as momentum increases

○ Modes collapse together - fidelity decreases

● Autoregressive (next token)
○ We can prepend additional context (class label)

○ Same issues as before - modes collapse together



A Mixture of Experts - Conditional Computing
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A Mixture of Experts - Conditional Computing
35

FFNN

Replace a single FFNN with many (experts)

Expert 1 Expert 2 Expert n

In our case - two classes implies two experts

Pion 
Expert

Kaon 
Expert



A Mixture of Experts - Conditional Computing
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● The general idea
○ Turn of/on parts of the network given a specific type of particle we want to generate - fixed routing

○ Majority of parameters are shared - only experts are aligned with a specific class

○ Capture general relationship through attention blocks

○ Apply fine grained corrections through class conditional experts

● Extension in multiple ways
○ Multiple particles - π/K/e

○ Multiple experts per class (see [4] for more details)



A Mixture of Experts - Conditional Computing
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Generation Quality does not degrade w.r.t. 
Independent models



Key Takeaways
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● (Proto) Foundation Model operating directly on low level detector signals
○ Generalizable to other detectors with discrete + continuous data streams

● Four core innovations
○ Dual Vocabularies for spatial and temporal data - fused through Cross Attention

○ Scaleable, higher resolution tokenization with joint vocab inflation - our resolutions correspond to 36M tokens in a 

joint vocabulary

○ Continuous conditioning using prepending kinematic embeddings

○ Class conditional generation through a Mixture of Experts

● Capable of multiple downstream tasks
○ Generation shown here.

Github

All code is open source and pre-trained 
models are provided.

https://github.com/wmdataphys/FM4DIRC/tree/main

