


® Often we require the ratio of 2 different distributions :
Density Ratio

® |n 1D we may just use 2 histograms and create a 3™ o Seassozunnn
which is their ratio -

NeuralNetwork
Classification
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* But in many dimensions this become infeasible
* Similar to having very low statistics

* Alternatively we can use Machine Learning
classification tasks which are suited to such problems
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Machine Learned Particle Detector Simulations

D. Darulis, R. Tyson, D. G. Ireland, D. I. Glazier, B. McKinnon, P. Pauli

https://arxiv.org/abs/

Fast Simulation Scheme
Training :

Generator Truth Simulation

Random
Numbers

All events Accepted Inputs Outputs

! ! } !

Classifier Training Regression Training

)

Fast Acceptance Fast Resolution
Model Model

Application :

Fast
Fast Acceptance ___ Fast Resolution Simulated

Generator Truth — Model > Model > Data

Excellent tool for mapping acceptance probabilities in
multi-dimensions
l.e. probabillity a particle is detected at particular point
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Figure 11: Results of applying a neural network with a Gaussian transform for acceptance modelling with a BDT
correction. The BDT used 100 weak learners with a maximum depth of 10 and a learning rate of 0.1. The network used
is the higher capacity model with 4 hidden layers of 512, 256, 128, and 16 neurons respectively. The improvement in
the 3-vector component distributions is smaller than in the case of the low capacity network.

® Optimised algorithm using combination of Neural
® Networks and BDT for multi-dimensional
correlations and accuracy



Momentum resolutions / correlations Toy Simulation
y * Resolutions mapped with Decision Tree inference

Kinematic distributions : invariant masses decay angles
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Figure 3: Some of the multidimensional correlations in the toy detector reconstruction. It is important that the machine
learned simulation can reproduce these features. 0 0
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Figure 26: Accepted and reconstructed physics variables for the Fast (blue) and Toy (red) simulations of the 2 pion
photoproduction reaction. The distributions show: the invariant mass of the three final state particles, W; the invariant
mass of the two pions, M (27); the production angles in the centre-of-mass system (cos(8¢as), ¢ ar); and the decay
angles of the two pions.
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Yid_BG = 449124 +/- 4952

Yld_Signal = 620701 +/- 4937

a0 = 1.345 +/- 0.012

» Often train ML with simulated data - requires a1 = 0.4322 +- 0.0037
excellent agreement between simulation and
experimental data.

a2 =0.0321 +/- 0.0035
alpha = 0.0328 +/- 0.0011

off = 0.00704 +/- 0.00034

» Instead we can train ML with experimental data scale = 0.993 +/- 0.025 SIGNAL:"-.__
- this relies on being able to separate " E
contributions from different event sources in
the data.

" BACKGROUND
» In the example plot, we would need to separate
the background and neutron signal to use the o A
neutron data in training. 0.75 0.8 0.85 0.9 095 1 1.05 1.1 1.15 1.2

Based on work with R.Tyson: Missing Mass [GeV]
To be published
arxiv:2409.08183 (2024)



https://arxiv.org/abs/2409.08183

The sPlot formalism aims to unfold the contributions of different event
sources to the experimental data.

sPlot generalises side-band subtraction weights to where there is no clear
isolated background to subtract from the total event sample.

The data is assumed to have:

> discriminating variables where distribution of event sources are known

5 5 g . Signal & Background
> control variables where distributions of event sources are unknown. sWeighted Signal

Fit expected pdf to discriminating variables to obtain sWeights that allow
to reconstruct distribution of control variables.

Requires that the discriminatory variable and control variables are
independent of each other.

M. Pivk, F. R. Le Diberder. SPlot
: A Statistical tool to unfold data distributions. Nucl. Instrum



https://www.sciencedirect.com/science/article/pii/S0168900205018024?via%3Dihub
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Essential characteristic of sWeights is that they can be
negative.

Necessary to preserves the statistical properties of the dataset
eg correct uncertainties and normalisation.

Mass [GeV]

Creates issues for ML training : -ve weights in general allow
loss to become arbitrarily negative

{ sWeights Signal
{ sWeights Background

Circumvent this issue starting with sample weighted binary
cross entropy loss

L(f(zi)) = — Zwi(yz-logf(wi) — (1 —wi)log(1 — f(:)))

And convert sWeights to positive definite probabilities through
density ratio classification task.

Mass [GeV]



For this we can use density ratio estimation:
> Summing the sWeights for a given species recovers the yield of that species.

> Define weights for a given species equivalent to the ratio of its probability density over the sum of probability
densities of all species in the data ie

To convert the signal weights we create a training sample with “all events weighted by signal sWeights” as class 1
and “all events weighted by 1" as class 0.

Avoids the issues due to negative weights as all events in class 0 are contained in class 1

Requires: >wi< N (number of events). True by definition of signal sWeights

ML classifier with this training sample will have output for signal f(x)) :

Then transform to probability W,

See also Nachman/ThalerNeural : resampler for monte carlo reweighting with preserved uncertainties.
Phys. Rev. D, 102:076004, Oct 2020
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Create the training sample with all events weighted by signal sWeights
as class 1 and all events weighted by 1 as class O.

Two key takeaways are:

Creating the training sample in such a way allows to use the binary cross-
entropy loss function even in the presence of negative sWeights.

Creating the training sample in such a way allows a binary classification model
to convert the signal sWeights to positive definite probabilities.
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> sPlot requires that the discriminatory variable and control
variables are independent of each other.

= conversion should only be made with the control variables

» sPlot unfolds the control variable distributions

= conversion works only at the distribution level and not on an
event by event basis.

» sWeighted uncertainty is calculated by taking the sum of the
squared sWeights.

= This doesn’t work with converted weights Wa.
But we can just propagate sWeight sum of squared weights

> We can apply the method twice, or more, ie correct the
drWeights for better results.

sWeights Signal
sWeights Background

Mass [GeV]



> Create toy event generator to produce three

dimensional events:

» mass such as an invariant mass as discriminatory
variable

» azimuthal (¢) angular distribution

» z=cos®6.

Signal events were generated with a Gaussian
distribution in mass and a cos 2¢ distribution of
amplitude 0.8.

Background events were generated with a Chebyshev
polynomial distribution in mass and a cos 2¢
distribution of amplitude -0.2.

The aim is to measure the signal asymmetry in ¢ by
unfolding the signal distribution in the control
variable ¢

Fit of signal and
background PDFs
allows us to
determine
sWeights

{ sWeights Signal
{ sWeights Background

;ﬁ#ﬁ .
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i@lﬁ
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Applying sWeights
To @ distributions
gives our signal
COoS(29)

Fit to this (blue) to
get back our
amplitude of 0.8

github repo



https://github.com/rtysonCLAS12/DR4sWeights_toy

Apply two consecutive Gradient Boosted Decision Trees to convert sWeights.

- Second acts as reweighter fine-tuning results

— Measurably improves results

Several other learning models tested, generally good performance.

Training rate ~2 kHz, prediction rate ~500 kHz on 5 cores of a AMD EPYC 9554 64-Core Processor at 3.1GHz.

{ Al All
{ sWeights Signal { sWeights Signal
{ Density Ratio Signal Density Ratio Signal

Pl w0 s bl St M

Excellent agreement
Between blue sWeights
and red dr\Weights

Deviations not statistically
significant

A A

5.0
-1.00 -0.75 —-0.50 —-0.25 0.00 0.25 0.50 0.75 1.00
Z




Want to reproduce signal ¢ asymmetry amplitude of
0.8.

Repeat training the density ratio model and fitting ¢ SWeights
asymmetry for 2000 independent toy datasets of 100k L. 01 094 002 097

drWeights
e o1 Lot oo | 11| o [ oo [ o1

Weights
Amp Mean | Gppms Uflt gfzt Ugf

USG Slgnal tO BaCkg fou nd ratIO Of (1 :9)- Table 1: Comparison of the ¢ amplitude measured with the signal distribution generated
with a ¢ amplitude of 0.8 for 10° events with a signal to background ratio of 1:9. The
Obtaln mean am plltUde a nd u ncertalnty along Wlth dfmta generation and training were repeated 2000 times. The mean and standard (.:leviation
(6rms) of the measured amplitudes are reported, along with the mean fit uncertainty. We

the Sta ndard dev|at|0n Of the a mp“tude 0\V/=18 the 2000 also show the mean reduced x? of the 2000 fits and the average of the pull (9fit) means and

standard deviations of the histogram to the fit result, with each mean and standard deviation
data Sets constructed from the 100 bins of the test histogram.

Fit performed via binned x2

The expectations are:
» mean should be consistent with the nominal value of 0.8

» mean uncertainty and standard deviation should be
numerically similar i.e. the fluctuation of results is
consistent with the calculated uncertainty

> i.e. orms /ofit ~1.0



Want to re

0.8.
Repeat tre
asymmetr
events
. Start with large background sample
Use Signa Reproduce correct asymmetry to systematic deviation of 1% (0.30)  signal distribution generated
Obtain me Fit uncertainties underestimated by 15% mean and standard deviation
theeti il -i.e we get 15% more spread of results ot the pull (97,0) moans and
dat o x3/N < 1 => Smoothing of distribution mean and standard deviation
, Pull distributions of histograms to fit results also have width (0gsi) < 1
Fit perforr but no bias mean gn=0
The expec =>smoothing of distribution
> mean s
> meant
numer|
consist

» ie. Olee.o.. I
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Figure 4: A comparison of all events, s Weights signal events (blue) and drWeights red for a
cosine of frequency = 10, a for 1:2 (left) and 1:9 (right) signal-to-background ratio.

Effect of smoothing/averaging of distributions over
data structures

Generated
Density Ratio (1:2 Signal to Background Ratio)
sPlot (1:2 Signal to Background Ratio)

Similar to resolution effects from detector | Density Ratio (1:9 Signal to Background Ratio)

sPlot (1:9 Signal to Background Ratio)

o
o)

Mean Amplitude
o
]

Note sPlot results also drop - presumably due to 3
histogram binning effects

Frequency

Figure 5: Effect on the fitte l Ilt i fro s‘ngls
the W ight a 1dW eight ca; t lff nt s lt badg ratios




We C_an Iterate our GBDT CorreCtlon _ Mean Amplitude vs Number of GBDTs
rewe I g hte FS Generated
: [}

Density Ratio (1:9 Signal to Background Ratio)
sPlot (1:9 Signal to Background Ratio)

o

Get increasingly better agreement with
number of interations
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Standard deviation of Toy results increases

Eventually match sPlot amplitude

Uncertainty
Standard Deviation

Uncertainty & o

o
o
N

10 15 20 25
Number of GBDTs

Figure 6: Effect on the fitted cosine amplitude from increasing the number of GBDTs, for
a cosine frequency of 10. We compare the sWeight and drWeight cases and the uncertainty
and standard deviations of the drWeights.




We can examine the correlation
matrix of our resulting distributions
Consider correlations between all
bins in histograms

Splot histograms are uncorrelated
If with 2 GBTs we observe
correlation effects

With 25 GBTs these increase

This has implications for particular
applications of this technique
Smoothing/correlations may need
unfolded from distributions
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-3.14
-3.14 -2.14 -1.13 0.00 1.01 2.01 3.14
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Density Ratio Signal
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25 GBDTs

Density Ratio Signal

Bin-to-Bin Correlation Matrices

sWeights Signal
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* Consider physics reaction of 2 meson photoproduction

* Production and decay of M described by 3 angles (6,¢,®) at fixed s, t and Mass(nr)

* Experimentally measurable as Spherical Harmonics (6,¢) modulated further by
cos(2®d) term

* Decompose distributions into moments of Spherical Harmonics (Fourier Analysis)



Generate data Q=(6,¢),® [(,®) = 1°(Q) — P, 1" () cos 2® — P, I*(9) sin 29,

N = 100k events

Q) =k Y HU(LM)YM(Q)
Where H"2(LM) are moment I M
parameters used to generate the data v v o
These are then the parameters we wish () = —k Z H>=(LM)Y"(£2)
to then extract LM
Fold in Toy detector acceptance effects

And add background
>d Fla

Simulate 7
3 25000
; 20000

15000

istributions

10000~

5000~

0,




* 2D histrograms of Background + Acceptance Toy Data




* Perform fit to Mass distribution - sWeights
* Use Density Ratio to convert to drWeights

* Plot Signal distribution via weights :

All
sWeights
drWeights




* Perform Classification between Simulated Flat data
And

* Use primary DNN with Gradient Boosted Decision Tree reweighter
=> Background subtracted, acceptance corrected model

* Can't really extrapolate, but can interpolate over holes if distribution not
varying too fast
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* We now have 3D numerically integrable functions (use Vegas)

=> Extract moments by integrating over spherical harmonic terms

Moment Comparison: 4 Data Sets

LM

True Analytic Value
Extracted (DNN+BDT)
Acceptance Corrected Data 1

Acceptance Corrected Data 2

Moment Value (H* )

Surprisingly good
agreement




* Spherical harmonic moments relate to underlying partial wave amplitudes
which are produced by mesonic resonance decays

* Equations relating moments to partial waves are non-linear and complex

' _ 2v/5 2 ., 1 1 ‘
H°(2,0) = < 7 11Dg | cos(¢,) + §|D(Jf|2 + 7|Di1|2 + ;|Df1|2)

1 . 1
)+ ?|D6r|2 - ?|Di1||Dir1| COS(¢JB+1 - ¢$1)>

[STIIDE | cos(@5.,) — [SFIDT | cos(aF_,))
DRI |<os(@,, ~ ob,) - D ID% cos(oh, - 65.,)) )
V5
=22 (IS5 1Dl cos(s,,) + IS§11D* ] cos(o )

DL DS |eos(@,, b, + DS ID% cos(oh, ~ 65.,)) )

> (IS5 IDE sin(65,,) — ST IDE | sin(5,,) )

This is a very difficult numerical problem

HO(0,0) = 2 (ISF 2 + |Df,* + DY 2 + D, ?)
H'(0,0) = 2 (ISF 2+ |Df P = 21DL, 1D, | cos(0h,, — 5_,))

2
H'(4,1) = D5 IIDF cos(6h., — 65,) + [DF1IDH | cos(6h, — 65._,))

i
H*(4,1) 2

IDEIDF | cos(6,, — 0b,) — IDFIDE | cos(0h, — 65_,))

: 30(
21
H?(4,1) ~2¢/30 (
21
o

(3

|DL,11Dg [sin(¢h,,, — ¢h,) — DG 1D, |sin(6h, — 5 _,)
+

-l
1°,2) = =220 D 1D costo, — 05.,)

(V2IDL, 2 + V21D, )
L) 2“—( VaID, P+ Va|D*, )

3(/
H (74»2) :_£|D 1||Dt1‘bln(¢D+1 —¢D )

H'(4,2) = ‘\/_

— lots of local maxima in likelihood space



Solve simultaneous equations through minimising x?

This can work, but need to perform a lot of minimisations to get the true
minima

Are there more efficient ML methods for this ?

With True Moments With DensityRatio Moments
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Relatively basic machine learning methods may be used to construct reliable density
ratios between different distributions

These density ratios have a number of applications in nuclear/particle physics
analysis

Here we mentioned
* Fast simulation
* Calculating probability weights for background subtraction
* Constructing ND non-parameteric functions for acceptance corrected data

In the latter case it was shown how these functions can be used to extract
experimental observables which can then be used to extract the underlying physics

But not tested with real experiments, unlikely to give accurate results, but may be
useful for initiating other methods such as likelihood fits.



Same test as before, vary number of events.

Use signal to background ratio of (1:9).

At 1000 events we have only 100 signal
events.

drWeights are robust and function well with
large backgrounds and limited statistics.

Issues with sWeights at low event number
due to -ve bin contents in binned X2

Expected behaviour when use event based
maximum likelihood instead

1000
sWeights
drWeights

10,000
sWeights
drWeights

100,000
sWeights
drWeights

1,000,000
sWeights
drWeights

17.94 £ 14.67
0.679 + 0.5902

0.870 £ 0.0953
0.778 £ 0.1038

0.804 + 0.0274
0.793 £ 0.0285

0.799 £ 0.0090
0.792 £ 0.0092

84.81
0.2710




ep — e'mt(n)

>

Apply this technique to CLAS12
neutron detection.

Fit neutron missing mass using
simulated template.

Produce drWeights over the
reconstructed neutron spherical
momentum components.

Show results for neutron momentum
using sWeights and drWeights
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We can estimate the neutron detection efficiency by
comparing the reconstructed to detected neutron. Detection Efficiencv vs Missinc

=
o

: . : . Work in Progress!!
We can also use density ratios to obtain a multi-

dimensional model of the neutron detection efficiency
(see Slide 3,14 & arxiv:2207.11254).

o
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O
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CLAS12

GEMC

DR CLAS12

DR GEMC

GEMC Corrected

©
~

Neutron detection is hard to simulate as it relies on
detecting the various reaction products produced in
scattering between the neutron and calorimeter
material.

To obtain an accurate multidimensional model of Missing P [GeV]

neutron detection efficiency we should use experimental
data, this relies on being able to convert sWeights to
probabilities.
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https://arxiv.org/abs/2207.11254

Use exclusive reactions to train acceptance algorithm
S V+p— m .
Filter all events with n+z- and calculate missing proton momentum p’

If proton also detected flag (acceptance=1), if not (acceptance=0)
Train classifier with p_,,. components on acceptance=0 and 1 events

calc

- Equivalent to Slide 16 analysis

=> proton acceptance as function of calculated variables.

- Equivalent to fast sim parameterisation Slide 3

Issues: We want as a function of truth variables
There will be background under the mass peak so need drWeights
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