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Density Ratios
Often we require the ratio of 2 different distributions : 

Density Ratio

In 1D we may just use 2 histograms and create a 3rd 
which is their ratio

 But in many dimensions this become infeasible

 Similar to having very low statistics

 Alternatively we can use Machine Learning 
classification tasks which are suited to such problems
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Previous Work with Density Ratios
Excellent tool for mapping acceptance probabilities in 
multi-dimensions
i.e. probability a particle is detected at particular point

https://arxiv.org/abs/
2207.11254

Optimised algorithm using combination of Neural
Networks and BDT for multi-dimensional 

correlations and accuracy



Momentum resolutions / correlations Toy Simulation

Momentum resolutions / correlations ML Simulation

Full Reaction Simulations

Kinematic distributions : invariant masses decay angles 

Sim
ML

 Resolutions mapped with Decision Tree inference



Machine Learning With 
Experimental Data
 Often train ML with simulated data – requires 

excellent agreement between simulation and 
experimental data.

 Instead we can train ML with experimental data 
– this relies on being able to separate 
contributions from different event sources in 
the data.

 In the example plot, we would need to separate 
the background and neutron signal to use the 
neutron data in training.

SIGNAL

BACKGROUND

Based on work with R.Tyson:
To be published
arXiv:2409.08183 (2024)

https://arxiv.org/abs/2409.08183


sPlot and sWeights
 The sPlot formalism aims to unfold the contributions of different event 

sources to the experimental data. 

 sPlot generalises side-band subtraction weights to where there is no clear 
isolated background to subtract from the total event sample.

 The data is assumed to have:
 discriminating variables where distribution of event sources are known
 control variables where distributions of event sources are unknown.

 Fit expected pdf to discriminating variables to obtain sWeights that allow 
to reconstruct distribution of control variables. 

 Requires that the discriminatory variable and control variables are 
independent of each other.

M. Pivk, F. R. Le Diberder. SPlot
: A Statistical tool to unfold data distributions. Nucl. Instrum
. Meth. A, 555 (2005).
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Negative sWeights
 Essential characteristic of sWeights is that they can be 

negative.

 Necessary to preserves the statistical properties of the dataset 
eg correct uncertainties and normalisation. 

 Creates issues for ML training : -ve weights in general allow 
loss to become arbitrarily negative

 Circumvent this issue starting with sample weighted binary 
cross entropy loss

 And convert sWeights to positive definite probabilities through 
density ratio classification task.



Density Ratio Weights (drWeights)
 For this we can use density ratio estimation:

 Summing the sWeights for a given species recovers the yield of that species.
 Define weights for a given species equivalent to the ratio of its probability density over the sum of probability 

densities of all species in the data ie 
 

 To convert the signal weights we create a training sample with “all events weighted by signal sWeights” as class 1      
    and “all events weighted by 1” as class 0.

 Avoids the issues due to negative weights as all events in class 0 are contained in class 1 

Requires :  ∑wi < N (number of events).   True by definition of signal sWeights

 ML classifier with this training sample will have output for signal f(xi) :

Then transform to probability Wdr

See also Nachman/ThalerNeural : resampler for monte carlo reweighting with preserved uncertainties.                                  
Phys. Rev. D, 102:076004, Oct 2020

 



Density Ratio Weights (drWeights)
 The solution to this is to convert sWeights to positive definite probabilities.

 For this we can use density ratio estimation. Utilises two characteristics of sWeights:
 Summing the sWeights for a given species recovers the yield of that species.
 sWeights for given species is equal to the ratio of its probability density over the sum of probability densities of all species in 

the data ie 
 

 To convert the signal weights we create a training sample with all events weighted by signal sWeights as class 1 and 
all events weighted by 1 as class 0.

 Avoids the issues due to negative weights as all events in class 0 are contained in class 1 (so long as the sum of 
weights is less negative than the number of events).

 ML algorithm with this training sample will have output for class 1:

 

Create the training sample with all events weighted by signal sWeights 
as class 1 and all events weighted by 1 as class 0.

Two key takeaways are:

Creating the training sample in such a way allows to use the binary cross-
entropy loss function even in the presence of negative sWeights. 

Creating the training sample in such a way allows a binary classification model 
to convert the signal sWeights to positive definite probabilities.



Couple of Notes
 sPlot requires that the discriminatory variable and control 

variables are independent of each other.
 ⇒ conversion should only be made with the control variables

 sPlot unfolds the control variable distributions
 ⇒ conversion works only at the distribution level and not on an 

event by event basis.

 sWeighted uncertainty is calculated by taking the sum of the 
squared sWeights.

 ⇒ This doesn’t work with converted weights Wdr.                            
     But we can just propagate sWeight sum of squared weights 

 We can apply the method twice, or more, ie correct the 
drWeights for better results.



Toy Example
 Create toy event generator to produce three 

dimensional events: 
 mass such as an invariant mass as discriminatory 

variable 
 azimuthal (ϕ) angular distribution 
 z = cos θ. 

 Signal events were generated with a Gaussian 
distribution in mass and a cos 2ϕ distribution of 
amplitude 0.8.

 Background events were generated with a Chebyshev 
polynomial distribution in mass and a cos 2ϕ 
distribution of amplitude -0.2. 

 The aim is to measure the signal asymmetry in ϕ by 
unfolding the signal distribution in the control 
variable ϕ . See github repo

Fit of signal and 
background PDFs 
allows us to 
determine 
sWeights

Applying sWeights
To Φ distributions 
gives our signal 
cos(2Φ)
Fit to this (blue) to 
get back our 
amplitude of 0.8

https://github.com/rtysonCLAS12/DR4sWeights_toy


Apply two consecutive Gradient Boosted Decision Trees to convert sWeights.
    → Second acts as reweighter fine-tuning results
    → Measurably improves results 
Several other learning models tested, generally good performance.

Training rate ~2 kHz, prediction rate ~500 kHz on 5 cores of a AMD EPYC 9554 64-Core Processor at 3.1GHz.

Excellent agreement
Between blue sWeights 
and red drWeights

Deviations not statistically 
significant



Quantifying how well it works
 Want to reproduce signal ϕ asymmetry amplitude of 

0.8. 
 Repeat training the density ratio model and fitting ϕ 

asymmetry for 2000 independent toy datasets of 100k 
events

 Use Signal to Background ratio of (1:9).
 Obtain mean amplitude and uncertainty along with 

the standard deviation of the amplitude over the 2000 
datasets

 Fit performed via binned χ2 
 The expectations are:

 mean should be consistent with the nominal value of 0.8 
 mean uncertainty and standard deviation should be 

numerically similar i.e. the fluctuation of results is 
consistent with the calculated uncertainty

 i.e.    σrms /σfit  ~ 1.0



Quantifying how well it works
 Want to reproduce signal ϕ asymmetry amplitude of 

0.8. 
 Repeat training the density ratio model and fitting ϕ 

asymmetry for 2000 independent toy datasets of 100k 
events

 Use Signal to Background ratio of (1:9).
 Obtain mean amplitude and uncertainty along with 

the standard deviation of the amplitude over the 2000 
datasets

 Fit performed via binned χ2 
 The expectations are:

 mean should be consistent with the nominal value of 0.8 
 mean uncertainty and standard deviation should be 

numerically similar i.e. the fluctuation of results is 
consistent with the calculated uncertainty

 i.e.    σrms /σfit  ~ 1.0

Start with large background sample
Reproduce correct asymmetry to systematic deviation of 1% (0.3σ)

Fit uncertainties underestimated by 15%
-i.e we get 15% more spread of results
χ2/N < 1 => Smoothing of distribution

Pull distributions of histograms to fit results also have width (σgfit) < 1 
but no bias mean gfit=0

=>smoothing of distribution



More complex distributions
 Increase frequency of cos terms

 Observe systematic drop-off in measured 
amplitude with frequency

 Effect of smoothing/averaging of distributions over 
data structures

 Similar to resolution effects from detector

 Note sPlot results also drop – presumably due to 
histogram binning effects



Correcting for averaging effects

 We can iterate our GBDT correction 
reweighters

 Get increasingly better agreement with 
number of interations

 Standard deviation of Toy results increases

 Eventually match sPlot amplitude



Correlations induced by procedure

 We can examine the correlation 
matrix of our resulting distributions

 Consider correlations between all 
bins in histograms

 Splot histograms are uncorrelated
 If with 2 GBTs we observe 

correlation effects
 With 25 GBTs these increase
 This has implications for particular 

applications of this technique
 Smoothing/correlations may need 

unfolded from distributions

2 GBDTs

25 GBDTs



Extracting Physics Parameters Via Density Ratios

 Consider physics reaction of 2 meson photoproduction
 Production and decay of M described by 3 angles (θ,ϕ,Φ) at fixed s, t and Mass(ηπ)
 Experimentally measurable as Spherical Harmonics (θ,ϕ) modulated further by 

cos(2Φ) term
 Decompose distributions into moments of Spherical Harmonics (Fourier Analysis) 

R  
γ

p
 

η

πp

M



Toy Experiments
 Generate data Ω=(θ,ϕ),Φ

N = 100k events

 Where H0,1,2(LM) are moment 
parameters used to generate the data

 These are then the parameters we wish 
to then extract

  Fold in Toy detector acceptance effects
  And add background

Simulated Flat distributions



Generated Toy Dataset Distributions

 2D histrograms of Background + Acceptance Toy Data

Mass

cos(θ)
ϕ

Φ



Background removal weights

 Perform fit to Mass distribution  sWeights→
 Use Density Ratio to convert to drWeights

 Plot Signal distribution via weights :

All
sWeights
drWeights

Fit to Mass
For sWeights



Producing Acceptance Corrected Model
 Perform Classification between Simulated Flat data

      And drWeighted data 
 Use primary DNN with Gradient Boosted Decision Tree reweighter

=> Background subtracted, acceptance corrected model
 Can’t really extrapolate, but can interpolate over holes if distribution not 

varying too fast

ANALYTIC ANALYTICDENSITY RATIO DENSITY RATIO

cos(θ) cos(θ)
ϕ ϕϕϕ

Φ Φ



Extracting Sperhical Harmonic Moments

 We now have 3D numerically integrable functions (use Vegas)
=> Extract moments by integrating over spherical harmonic terms

Surprisingly good 
agreement



That’s nice but we really want the amplitudes

 Spherical harmonic moments relate to underlying partial wave amplitudes 
which are produced by mesonic resonance decays

 Equations relating moments to partial waves are non-linear and complex

This is a very difficult numerical problem – lots of local maxima in likelihood space



Brute Force : χ2 mimimisation
 Solve simultaneous equations through minimising χ2

 This can work, but need to perform a lot of minimisations to get the true 
minima

 Are there more efficient ML methods for this ?
With True Moments With DensityRatio Moments



Summary
 Relatively basic machine learning methods may be used to construct reliable density 

ratios between different distributions
 These density ratios have a number of applications in nuclear/particle physics 

analysis
 Here we mentioned

● Fast simulation
● Calculating probability weights for background subtraction
● Constructing ND non-parameteric functions for acceptance corrected data

 In the latter case it was shown how these functions can be used to extract 
experimental observables which can then be used to extract the underlying physics

 But not tested with real experiments, unlikely to give accurate results, but may be 
useful for initiating other methods such as likelihood fits. 



Number of Events
 Same test as before, vary number of events.

 Use signal to background ratio of (1:9).

 At  1000 events we have only 100 signal 
events.

 drWeights are robust and function well with 
large backgrounds and limited statistics.

 Issues with sWeights at low event number 
due to -ve bin contents in binned χ2

 Expected behaviour when use event based 
maximum likelihood instead 

# Events 
Weights

Mean σ σ
Uncertainty

1000
sWeights

drWeights
17.94 ± 14.67

0.679 ± 0.5902
84.81

0.2710
5.78
0.46

10,000
sWeights

drWeights
0.870 ± 0.0953
0.778 ± 0.1038

0.1090 
0.0929

1.14
0.89

100,000
sWeights

drWeights
0.804 ± 0.0274
0.793 ± 0.0285

0.0244
0.0260

0.089
0.91

1,000,000
sWeights

drWeights
0.799 ± 0.0090
0.792 ± 0.0092

0.0104
0.0110

1.16
1.20



 Apply this technique to CLAS12 
neutron detection.

 Fit neutron missing mass using 
simulated template.

 Produce drWeights over the 
reconstructed neutron spherical 
momentum components.

 Show results for neutron momentum 
using sWeights and drWeights

Testing with real data



Example Application
 We can estimate the neutron detection efficiency by 

comparing the reconstructed to detected neutron.

 We can also use density ratios to obtain a multi-
dimensional model of the neutron detection efficiency 
(see Slide 3,14 &  arxiv:2207.11254).

 Neutron detection is hard to simulate as it relies on 
detecting the various reaction products produced in 
scattering between the neutron and calorimeter 
material.

 To obtain an accurate multidimensional model of 
neutron detection efficiency we should use experimental 
data, this relies on being able to convert sWeights to 
probabilities.

Work in Progress!!

https://arxiv.org/abs/2207.11254


Possible GEANTless Simulations

 Use exclusive reactions to train acceptance algorithm
e.g.
 

 Filter all events with π+π- and calculate missing proton momentum p’calc 
 If proton also detected flag (acceptance=1), if not (acceptance=0)
 Train classifier with pcalc components  on acceptance=0 and 1 events

 Equivalent to Slide 16 analysis

=> proton acceptance as function of calculated variables.
 Equivalent to fast sim parameterisation Slide 3

 Issues :  We want as a function of truth variables
There will be background under the mass peak so need drWeights

γ + p → π+ + π- + p’



Signal to 
Background 
Ratio

(1:9) (1:9)

(1:2)(1:2)
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