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EIC ePIC: overview

The ePIC collaboration currently
consists of almost 500 members from 171
institutions and is working jointly with
the DOE EIC Project to realize the ePIC
experiment.
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dRICH = Design and PID perfomance

« Adual Ring Imaging CHerenkov detector (dRICH) will be employed in the
forward region (1.5 < n < 3.5) to provide efficient hadron PID from 3 GeV/c to 50
GeV/c.

« The dRICH comprises two different radiators, aerogel and gas (C, Fg ), to cover
the entire momentum range.

« SiPM based photosensors are placed in six spherical sectors to detect
Cherenkov photons which are focused by six corresponding spherical mirrors.
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ePIC: DAQ System

The data from the Front End Boards (FEBs) will be aggregated into
Readout Boards (RDOs) using bidirectional interfaces.

The RDOs will distribute configuration and control information to the FEBs
and read hit data as well as monitoring information from the FEBs.

The RDOs will also use a bidirectional optical connection to the Data
Aggregation and Manipulation Board (DAM) FPGA-based PCle cards.
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dRICH = RDO and ePIC DAQ

Forward cap

hadronic calorimeters
Solenoidal Magnet
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(ECal)
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PDU

1 photodetector unit PDU: 4x64 SiPM array
device (256 channels), 4 FEBs, 1 RDO

1248 PDUs for full dRICH readout
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Next generation FELIX boards — developed for the Phase-Il upgrade of

ePIC: DAM boards (FELIX)

the ATLAS experiment at LHC —adopted as DAM boards.

FELIX FLX-155 board is built around the new Xilinx Versal FPGA/SoC family:

48 serial links running at speeds up to 25Gbps
100Gb ethernet link off the board

DDR4 16GB RAM s|ot available to support buffering

PCle Gen5x16 bus

Firefly Oscillations and 12V input
(conn only) Clock chips Connectors

Electrical
10s

RJ45-GbE

Power Modules,
control and monitoring

(FLX-155 : actual target HW to be used in ePIC
dRICH DAQ system )

Electrical
10s

USB-
JTAG

USB-

12C/UART
RJ45-GbE

Oscillations and

Firefly
Clock chips

Modules

12V input
Connector

Power Modules,
control and monitoring

(FLX-182 currently available at our lab, used

for DAQ development)
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dRICH: Analysis of Output Bandwidth

The dRICH DAQ chain in ePIC = bandwidth/throughput issue

dRICH DAQ parameters

RDO boards 1248

ALCORG64 x RDO 4

dRICH channels (total) 319488

Number of DAM 30

Input link in DAM 42

Qutput links from DAM to TP 1

Number of DAM Trigger Processor 1

Input link to DAM Trigger Processor 30

RDO-DAM Link Bandwidth (VTRX+) [Gb/s] 10

DAM to Echelon-0 Switch Bandwidth [Gb/s] 100 ~

dRICH Interaction tagger reduction factor !

Interaction tagger latency [s] 1,00E-04

EIC parameters

EIC Clock [MHz] 98,5622

Orbit efficiency (takes into account gap) 0,92

dRICH data stream analysis Limit

Sensor rate per channel [kHz] 300,00 ~ 4.000,00
Rate post-shutter [kHz] 276,00 800,00
Throughput to serializer [ Mb/s] 172,50, 788,16
Throughput from ALCOR64 [Mb/s] 1.380,00

Throughput from RDO [ Gb/s] 5,39 10,00
Input at each DAM [Gbps] 226,41 420,00
Buffering capacity at DAM [Mb] 23,18

Output from each DAM [Gbps] | XN
Aggregated dRICH data throughput

Total input at DAM [ Gb/s | 6.792,19

Total output from DAM [ Gb/s ] to Echelon 6.792,19

* Sensors DCR: 3-300 kHz (increasing with radiation
damage =with experiment lifetime).
+ Considering planned techinques to manage SiPMs
irradiation (e.g. annealing):
- worst DCR case: 300 kHz
= Full detector throughput (FE): 6.792,19 Gbps
= a reduction is needed to cope with 30 channels
(30x100GCbE) bandwidth availability

= Single DAM output bandwidth : 226,41 Gbps (!) 6



dRICH: Analysis of Output Bandwidth

The dRICH DAQ chain in ePIC = bandwidth/throughput issue

dRICH DAQ parameters
RDO boards 1248 . . . . .
ALCOR64 x RDO 4 * Sensors DCR: 3-300 kHz (increasing with radiation
T s damage =with experiment lifetime).

ST + Considering planned techinques to manage SiPMs
Input link in DAM 42
Output links from DAM to TP 1 irradiation (e.g. annealing):
Number of DAM Trigger Processor 1 - worst DCR case: 300 kHZ
Input link to DAM Trigger Processor 30 e
RDO-DAM Link Bandwidih (VTRX+) [Gbls] T = Full detector throughput (FE): 6.792,19 Gbps
DAM to Echelon-0 Switch Bandwidth [Gbls] 100 ~ = a reduction is needed to cope with 30 channels
dRICH Interaction tagger reduction factor [ ST H H HH
T T (30x100GbE) bandwidth availability
EIC parameters
ZIiCI?:k[MHZ(] - ; 986535 * EIC beams bunch spacing: ~10 ns = bunch crossing

rbit efficiency (takes into account gap ¥

rate of 100 MHz

dRICH data stream analysis Limit * For the low interaction cross-section (DIS) = one
Semsorrete yosichissmel [z} 0000w 4.000.00 interaction every ~100 bunches = interaction rate of
Rate post-shutter [kHz] i 276,00 800,00
Throughput to serializer [ Mb/s] 788,16 ~IMHz.
Throughput from ALCOR64 [Mb/s] 1.380,00
Throughput from RDO [ Gb/s] 539 10,00 . . _
e et e = A system tagging dark‘current noise only events
Buffering capacity at DAM [Mb] 23,18 can solve the throughput issue (reducing down to 1/5
Output from each DAM [Gbps] 45,28 100,00 the data th roug h put)
Aggregated dRICH data throughput
Total input at DAM [ Gb/s | 6.792,19 .
Total output from DAM [ Gb/s ] to Echelon 1.358,44 = Single DAM output bandwidth : 45,64 Gbps 7




dRICH: Analysis of Output Bandwidth

DAM Output Bandwidth [Gbps]

Net payload BW < %2 Max < Net payload BW < 1/2 Max

== No Data Reduction == Data Reduction Factor 5

< Net payload BW < 3/4 Max < Net payload BW < Max

[ SiPMS ] ~ 320k

/ 1

[ RDO ] 1248

250,00
200,00 =
150,00
/
100,00 //
50,00

[ DAM ] ~30

//,_/’/ 1 100 GbE x 30
0,00

50 100 150

SiPM DCR [KHz]

200

250 300 ePIC processing
and storage system




dRICH: Data reduction with ML Classifier

Online Signal/ Noise discrimination using ML

Physics Signal:
Signal (i.e. Merged o egDIS
Phys Signal + Bkg): 7| - Physics Background:
o e/p with beam pipe
o Synchrotron radiation (not included yet)

SiPM Noise:

o Dark countrate (DCR) modelled in the reconstruction stage

ML task:

Discriminate between Noise-Only and Signal+Noise events

Positive: Noise-Only event
Noise-Classifier:

Negative: Signal+Noise event 9




dRICH Data reduction: Classes Def.

(Positive) (Negative)
Noise-Only Phys Signal+Phys Background+Noise
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dRICH Data reduction

ion

The 30 DAM networks are concatenated to feed 6 intermediate model (called Sector

NN) to be deployed on an additional Trigger Processor (TP) FPGA.

s

Tensorflow-Keras Model def

Each Sector NN work on the aggregated information of a single sector (5 DAMS)

The 6 outputs from Sector NNs are then aggregated and processed in a lightweight TP

NN (single layer, 5 neurons), deployed on the same TP FPGA
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The NN model mimics the DAQ system architecture

Tensorflow-Keras Model def

dRICH Data reduction




dRICH Data reduction:

Tensorflow-Keras Model definition
¢

input19 | InputLayer | l input15 | InputLayer | | input16 I InputLayer | | input17 [ InputLayer | | input18 ] Input]_ayer?

| fc4 19 | Dense | I fc4 15 | Dense | | fc4 16 | Dense | | fc4 17 | Dense | | fc4 18 | Dense |

| act4_19 | Activation | | act4_15 l Activation | | act4_16 | ivati | | act4 17 I ivati | I act4 18 | Activation |

5 M LP DAM N NS (sa me secto r) < Ifc5_19 lI:vense I | fc5_15 |LDense | Ich_lG ense I l fc5_17 | Dense I | fc5_18 l Dense I >

=}

| act5_19 | Activation | | act5_15 | Activation | | act5_16 | Activation | | act5_17 [ Activation | I act5_18 | Activation |

' '
| fc6_19 | Dense ‘ | fc6_15 | Dense I | fc6_16 | Dense | ’ fc6_17 | Dense | | fc6_18 I Dense |
For each sector, 5 MLP DAM l l

o u t p u t (em bedd i ng) a re \ act6_19 I Activation [ | act6_15 | Activation | | act6_16 | Activation | | act6_17 [ Activation | J act6_18 [ Activation|/
concatenated and then used to ~N

feed the Sector MLP model

= sector local information
extracted from the incoming
data to perform the final
prediction

Sector MLP NN <

13




dRICH Data Reduction Stage on FPGA:
subsectors’ design

To TP
° " GTU

To Echelon-0 Switch
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https://iopscience.iop.org/article/10.1088/1748-0221/8/12/C12022
https://iopscience.iop.org/article/10.1088/1748-0221/8/12/C12022

From PDU

dRICH Data Reduction Stage on FPGA:
subsectors’ design

QOO Q01 Q02 Q03 Qo4 Q5,4GTU

| l l l l l Trigger to DAM

TP | Communication IP | !/?
—
3 So g
© m ]
Sector =5 8 m
S35 Gu 2| Sq s
0 3 JoTP _ 3 £
S Ttrigger to 100 GbE 't =
DAMs Qo S S
I S —
|- m
1 » To TP _ -
I | TP 100 GbE i 5
I > Q &
. (=]
To TP R <
100 GbE
Sector Q, |
5 To TP
700 GbE > To TP GlTU
Q3 Q ‘\
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100 GbE - Flush
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dRICH Data reduction: How?
= Design and Implementation Workflow

C Simulation

XILINX .
¥ [dKerasmmp| akeras |mmhhis 4 ml mmp §7 T coymesis

TensorFlow ;
TF/Keras QKeras Vitis HLS IP Generation

Model Model

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and

verified at any stage:

16



dRICH Data reduction: How?
= Design and Implementation Workflow

C Simulation

W XILINX .
¥ [dKerasmmp| akeras |mmhhis 4 ml mmp §7 T coymesis

TensorFlow ;
TF/Keras QKeras Vitis HLS IP Generation

Model Model

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and

verified at any stage:

« Generation strategy of training and validation data sets.

17



dRICH Data reduction: How?
= Design and Implementation Workflow

C Simulation

QKeras -hls 4 ml -8 <'/"H)5|Sh C Synthesis

C/Verilog Co-sim.
IP Generation

ensorfFlow
TF/Keras QKeras Vitis HLS

Model Model

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

- TensorFlow/Keras
= NN architecture (number and kind of layers) and representation of the input
= Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).

18



dRICH Data reduction: How?
= Design and Implementation Workflow

C Simulation
W XILINX ;
1:‘ K QKeras - i C Synthesis
T A . KeraS hls 4 ml VITlS C/Verilog Co-sim.
ensorriow TE/Keras QKeras Vitis HLS IP Generation

Model Model

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and

verified at any stage:
« Qkeras = Search iteratively the minimal representation size in bits of weights,

biases and activations.

19



dRICH Data reduction: How?
= Design and Implementation Workflow

C Simulation
8 i C Synthesis
VITlS C/Verilog Co-sim.

Vitis HLS IP Generation

‘? Keras- QKeras

TensorFlow

TF/Keras QKeras
Model Model

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and

verified at any stage:

* hlséml = Tuning of REUSE FACTOR config param (low values = low latency, high
throughput, high resource usage), clock frequency.

20



dRICH Data reduction: How?
= Design and Implementation Workflow

C Simulation
‘ 8 i C Synthesis
VITlS C/Verilog Co-sim.

IP Generation

T Id Kerasmmp | akeras |mmphis 4 ml

TensorFlow

TF/Keras QKeras Vitis HL
Model Model

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

« Vitis HLS = co-simulation for verification of performance (experimented very
good agreement with QKeras Model)

21



dRICH: Data reduction = Mapping

« 42 input links for each DAM, corresponding to the number of

expected PDUs per subsector (~210/5).

= Each PDU is input to a neuron of the input layer of the MLP NN
= 42 input neuron for the input layer of the MLP NN

(“Answer to the Ultimate Question of Life,
the Universe, and Everything”)

put; double click to hide
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dRICH Data reduction = Dataset

Montecarlo Events We. have produced ~1.2M events to
train and test our ML models

(Physics Sig + Physics Bg) = Various noise rates for each
‘ generated dataset

(GEANT4) Simulation

(ePIC detectors output) [ Noise-Only Dataset ]
Reconstruction + (Python) Noise Generation

(digitization, guantum

efficiency, safety factor) (dRICH SiPMs Dark count)

} —_

| ]
Y [ Signal+Noise Dataset ]
ePIC software framework workflow
(e.g, EICrecon library) 23




Frequency

dRICH Data reduction: Noise Distribution

sigma = O0.1*avg
noiseTimeWindow =10 ns

Gaussian dark current SiPM noise hits distribution:
Mmean = noiseRate*noiseTimeWindow*NumberOfSiPMsDRICH

noiseRate = 300 kHz

(Noise-Only) Hits per Event Distribution

8000

BN Noise-Only

7000

6000

850 950 1000
# of Hits per Event

Frequency

25000 -

20000 A

15000 +

10000

5000 -

Number of Hits per Event Distribution

B Signal+Noise

# of Hits per Event

104
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dRICH Data reduction:
Tensorflow training and evaluation

= We trained the 30 MLP DAM models concatenated to the single MLP TP
model by using 100k Signal+Noise and 100k Noise Only events.

= 200k balanced dataset (90% training set, 8% testing set, 2% validation
set) varying the Dark Count Rate parameter:

¢ Gaussian Noise Hits Distribution model:
 noiseRate = 25 kHz, noisetimeWindow = 10ns;
* noiseRate =50 kHz, noisetimeWindow = 10ns;
* noiseRate =100 kHz, noisetimeWindow =10ns;
* noiseRate =150 kHz, noisetimeWindow =10ns;
e noiseRate =200 kHz, noisetimeWindow =10ns;
* noiseRate = 300 kHz, noisetimeWindow =10ns;

Preliminary results

25



NN Model performance (100 kHz & 10ns)

Keras model

True labels

Confusion Matrix

Sig+Bckg+Noi

i
Noise Only Sig+Bckg+Noise
Predicted labels

5000

True labels

4000

O Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.906

2 Purity = TP/(TP+FP) = 0.858

J Recall = TP/(TP+FN) = 0.977 26

Predicted labels

2000

o
o
S
z
+
)
g
v}
@
+
=l
(7]

1000

1 Accuracy =
(TP+TN)/(TP+TN+FP+FN) = Model Quantization
0.921 e Inputs, Activations:
= « || [ Purity = TP/(TP+FP) = 0.870 fixed point<16,6>
<000 J Recall = TP/(TP"‘FN) = 0.992 ° Weights, Biases:
fixed point<8,1>




NN Model performance (100 KHz & 10ns)

Keras model

True labels

Confusion Matrix

1 Accuracy =

(TP+TN)/(TP+TN+FP+FN) = Model Quantization
0.921 e Inputs, Activations:
« || [ Purity = TP/(TP+FP) = 0.870 fixed point<16,6>

<000 J Recall = TP/(TP"‘FN) = 0.992 ° Weights, Biases:
fixed point<8,1>

Confusion Matrix

Sig+Bckg+Noise

True label

Sig+Bckg+N

|
Sig+Bckg+Noise
Predicted labels

1 Accuracy = (TP+TN)/(TP+TN+FP+FN) = | ¢
0.906 :

1 Purity = TP/(TP+FP) = 0.858

1 Recall = TP/(TP+FN) = 0.977 27




Performance (%)

NN Model performance scaling

100

95

90

85 A

80

75

70

We noticed a drop of classification performance with increasing dark

count rate (e.g. increasing number of noise hits per event), but still purity
> 85% for noisiest case (DCR =300 kHz).

As expected, performance drop after guantization step

Tensorflow Model Performance

Preliminary results

Quantized (QKeras/HLS4ML) Model Performance

L 2

°-
L4

L 2

Performance (%)

100 A

95 1

85

o\‘\i
\
‘\’_\<

N

*

80

—— accuracy » —8— accuracy /

—e— purity —e— purity 1

—o— recall —o— recall
T T T 70 T T
50 100 150 200 250 300 50 100 150 200 250 300

SiPMs Dark Count Rate (kHz)

SiPMs Dark Count Rate (kHz)
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performance (%)

NN Model performance scaling

100

95

90

85 A

80 -

75

70

We noticed a drop of classification performance with increasing dark
count rate (e.g. increasing number of noise hits per event), but still purity

> 85% for noisiest case (DCR =300 kHz).

As expected, performance drop after guantization step

Tensorflow Model Performance

Preliminary results

Quantized (QKeras/HLS4ML) Model Performance

°-

A d

—8— accuracy
—&— purity
—o— recall

L 2

Performance (%)

100 A

95 1

85

80 1

75 1

L 2

(OK) QKeras post-
— quantization

training

R

—&— accuracy
—&— purity

N

S

—o— recall

50

100

150 200
SiPMs Dark Count Rate (kHz)

250

T 70
300

50 100

150 200
SiPMs Dark Count Rate (kHz)

J

y

250 300

(NOT OK) no QKeras training, only quantization 29




dRICH Data reduction stage on FPGA:
HLS4ML = HW implementation

Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6
Sector MLP + Aggregate Layer) implementation and to assess system performance.

O

>

=» =»

krnl load




dRICH Data reduction:
HLS4ML = (FPGA) HW Synthesis

« TP NN design (6 Sector NN + Aggregation MLP NN) fits into the available
FPGA resources of the Xilinx Alveo U280 board.

« Post-synthesis Vitis reports = high BRAM utilization due to allocation of 6
different sets of weights and biases for the 6 Sector NNs

= occupation percentage to take into account when moving to the target HW

(FELIX-155 Xilinx Versal Prime) and integrating with the standard DAQ firmware.

LUT 30%
LUTRAM 3%
FF 13%
BRAM 79%
bsp 27%
10 3%
GT 67%
BUFG 4%
MMCM 25%
PLL 4%
PCle 17%

Utilization (%)

31



dRICH Data reduction stage on FPGA:
HLS4ML = HW implementation

Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6
Sector MLP + Aggregate Layer) implementation and to assess system performance.




dRICH Data reduction stage on FPGA:
HLS4ML = HW implementation

Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6
Sector MLP + Aggregate Layer) implementation and to assess system performance.
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dRICH Data reduction stage on FPGA:
HLS4ML = HW implementation

The 40 input ap_fixed<16,8> are connected to the preprocessing block, which
merges the whole set of input in order to feed the MLP HLS4ML block.

The NN block computes its output by using ap_fixed<8,0> weights and biases.
The output, composed by 4 features, is then merged into a single ape_word of
128bits and then sent through the network via the APEIRON switch

N\

A
—» am
] <
—>
I & "
2 0 % 2
o] '° E &
— O K () H M
gl o (] 8
4 0 0 & [ 8o
o ?T' 8 ape_word g 'g
H w E (128 bits)| @ @
ae. - & 8
3 g
\> Q
—
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dRICH Data reduction stage on FPGA:
HLS4ML = HW implementation

Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6
Sector MLP + Aggregate Layer) implementation and to assess system performance.

O )

=» =»

krnl load




dRICH Data reduction stage on FPGA:

HW challenges and targets

= Why FPGA are good for real-time inference?

Customizable I/O and deterministic latency make
them well suited for TDAQ systems.

Improvements to silicon manufacturing process
made them very interesting for heavy computation
as well.

In our case, the challenge is the processing
throughput

= a pipelined design can potentially produce a new
output at each clock cycle.

Initiation interval (1l): Number of clock cycles
before the function can accept new input data.

= the lower the II, the higher the throughput

The greater the number of pipeline stages, the
greater the latency.

High level synthesis tools allows to describe
datapaths in FPGA using high level software
languages (C/C++, OpenCL, SYCL,...).

DMA

ops

Latenlcy (L)

|ROR | | ACC |
FPGA datapath

Imtlatlon
interval/gap (I)

> accumulator

DMA




HLS4ML FPGA performance (1I00kHz & 10n

d Throughput (DDR) = 2.065 MHz
=» instantiation interval 11~97 cycles (@200 MHz)

d Throughput (BRAM) =10.867 MHz
= instantiation interval 11~19 cycles (@200 MHz)

Model Quantization
e Inputs, Activations:

fixed point<16,6>

e Weights, Biases:
fixed point<8,1>

O Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.898

J Purity = TP/(TP+FP) = 0.831

J Recall = TP/(TP+FN) = 0.999

Confusion Matrix

Predicted labels

- 8000

- 7000

6000

8
=3
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HLS4ML FPGA performance (1I00kHz & 10n

d Throughput (DDR) = 2.065 MHz

= instantiation interval 11~97 cycles (@200 MHz) Model Quantization

Inputs, Activations:
2| Throughput (BRAM) = 10.867 MHz Mt

. ey N
=» instantiation interval 11~19 cycles (@200 MHz) . c\);ee%ﬁg néi ;g,ess

Confusion Matrix

l fixed point<8,1>

- 8000

Throughput issue! ==> evaluation ongoing
on whole HW design instantiation interval!

- 7000

6000

8
=3

O Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.898

J Purity = TP/(TP+FP) = 0.831

J Recall = TP/(TP+FN) = 0.999
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Conclusions

« Implementation of a simplified version of the distributed MLP NN model
- Assessed its performance in terms of accuracy/purity/recall (ML
classification metrics) and resources/throughput (HW implementation
metrics)
« Working to improve:
o purity (reduce at minimum the number of signal events classified as
noise)
o Post-quantization performance beyond 100kHz noise rate
o Throughput of the full pipeline
« Development of a simplified distributed MLP on two FPGAs including all
the architectural blocks (5 DAM NNs and a full TP) is ongoing = validation
of the DAM to TP communication
« Sector NN model fully validated = Xilinx Versal design for the target FELIX

implementation is ongoing
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CINF

Thanks for your attention!

Contacts:
e cristian.rossi@romal.infn.it
e alessandro.lonardo@romal.infn.it
e https://apegate.romal.infn.it
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NN Model performance scaling

We noticed a drop of prediction performance with increasing dark count
rate (e.g. increasing number of noise hits per event), but still purity > 85%

for noisiest case (DCR = 300 kHz).

As expected, prediction performance drop after guantization step

100

95

Tensorflow Model Performance

Quantized (QKeras/HLS4ML) Model Performance

°-
A d

100 A

L 2

o5 | ‘ (Correct) QKeras

— post-quantization
90 i —T - 901 b\’\\ tralining

L 2
2

85

performance (%)

80 -

75

70
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—&— purity

—o— recall

Performance (%)

80 1

75 1

—&— accuracy
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—o— recall

N

S
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SiPMs Dark Count Rate (kHz)
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No QKeras training, only HLS4ML quantization
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}

dRICH Data reduction: Noise Distribution

e Dark current SiPM noise hits distribution,
obtained by introducing Dark Count probability of
single dRICH SiPM with a dependence on its radial .
distance from the detector z-axis and on the

integrated luminosity
= Implemented in EICRecon digitization step
(new flag to enable new model noise)

(R. Preghenella’s contribution)

float baseline_dcr =
float dcr_increase =
neq_radius_params[6]

neq_radius(float radius

float neq = 0.;
for (int ipar = 0; ipar < 6; ++ipar)

neq += neq_radius_params[ipar] * std::pow(radius, tipar);
return neq;

float

noise_probability(float radius =

{

3

, float window = , float luminosity =
float neq neq_radius(radius) * luminosity;

float dcr baseline_dcr + dcr_increase x neq;

float pro dcr * window; :

return pro;

DRC noise trend vs dRICH radius
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Number of Hits per Event Distribution

T
B Signal+Noise (python)
70000 | ise(python) 1

Performance
>80%
(@100fb-1)

Eic-shell
version=25.06

60000

50000

Freq

20000 -
Number of Hits per Event Distribution
10000 - mmm Signal+Noise (EICrecon)
B Noise(EICrecon )
20000
o 4000 6000 8000 10000 12000
# of Hits per Event
15000
z
g
= 10000 -
Performance ~99%
(@100fb-1) -
o
Eic-shell
.
Ve r S I On _2 4- 72 3800 4000 4200 4400 4600
# of Hits per Event




Number of Hits per Event Distribution

3200 3300
# of Hits per Event

Noise comparison

(@100fb-1)
==>same distro
mean

Number of Hits per Event Distribution

Signal Comparison

B Signal (25.06)
B signal (24.12))

(@100fb-1)
Eic-shell

version=24.12 vs 25.06

==>sgme starting

MC files

8000
# of Hits per Event

10000

12000




dRICH Data reduction stage on FPGA:

HLS4ML = HW implementation

= krnl_load is connected to the Host CPU via PCle bus, allowing to load events
data on the FPCA DDR. Corresponding input data are sent to each of the 6
Sector MLP blocks through 40 input hls:stream<ap_fixed<16,8>>.

= By disabling the ddr kernel flag, krnl_load can send through the system few
events data (O(10)) already loaded on the FPCA BRAM during firmware
synthesis. In this way, throughput measurements can be performed without
DDR reading bottleneck

krnl load

void krnl_load(unsign
float
float
float
float
float
float
bool
hls:
hls:
hls:
hls:
hls:
hls:

ed nevents,

*mem_in_0,
kmem_in_1,
*mem_in_2,
*mem_in_3,
kmem_in_4&,
xmem_in_5,
ddr,

:stream<ap_fixed<16,8>>
:stream<ap_fixed<16,8>>
:stream<ap_fixed<16,8>>
:stream<ap_fixed<16,8>>
:stream<ap_fixed<16,8>>
:stream<ap_fixed<16,8>>

output_channels_PDUs_O[N_OUTPUT_CHANNELS],
output_channels_PDUs_1[N_OUTPUT_CHANNELS],
output_channels_PDUs_2[N_OUTPUT_CHANNELS],
output_channels_PDUs_3[N_OUTPUT_CHANNELS],
output_channels_PDUs_4[N_OUTPUT_CHANNELS],
output_channels_PDUs_5[N_OUTPUT_CHANNELS])




dRICH Data reduction stage on FPGA:
HLS4ML = HW implementation

= Aggregate MLP HWblock receives as input 6 ape_word from the 6 Sector MLP
blocks, each containing 4 features corresponding to the information extracted
from a single dRICH sector. Here, incoming data are merged to feed the last
MLP layer of the NN model, which finally computes the prediction. This last

output is then loaded back to the Host CPU via PCle in order to compare
prediction with the true label of the processed event

void aggregate_MLP_block(int npackets_recv, int packet_size,
word_t *mem_out_9,
message_stream_t message_data_in[N_INPUT_CHANNELS]) {

|

v

v

MLP_loop_pipe_ddr:

v

for(unsigned j=0; j<npackets_recv;j++){
#pragma HLS dataflow

v

hls::stream<input_t> mlp_dam_input;

hls::stream<result_t> mlp_dam_output;
#pragma HLS stream variable=mlp_dam_input depth=1000

v

HWblock

v

#pragma HLS stream variable=mlp_dam_output depth=1000
ape word merge_block(message_data_in,mlp_dam_input);
T hwfunc(mlp_dam_input, mlp_dam_output);//w2,b2);
(128 bits) feature_extraction(j,mem_out_0,mlp_dam_output, true);

}

Aggregate MLP

|




NN Model performance (25 KHz & 10ns)

Keras model

True labels

Confusion Matrix

Sig+Bckg+Noi:

i
Noise Only Sig+Bckg+Noise
predicted labels

Model Quantization
e Inputs, Activations:
fixed point<16,6>
e Weights, Biases:

fixed point<8,1>

1 Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
S 0.928
: «| | O Purity = TP/(TP+FP) = 0.878
O Recall = TP/(TP+FN) = 0.997

O Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.926

Q Purity = TP/(TP+FP) = 0.876

1 Recall = TP/(TP+FN) = 0.993

True labels

Sig+Bckg+Noi:

- 9000
- 8000
s - 7000
@ - 9001
]
3
6000
5000
4000
o
g 3000
7669
2000
1000

Confusion Matrix

|
Noise Only Sig+Bckg+Noise
Predicted labels




NN Model performance (50 KHz & 10ns)

Keras model

True labels

Confusion Matrix

Sig+Bckg+N

i
Noise Only Sig+Bckg+Noise
predicted labels

Model Quantization
e Inputs, Activations:
fixed point<16,6>
e Weights, Biases:

fixed point<8,1>

1 Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
— 0.925
: «| | [ Purity = TP/(TP+FP) = 0.873
| | O Recall = TP/(TP+FN) = 0.994

O Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.915

2 Purity = TP/(TP+FP) = 0.863

1 Recall = TP/(TP+FN) = 0.985

True labels

Sig+Bckg+Noi:

- 8000
I3 - 7000
@ - 8889
]
3
6000
5000
4000
2
3 3000
7574
2000
1000

Confusion Matrix

|
Noise Only Sig+Bckg+Noise
Predicted labels




NN Model performance (150 KHz & 10ns)

Keras model

True labels

Confusion Matrix

Sig+Bckg+Noi

i

Noise Only Sig+Bckg+Noise
Predicted labels

5000

True labels

4000

O Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.817

Q Purity = TP/(TP+FP) = 0.731

O Recall = TP/(TP+FN) = 1.000 :

Predicted labels

2000

o
a8
)
E4
o
o
<
o}
@
+
2
@

1000

1 Accuracy =
(TP+TN)/(TP+TN+FP+FN) = Model Quantization
0.917 e Inputs, Activations:
. 6000 J Purity = Tp/(TP+FP) = 0.863 fixed point<'|6’6>
1 Recall = TP/(TP+FN) = 0.991 e Weights, Biases:
fixed point<8,1>




NN Model performance (200 KHz & 10ns)

Keras model

True labels

Confusion Matrix

1 Accuracy =
(TP+TN)/(TP+TN+FP+FN) = Model Quantization
0.910 e Inputs, Activations:
: «|| [ Purity = TP/(TP+FP) = 0.858 fixed point<16,6>
<000 J Recall = TP/(TP"‘FN) = 0.986 S Weights, Biases:
fixed point<8,1>

i
Noise Only Sig+Bckg+Noise
Predicted labels

Sig+Bckg+Noi

True labels

O Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.822

J Purity = TP/(TP+FP) = 0.736

1 Recall = TP/(TP+FN) = 1.000 e ML,

Predicted labels




NN Model performance (300 KHz & 10ns)

Keras model

True labels

Confusion Matrix

1 Accuracy =
(TP+TN)/(TP+TN+FP+FN) = Model Quantization
0.905 ¢ Inputs, Activations:
. 6000 J Purity = Tp/(TP+FP) = 0.850 fixed point<'|6’6>
00 1 Recall = TP/(TP+FN) = 0.984 e Weights, Biases:
fixed point<8,1>

i
Noise Only Sig+Bckg+Noise
Predicted labels

Sig+Bckg+Noi

O Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.829

d Purity = TP/(TP+FP) = 0.744

O Recall = TP/(TP+FN) = 1.000
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APEIRON: overview

APEIRON is a framework developed to offer hardware and
software support for the execution of real-time dataflow
applications on a system composed by interconnected
FPGAs

e Enabling the mapping the dataflow graph of the
application on the distributed FPGA system and
offering runtime supyport for the execution.

e Allowing users, with no (or little) experience in
hardware design tools, to develop their applications on
such distributed FPGA-based platforms:

o Tasks are implemented in C++ using High Level
Synthesis tools (Xilinx® Vitis).
o Lightweight C++ communication API (HAPECOM)
s Non-blocking send()
m  Blocking receive()

APEIRON enables the scaling of Xilinx® Vitis High Level
Synthesis applications on multiple FPGA interconnected
by the INFN communication IP.




APEIRON for smart TDAQ Systems

Abstract Processing Environment for Intelligent Read-Out systems based
on Neural networks

e Input data streams from several different channels (data sources,
detectors/sub-detectors) recombined through the processing layers
using a low-latency, modular and scalable network infrastructure

e More resource-demanding
NN layers can be
Implemented in subsequent
processing layers.

e Classification produced by

Proc Layer0 /

)40MiBN |edndN piemiod paa4

y = 2 the NN in last processing
M’ M’ layer (e.g. pid) will be input
ProcLayer1 - for the trigger
— fei processor/storage online
[ T 1 data reduction stage for
Proc Layer n-1 i triggerless systems.




APEIRON building blocks:
e INFN Communication IP

——— — INFN is developing the IPs implementing
a direct network that allows low-latency

. I " @ data transfer between processing tasks deployed

: on the same FPGA (intra-node communication)
N ommaiatione and on different FPGASs (inter-node communication)

/ \
@ @ FPGA e Host Interface IP: Interface the FPGA
= logic with the host through the system
FPGA bus.

_____________________________

0 e Routing IP: Routing of intra-node and

| etink inter-node messages between processing
INTERFACE . = tasks on FPGA. -
: 5 e Network IP: Network channels and
Application-dependent I/O

o APElink 20 Gbps » 40 Gbps

o UDP/IP over 1/10 GbE » 25/40/100 GbE

o ETH port - Xilinx® 10G/25G High Speed

Ethernet Subsystem

~ -]




APEIRON building blocks:

® SOftwa re StaCk The APEIRON runtime software stack is

built on top of the Xilinx® XRT one adding

three layers to:
e add the functionalities required to manage

multiple FPGA execution platforms (e.g., program the

) st “ SEERON Lol 2re ‘ devices, configure the IPs, start/stop execution, monitor

the status of IPs,..)
gFS,EgE aemon user app d h g 1 o) f h . . d d . h

e reduce the impact of changes in XRT APl introduced wit

_ — any new version of Vitis on the APEIRON host-side
XRT core lib XRT runtime lib 3 ppl ications:

KERNEL !
SPACE | XOct | | ZELMGMT | e decouple the APEIRON software stack from the specific

platform, easing the future porting of the framework to

different platforms/vendors.
. Apeirond is a persistent daemon used to manage multiple

access request from user apps to the board.

Using the network socket exposed by apeirond modules, the
supervisor can write commands and read status of the
different instances of the APEIRON framework running in
each node, allowing the user to have a complete overview of
the multiple FPGA execution platform




APEIRON: FPGA bitstream generation

e The HLS task must have a generic interface,
implementation is free
e A YAML configuration file is used to describe
the kernels interconnection topology, specifying
how many input/output channels they have void example task(

[list of optional kernel specific
parameters], message stream t

Adaptation toward/from IntraNode ports of the message_data_in[N_INPUT_CHANNELS],
. . . message stream t
Routing IP is done by the automatically generated message_data_out [N_OUTPUT_CHANNELS])

Aggregator and Dispatcher kernel templates.

IntraNode IF — port 0
2 krnl_computel

task task

krnl_compute2

i

A

Message IN
FIFOs

krnl_compute3

|
Message OUT
FIFOs 1

processes processes

()eEEEge
(-)= EEE]

()=




APEIRON performance
(Communication IP: 256 bit datapath @200MHz)

Latency Bandwidth
T T T T 6000 T T T
—=— Roundtrip, DDR + sync —e— oneway DDR
2 | —— Roundtrip, BRAM —--8--- oneway BRAM
—— Localloop, DDR + sync so00 b —— loopback BRAM
—e— Localloop,BRAM /| | eeewe looopback DDR
-------- Localtrip, DDR + sync
15 | =®-— Localtrip, BRAM B g |
a
3 z
Py £ 3000 |-
£ 2
B 3
=1
& 2000
1000
0
16 k7} 64 128 256 512 1k 2% 4k 16 32 64 128 256 512 1k 2% 4k
Message size (Byte) Message size (Byte)
Latency
DDR+sync(ns) BRAM(ns)
Intra-node (localtrip) 533
17
4y p j
Inter-node (roundtrip) 1065 -
768 Bandwidth
DDR+sync(MB/s) BRAM(MBY/s)
Intra-node (loopback) 3938
InfaValwi

I T



APEIRON applications: tExta
e FIPLib-multiFPGA

FPGA Image Processing Library = multi-FPGA implementation via APEIRON

e Developed by ENEA in C++, it employs the r—
Vitis HLS flow to construct the library's “weno (RN M
kernels for the execution of image processing ==
algorithmes.

doubleStream

N
doubleStream

N

e FIPLib encompasses nearly 70 functionalities, [z
conceived with a streaming behavior

e On a multi-FPCA setup, we were able to split
the overall image processing by
implementing a single RGB kernel on each
node
= increased internal datapath to 32B,
avoiding FPGA resource limitation




APEIRON applications:
e FIPLib-multiFPGA

FPGA Image Processing Library = multi-FPGA implementation via APEIRON

“

Implementing FIPLib HLS
kernels as APEIRON tasks
means changing the
interface of each of them
to cope with the standard
required by the framework
to compile the entire
project and to generate
the bitstream

= use of HAPECOM C++
communication API

SINGLE FPGA FPLib IMPLEMENTATION

while (NbWordToTransfer > BUFFER_SIZE)

if (phase){
buffer2Stream(outStream, Buffl, BUFFER_SIZE);
stream2Buffer(inStream, Buff2, BUFFER_SIZE);

else{
buffer2Stream(outStream, Buff2, BUFFER_SIZE);
stream2Buffer(inStream, Buffl, BUFFER_SIZE);

}

phase = !phase;

NbWordToTransfer -= BUFFER_SIZE;
}

MULTI-FPGA FPLib IMPLEMENTATION
(APEIRON)

#include “ape hls/hapecom.hpp” I

buffer2Stream(hls::stream<io_stream_16B>& outStream,

dt16 Bufff BUFFER_SIZE], size)
{
#pragma HLS inline off

io_stream_16B tmp;

tmp.keep = OxFFFF;

tmp.last = false;

// copy Buff to stream

for ( i=0; i<size; i++){
#pragma HLS pipeline
tmp.data = Buff[i];
outStream.write(tmp);

}

while (NbWordToTransfer > BUFFER _SIZE)
{

if (phase )
send(Buffl, BUFFER_SIZE*sizeof(word_t), coord,
task id, ch id, message data out); |
stream2Buffer(inStream, Buff2, BUFFER_SIZE);
}

else{
send(Buff2, BUFFER_SIZE*sizeof(word_t), coord,

task id, ch id, message data out);
sEeaE?Bu%fe?( nStream, Buffl, BUFT ER _SIZE),

phase = !phase;
NbWordToTransfer = BUFFER_SIZE;
}




APEIRON applications: Y e
e FIPLib-multiFPGA

N=32 Byte

doublestream

Image Size 512x512, Throughput (fps)

ImgProc

3.000,00

2,000,00

0 rter-node ports 0 Inter-node ports 1 FPGA 2

Com.unics*ion IP

CPU (12 cores) Single FPGA (U280) Four FPGAs (U200) (\
\$)
Image Size 512x512, Proc. Images per Joule Y(K
40,00 ¢0
30,00
20,00
10,00
0,00

CPU (12 cores) Single FPGA (U280)

Four FPGAs (U200)



APEIRON applications: ERXCErossa
e RAIDER MIEZQ
Real-time Al-based Data analytics on hEteRogeneous distributed systems

High throughput online streaming processing on "
multi-FPGA = number of Cherenkov rings prediction —
on the stream of events generated by the RICH detector Songle @
in the CERN NAG2 experiment at a rate of about 10 MHz,

using multiple CNN_kernel replica. ) .

Vessel diameter4—-3.4m
Volume ~ 200 m?® Beam Pipe

Lightweight CNN model deployed on Xilinx Alveo U280
FPGA (limited resource usage)

= receives as input compressed

representation of the Ty

original event in form of @@ ) | @ i i )
B&W 16x16 image | || W || ‘ ; : :
(via imagifier kernel) | gl ~ ) i i




APEIRON applications:
e RAIDER

purity/efficiency (per | efficiency: efficiency:
class) - 0:93% - 0:93%
1: 83% - 1:83%
2:75% - 2:75%
- 3+:83% - 3+:83%
purity: purity:
- 0:88% - 0:88%
1: 90% - 1:90%
2:71% - 2:71%
3+:78% - 3+ 78%
time to solution [s] 158.521
throughput 189250
[events/s]
energy to solution [J] 17497.783
8724648 GPU)

energy efficiency @
[events/J]

time to solution [s] 0.554

throughput 4873646.209

|events/s| X2 0
energy to solution [J] 165.277

energy efficiency [events/J|

101,055 FPGA)
*.16336.183
T reca) X100




Conclusions

The APEIRON framework enables the development and deployment
of Vitis HLS dataflow applications distributed on multiple-FPGA
systems, leading to increased performance in terms of throughput
and energy efficiency

The co-design of its software stack and of the Communication IP
allowed to reach very low and deterministic latency and a high
fraction of the channel's raw bandwidth for communications
between FPGAs, addressing fundamental bottlenecks for real-time
distributed dataflow applications.

We control the workflow for the implementation of real-time/high
throughput classifiers on FPGA using limited resources,
This hints for applying the methodology also to:
o less capable (i.e. front-end) FPGAs
o complex design making use of a large fraction of FPGA resource
= multi-node setup/user-defined topology



FPGA overview

The basic structure of an FPGA is
composed of the following elements:

e Look-up table (LUT): This s ”Do;'a"lﬂg HLAERE
element performs |logic O [Logic Logic Logic | [Logic| [
. . block block block block [
operations — -
e Flip-Flop (FF): This register L] | Logic Logic Logic Logic | [
e block block block block ]
element stores the result of the OB 2
[: .g 0ogic C C C § D
LU.T 18 :;k?c:k tf::k t:fcik t?f!k §
e Wires: These elements connect 0§ 20
elements to one another, both E Logic |_L| Logic |_L| Logic L} Logic |_E g
logic and clock O ]

ogic ic ic ic
e Input/Output (I/O) pads: These | block | , | block | | block || | block |
physically available ports get O] Programable 10 )

I_IUI_IJAI_II_II_ll_II_IUI_IUV_II_ILIUI_IU

Interconnect Switch matrix

sighals in and out of the FPGA



Conclusions

o We sketched a data reduction system desighed based on DAM's FPGAs as a
risk-mitigation action to the possible problem of an excessive data bandwidth
requirement from the dRICH to Echelon-O due to SiPM DCR.

o We showed results of the initial activities we made to proof the design concept.

o The design is based on a distributed Dense NN model, that can reach near-optimal
performance in terms of accuracy (using simulated data), and promising
performance in terms of pipeline throughput.

o Next steps:

o Deploy the distributed NN on two FPGAs already available in our lab (Xilinx Alveo
U200) representing a DAM and the TP, integrating the communication in the
pipeline and assessing its impact on pipeline throughput (and latency).

o Become familiar with the FELIX board HW and FW (we are receiving a FLX-182
on loan from JLab) to start devising the integration of our design in its FW.

o In addition different NN models (CNNs, GNN,..) and data reduction tasks/ideas
(Cherenkov ring detection...) can be explored, taking into account ePIC DAQ
parameters and without altering its data streaming design ("parasitic" mode)
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