
Online data reduction for the
dual-radiator RICH detector in

the ePIC experiment

Speaker: Cristian Rossi
(cristian.rossi@roma1.infn.it)

[Digital Twins for Nuclear and Particle physics – NPTwins 2025]
(8th October 2025)

EIC ePIC: overview
The ePIC collaboration currently
consists of almost 500 members from 171
institutions and is working jointly with
the DOE EIC Project to realize the ePIC
experiment.
ePIC experiment will be a ~10-meter
long cylindrical barrel detector with
additional instrumentation that extends
to up to 45m in each direction down the
EIC beamline.

• A 1.7 Tesla superconducting magnet
• High-precision silicon detectors for

particle tracking
• Precise calorimeters for measuring

particles electromagnetic energy
• A suite of particle identification (PID)

detectors
• Dense calorimetric detectors to allow

the measurement of “jets“ 1

dRICH ⇒ Design and PID perfomance
• A dual Ring Imaging CHerenkov detector (dRICH) will be employed in the

forward region (1.5 < 𝜂 < 3.5) to provide efficient hadron PID from 3 GeV/c to 50
GeV/c .

• The dRICH comprises two different radiators, aerogel and gas (𝐶2 𝐹6), to cover
the entire momentum range.

• SiPM based photosensors are placed in six spherical sectors to detect
Cherenkov photons which are focused by six corresponding spherical mirrors.

2

ePIC: DAQ System
• The data from the Front End Boards (FEBs) will be aggregated into

Readout Boards (RDOs) using bidirectional interfaces.
• The RDOs will distribute configuration and control information to the FEBs

and read hit data as well as monitoring information from the FEBs.
• The RDOs will also use a bidirectional optical connection to the Data

Aggregation and Manipulation Board (DAM) FPGA-based PCIe cards.

3

dRICH ⇒ RDO and ePIC DAQ

• 1 photodetector unit PDU: 4x64 SiPM array
device (256 channels), 4 FEBs, 1 RDO

• 1248 PDUs for full dRICH readout
• 319488 readout channels divided in six

sectors

PDU

SiPMs

DAM
Data Aggregation Module

• 42 links from PDUs to Felix-155 board
• 30 Felix-155 boards in total

ePIC processing
and storage system

Forward cap

(hexafluoroethane)

SE
R
V
E
R

4

ePIC: DAM boards (FELIX)

FELIX FLX-155 board is built around the new Xilinx Versal FPGA/SoC family:
• 48 serial links running at speeds up to 25Gbps
• 100Gb ethernet link off the board
• DDR4 16GB RAM slot available to support buffering
• PCIe Gen5x16 bus

Next generation FELIX boards – developed for the Phase-II upgrade of
the ATLAS experiment at LHC – adopted as DAM boards.

(FLX-182 currently available at our lab, used
for DAQ development)

(FLX-155 : actual target HW to be used in ePIC
dRICH DAQ system) 5

dRICH: Analysis of Output Bandwidth
The dRICH DAQ chain in ePIC ⇒ bandwidth/throughput issue

• Sensors DCR: 3-300 kHz (increasing with radiation
damage ⇒with experiment lifetime).

• Considering planned techinques to manage SiPMs
irradiation (e.g. annealing):

- worst DCR case: 300 kHz
⇒ Full detector throughput (FE): 6.792,19 Gbps
⇒ a reduction is needed to cope with 30 channels

(30x100GbE) bandwidth availability

⇒ Single DAM output bandwidth : 226,41 Gbps (!) 6

dRICH: Analysis of Output Bandwidth
The dRICH DAQ chain in ePIC ⇒ bandwidth/throughput issue

• Sensors DCR: 3-300 kHz (increasing with radiation
damage ⇒with experiment lifetime).

• Considering planned techinques to manage SiPMs
irradiation (e.g. annealing):

- worst DCR case: 300 kHz
⇒ Full detector throughput (FE): 6.792,19 Gbps
⇒ a reduction is needed to cope with 30 channels

(30x100GbE) bandwidth availability

• EIC beams bunch spacing: ~10 ns ⇒ bunch crossing
rate of 100 MHz

• For the low interaction cross-section (DIS) ⇒ one
interaction every ~100 bunches ⇒ interaction rate of
~1MHz.

⇒ A system tagging dark current noise-only events
can solve the throughput issue (reducing down to 1/5
the data throughput)

⇒ Single DAM output bandwidth : 45,64 Gbps 7

dRICH: Analysis of Output Bandwidth

100 GbE x 30

Net payload BW < ¼ Max < Net payload BW < 1/2 Max < Net payload BW < 3/4 Max < Net payload BW < Max

8

dRICH: Data reduction with ML Classifier

Online Signal/ Noise discrimination using ML

• Signal (i.e. Merged
Phys Signal + Bkg):

o Dark count rate (DCR) modelled in the reconstruction stage

• Physics Signal:
○ e.g DIS

• Physics Background:
○ e/p with beam pipe
○ Synchrotron radiation (not included yet)

• SiPM Noise:

Discriminate between Noise-Only and Signal+Noise events

ML task:

9
Noise-Classifier:

Positive: Noise-Only event

Negative: Signal+Noise event

dRICH Data reduction: Classes Def.

Noise-Only Phys Signal+Phys Background+Noise

10

(Positive) (Negative)

dRICH Data reduction:
Tensorflow-Keras Model definition

• The 30 DAM networks are concatenated to feed 6 intermediate model (called Sector
NN) to be deployed on an additional Trigger Processor (TP) FPGA.

• Each Sector NN work on the aggregated information of a single sector (5 DAMs)
• The 6 outputs from Sector NNs are then aggregated and processed in a lightweight TP

NN (single layer, 5 neurons), deployed on the same TP FPGA

SECTOR NN

DAM NN

AGGREGATION NN 11

dRICH Data reduction:
Tensorflow-Keras Model definition

SECTOR NN

DAM NN

• The NN model mimics the DAQ system architecture
- 30 (# of subsectors x # of sectors) MLP networks deployed on 30 DAM FPGAs.
- 6 sector MLP networks + 1 aggregation network deployed on the TP FPGA.

12AGGREGATION NN

dRICH Data reduction:
Tensorflow-Keras Model definition

For each sector, 5 MLP DAM
output (embedding) are
concatenated and then used to
feed the Sector MLP model

⇒ sector local information
extracted from the incoming
data to perform the final
prediction

5 MLP DAM NNs (same sector)

Sector MLP NN

13

Q1

Q0

Q2Q3

Q4

GTU
To Echelon-0 Switch

To TP

42

42 42

42

42

Input 42 FC1 32
FC2 16

FC3 8

Relu
Relu

Relu

8 x 16-bit

Communication
IP

NN
O
U
T
B
U
F

Merger

FSM

FIFO OUT RDO

GTU

Qx

AXI-ST
<512>

0
1

41

AXI-ST <256>

Flush

to TP

<512>
~50k channels
per sector

RDO flow
PROC flow
GTU

apelink <256>

100GbE
to

Echelon-0
Switch

dRICH Data Reduction Stage on FPGA:
subsectors’ design

14

https://iopscience.iop.org/article/10.1088/
1748-0221/8/12/C12022

*

*

https://iopscience.iop.org/article/10.1088/1748-0221/8/12/C12022
https://iopscience.iop.org/article/10.1088/1748-0221/8/12/C12022

dRICH Data Reduction Stage on FPGA:
subsectors’ design

Q1

Q2

Q3

Q4

TP

To Echelon-0
sw

itch

100 GbE

100 GbE

100 GbE

100 GbE

100 GbE

To TP

Q0

Sector
5

Trigger to
DAMs

Fr
om

 P
D

U Sector
0

Communication IP FSM

FIFo

GTU

Q0,1,2,3,4

Flush
To
Echelon-0
Switch

To TP

Sec NN

FSM
TP

DAM
NN

Communication IP

GTU
Trigger to DAM

Q0,0 Q0,1 Q0,2 Q0,3 Q0,4 Q5,4

Trigger Evaluation

GTU

To TP

To TP

To TP

To TP

Sec NN

Sec NN

Sec NN

Sec NN

Aggregation M
LP layer

…

Sec NNAg
gr

eg
at

ed
 S

ec
to

r F
ea

tu
re

s

S0

S1

S2

S3

S4

S5

15

dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

16

dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• Generation strategy of training and validation data sets.

17

dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• TensorFlow/Keras
⇒ NN architecture (number and kind of layers) and representation of the input
⇒ Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).

18

dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• Qkeras ⇒ Search iteratively the minimal representation size in bits of weights,
biases and activations.

19

dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• hls4ml ⇒ Tuning of REUSE FACTOR config param (low values ⇒ low latency, high
throughput, high resource usage), clock frequency.

20

dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• Vitis HLS ⇒ co-simulation for verification of performance (experimented very
good agreement with QKeras Model)

21

dRICH: Data reduction ⇒ Mapping
• 42 input links for each DAM, corresponding to the number of

expected PDUs per subsector (~210/5).

⇒ Each PDU is input to a neuron of the input layer of the MLP NN
⇒ 42 input neuron for the input layer of the MLP NN

22

0 1 2 3 4
5
6
7 8 9 10 11
12 13 14 15
16 17
18 19 20 21 22
23
24 25 26
27 28 29
30 31 32 33 34
35
36 37 38 39 40
41

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

(“Answer to the Ultimate Question of Life,
the Universe, and Everything”)

dRICH Data reduction ⇒ Dataset

Montecarlo Events
(Physics Sig + Physics Bg)

(GEANT4) Simulation
(ePIC detectors output)

Reconstruction
(digitization, quantum
efficiency, safety factor)

(Python) Noise Generation
(dRICH SiPMs Dark count)

We have produced ~1.2M events to
train and test our ML models
⇒ Various noise rates for each
generated dataset

ePIC software framework workflow
(e.g, EICrecon library)

+
= Signal+Noise Dataset

Noise-Only Dataset

23

dRICH Data reduction: Noise Distribution
• Gaussian dark current SiPM noise hits distribution:

- mean = noiseRate*noiseTimeWindow*NumberOfSiPMsDRICH
- sigma = 0.1*avg
- noiseTimeWindow = 10 ns

noiseRate = 300 kHz

24

dRICH Data reduction:
Tensorflow training and evaluation

⇒ We trained the 30 MLP DAM models concatenated to the single MLP TP
model by using 100k Signal+Noise and 100k Noise Only events.
⇒ 200k balanced dataset (90% training set, 8% testing set, 2% validation
set) varying the Dark Count Rate parameter:

◆ Gaussian Noise Hits Distribution model:
• noiseRate = 25 kHz, noisetimeWindow = 10ns;
• noiseRate = 50 kHz, noisetimeWindow = 10ns;
• noiseRate = 100 kHz, noisetimeWindow = 10ns;
• noiseRate = 150 kHz, noisetimeWindow = 10ns;
• noiseRate = 200 kHz, noisetimeWindow = 10ns;
• noiseRate = 300 kHz, noisetimeWindow = 10ns;

25
Preliminary results

NN Model performance (100 kHz & 10ns)

❏ Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
0.921

❏ Purity = TP/(TP+FP) = 0.870
❏ Recall = TP/(TP+FN) = 0.992

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.906

❏ Purity = TP/(TP+FP) = 0.858
❏ Recall = TP/(TP+FN) = 0.977

Keras model

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

26

NN Model performance (100 KHz & 10ns)

❏ Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
0.921

❏ Purity = TP/(TP+FP) = 0.870
❏ Recall = TP/(TP+FN) = 0.992

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.906

❏ Purity = TP/(TP+FP) = 0.858
❏ Recall = TP/(TP+FN) = 0.977

Keras model

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

27

TP FN

FP TN

NN Model performance scaling

28

• We noticed a drop of classification performance with increasing dark
count rate (e.g. increasing number of noise hits per event), but still purity
> 85% for noisiest case (DCR = 300 kHz).

• As expected, performance drop after quantization step Preliminary results

NN Model performance scaling
• We noticed a drop of classification performance with increasing dark

count rate (e.g. increasing number of noise hits per event), but still purity
> 85% for noisiest case (DCR = 300 kHz).

• As expected, performance drop after quantization step

(NOT OK) no QKeras training, only quantization

(OK) QKeras post-
quantization

training

29

Preliminary results

dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation
Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6
Sector MLP + Aggregate Layer) implementation and to assess system performance.

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

k
r
n
l
_
l
o
a
d

A
g
g
r
e
g
a
t
e

L
a
y
e
r
H
W
b
l
o
c
k

H
O
S
T

(
P
C
I
e
)
H
O
S
T

(
P
C
I
e
)

sync sync

30

dRICH Data reduction:
HLS4ML ⇒ (FPGA) HW Synthesis
• TP NN design (6 Sector NN + Aggregation MLP NN) fits into the available

FPGA resources of the Xilinx Alveo U280 board.
• Post-synthesis Vitis reports ⇒ high BRAM utilization due to allocation of 6

different sets of weights and biases for the 6 Sector NNs
⇒ occupation percentage to take into account when moving to the target HW
(FELIX-155 Xilinx Versal Prime) and integrating with the standard DAQ firmware.

31

dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

k
r
n
l
_
l
o
a
d

A
g
g
r
e
g
a
t
e

L
a
y
e
r

H
W
b
l
o
c
k

H
O
S
T

(
P
C
I
e
)
H
O
S
T

(
P
C
I
e
)

sync sync

32

Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6
Sector MLP + Aggregate Layer) implementation and to assess system performance.

dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

k
r
n
l
_
l
o
a
d

A
g
g
r
e
g
a
t
e

L
a
y
e
r

H
W
b
l
o
c
k

H
O
S
T

(
P
C
I
e
)
H
O
S
T

(
P
C
I
e
)

sync sync

33

Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6
Sector MLP + Aggregate Layer) implementation and to assess system performance.

dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation
• The 40 input ap_fixed<16,8> are connected to the preprocessing block, which

merges the whole set of input in order to feed the MLP HLS4ML block.
• The NN block computes its output by using ap_fixed<8,0> weights and biases.
• The output, composed by 4 features, is then merged into a single ape_word of

128bits and then sent through the network via the APEIRON switch

kr
nl
_l
oa
d

A
g
g
r
e
g
a
t
e

L
a
y
e
r

H
W
b
l
o
c
k

Preprocessing
block

…

0

39
ap_fixed<16,8>

SectorMLP NNblock

AP
E
RO
UT
ER

ape_word
(128 bits)

34

dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

k
r
n
l
_
l
o
a
d

A
g
g
r
e
g
a
t
e

L
a
y
e
r

H
W
b
l
o
c
k

H
O
S
T

(
P
C
I
e
)
H
O
S
T

(
P
C
I
e
)

sync sync

35

Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6
Sector MLP + Aggregate Layer) implementation and to assess system performance.

dRICH Data reduction stage on FPGA:
HW challenges and targets

• Customizable I/O and deterministic latency make
them well suited for TDAQ systems.

• Improvements to silicon manufacturing process
made them very interesting for heavy computation
as well.

• In our case, the challenge is the processing
throughput
⇒ a pipelined design can potentially produce a new
output at each clock cycle.

• Initiation interval (II): Number of clock cycles
before the function can accept new input data.
⇒ the lower the II, the higher the throughput

• The greater the number of pipeline stages, the
greater the latency.

• High level synthesis tools allows to describe
datapaths in FPGA using high level software
languages (C/C++, OpenCL, SYCL,...).

⇒ Why FPGA are good for real-time inference?

36

HLS4ML FPGA performance (100kHz & 10ns)

❏ Throughput (DDR) = 2.065 MHz
è instantiation interval II~97 cycles (@200 MHz)

❏ Throughput (BRAM) = 10.867 MHz
è instantiation interval II~19 cycles (@200 MHz)

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

37

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.898

❏ Purity = TP/(TP+FP) = 0.831
❏ Recall = TP/(TP+FN) = 0.999

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.898

❏ Purity = TP/(TP+FP) = 0.831
❏ Recall = TP/(TP+FN) = 0.999

HLS4ML FPGA performance (100kHz & 10ns)

❏ Throughput (DDR) = 2.065 MHz
è instantiation interval II~97 cycles (@200 MHz)

❏ Throughput (BRAM) = 10.867 MHz
è instantiation interval II~19 cycles (@200 MHz)

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

Throughput issue! ==> evaluation ongoing
on whole HW design instantiation interval!

38

Conclusions

• Implementation of a simplified version of the distributed MLP NN model
• Assessed its performance in terms of accuracy/purity/recall (ML

classification metrics) and resources/throughput (HW implementation
metrics)

• Working to improve:
o purity (reduce at minimum the number of signal events classified as

noise)
o Post-quantization performance beyond 100kHz noise rate
o Throughput of the full pipeline

• Development of a simplified distributed MLP on two FPGAs including all
the architectural blocks (5 DAM NNs and a full TP) is ongoing ⇒ validation
of the DAM to TP communication

• Sector NN model fully validated ⇒ Xilinx Versal design for the target FELIX
implementation is ongoing

39

Thanks for your attention!

Contacts:
• cristian.rossi@roma1.infn.it
• alessandro.lonardo@roma1.infn.it
• https://apegate.roma1.infn.it

mailto:cristian.rossi@roma1.infn.it
mailto:alessandro.lonardo@roma1.infn.it
mailto:alessandro.lonardo@roma1.infn.it

BACKUP SLIDES

NN Model performance scaling
We noticed a drop of prediction performance with increasing dark count
rate (e.g. increasing number of noise hits per event), but still purity > 85%
for noisiest case (DCR = 300 kHz).
As expected, prediction performance drop after quantization step

No QKeras training, only HLS4ML quantization

(Correct) QKeras
post-quantization

training

dRICH Data reduction: Noise Distribution

noiseRate = 200 KHz

● Dark current SiPM noise hits distribution,
obtained by introducing Dark Count probability of
single dRICH SiPM with a dependence on its radial
distance from the detector z-axis and on the
integrated luminosity
⇒ Implemented in EICRecon digitization step
(new flag to enable new model noise)

(R. Preghenella’s contribution)

Performance
>80%

(@100fb-1)
Eic-shell

version=25.06

Performance ~99%
(@100fb-1)

Eic-shell
version=24.12

Noise comparison
(@100fb-1)

==> same distro
mean

Signal Comparison
(@100fb-1)

Eic-shell
version=24.12 vs 25.06

==> same starting
MC files

dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation
è krnl_load is connected to the Host CPU via PCIe bus, allowing to load events

data on the FPGA DDR. Corresponding input data are sent to each of the 6
Sector MLP blocks through 40 input hls::stream<ap_fixed<16,8>>.

è By disabling the ddr kernel flag, krnl_load can send through the system few
events data (O(10)) already loaded on the FPGA BRAM during firmware
synthesis. In this way, throughput measurements can be performed without
DDR reading bottleneck

kr
nl
_l
oa
d

…

0

39

sync

dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation
è Aggregate MLP HWblock receives as input 6 ape_word from the 6 Sector MLP

blocks, each containing 4 features corresponding to the information extracted
from a single dRICH sector. Here, incoming data are merged to feed the last
MLP layer of the NN model, which finally computes the prediction. This last
output is then loaded back to the Host CPU via PCIe in order to compare
prediction with the true label of the processed event

A
g
g
r
e
g
a
t
e

M
L
P

H
W
b
l
o
c
k

ape_word
(128 bits)

sync

NN Model performance (25 KHz & 10ns)

❏ Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
0.928

❏ Purity = TP/(TP+FP) = 0.878
❏ Recall = TP/(TP+FN) = 0.997

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.926

❏ Purity = TP/(TP+FP) = 0.876
❏ Recall = TP/(TP+FN) = 0.993

Keras model

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

NN Model performance (50 KHz & 10ns)

❏ Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
0.925

❏ Purity = TP/(TP+FP) = 0.873
❏ Recall = TP/(TP+FN) = 0.994

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.915

❏ Purity = TP/(TP+FP) = 0.863
❏ Recall = TP/(TP+FN) = 0.985

Keras model

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

NN Model performance (150 KHz & 10ns)

❏ Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
0.917

❏ Purity = TP/(TP+FP) = 0.863
❏ Recall = TP/(TP+FN) = 0.991

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.817

❏ Purity = TP/(TP+FP) = 0.731
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

NN Model performance (200 KHz & 10ns)

❏ Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
0.910

❏ Purity = TP/(TP+FP) = 0.858
❏ Recall = TP/(TP+FN) = 0.986

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.822

❏ Purity = TP/(TP+FP) = 0.736
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

NN Model performance (300 KHz & 10ns)

❏ Accuracy =
(TP+TN)/(TP+TN+FP+FN) =
0.905

❏ Purity = TP/(TP+FP) = 0.850
❏ Recall = TP/(TP+FN) = 0.984

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) =
0.829

❏ Purity = TP/(TP+FP) = 0.744
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations:

fixed point<16,6>
● Weights, Biases:

fixed point<8,1>

BACKUP2 SLIDES

APEIRON: overview
APEIRON is a framework developed to offer hardware and
software support for the execution of real-time dataflow
applications on a system composed by interconnected
FPGAs
● Enabling the mapping the dataflow graph of the

application on the distributed FPGA system and
offering runtime support for the execution.

● Allowing users, with no (or little) experience in
hardware design tools, to develop their applications on
such distributed FPGA-based platforms:
○ Tasks are implemented in C++ using High Level

Synthesis tools (Xilinx® Vitis).
○ Lightweight C++ communication API (HAPECOM)

■ Non-blocking send()
■ Blocking receive()

APEIRON enables the scaling of Xilinx® Vitis High Level
Synthesis applications on multiple FPGA interconnected
by the INFN communication IP.

APEIRON for smart TDAQ Systems
Abstract Processing Environment for Intelligent Read-Out systems based
on Neural networks

● Input data streams from several different channels (data sources,
detectors/sub-detectors) recombined through the processing layers
using a low-latency, modular and scalable network infrastructure

● More resource-demanding
NN layers can be
implemented in subsequent
processing layers.

● Classification produced by
the NN in last processing
layer (e.g. pid) will be input
for the trigger
processor/storage online
data reduction stage for
triggerless systems.

APEIRON building blocks:
● INFN Communication IP

INFN is developing the IPs implementing
a direct network that allows low-latency
data transfer between processing tasks deployed
on the same FPGA (intra-node communication)
and on different FPGAs (inter-node communication)

● Host Interface IP: Interface the FPGA
logic with the host through the system
bus.

● Routing IP: Routing of intra-node and
inter-node messages between processing
tasks on FPGA. •

● Network IP: Network channels and
Application-dependent I/O
○ APElink 20 Gbps → 40 Gbps
○ UDP/IP over 1/10 GbE → 25/40/100 GbE
○ ETH port → Xilinx® 10G/25G High Speed

Ethernet Subsystem

APEIRON building blocks:
● Software Stack The APEIRON runtime software stack is

built on top of the Xilinx® XRT one adding
three layers to:

● add the functionalities required to manage
multiple FPGA execution platforms (e.g., program the
devices, configure the IPs, start/stop execution, monitor
the status of IPs, ...);

● reduce the impact of changes in XRT API introduced with
any new version of Vitis on the APEIRON host-side
applications;

● decouple the APEIRON software stack from the specific
platform, easing the future porting of the framework to
different platforms/vendors.

Apeirond is a persistent daemon used to manage multiple
access request from user apps to the board.
Using the network socket exposed by apeirond modules, the
supervisor can write commands and read status of the
different instances of the APEIRON framework running in
each node, allowing the user to have a complete overview of
the multiple FPGA execution platform

APEIRON: FPGA bitstream generation
● The HLS task must have a generic interface,

implementation is free
● A YAML configuration file is used to describe

the kernels interconnection topology, specifying
how many input/output channels they have

Adaptation toward/from IntraNode ports of the
Routing IP is done by the automatically generated
Aggregator and Dispatcher kernel templates.

void example_task(
[list of optional kernel specific
parameters], message_stream_t
message_data_in[N_INPUT_CHANNELS],
message_stream_t
message_data_out[N_OUTPUT_CHANNELS])

APEIRON performance
(Communication IP: 256 bit datapath @200MHz)

Latency
DDR+sync(ns) BRAM(ns)

Intra-node (localtrip) 533
213

Inter-node (roundtrip) 1065
768 Bandwidth

DDR+sync(MB/s) BRAM(MB/s)
Intra-node (loopback) 3938

5967
Inter-node (oneway) 3938

APEIRON applications:
● FIPLib-multiFPGA

FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON

● Developed by ENEA in C++, it employs the
Vitis HLS flow to construct the library's
kernels for the execution of image processing
algorithms.

● FIPLib encompasses nearly 70 functionalities,
conceived with a streaming behavior

● On a multi-FPGA setup, we were able to split
the overall image processing by
implementing a single RGB kernel on each
node
⇒ increased internal datapath to 32B,
avoiding FPGA resource limitation

APEIRON applications:
● FIPLib-multiFPGA

FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON

● Implementing FIPLib HLS
kernels as APEIRON tasks
means changing the
interface of each of them
to cope with the standard
required by the framework
to compile the entire
project and to generate
the bitstream
⇒ use of HAPECOM C++
communication API

APEIRON applications:
● FIPLib-multiFPGA

Energy Efficiency -

Throughput

trade-off

APEIRON applications:
● RAIDER

Real-time AI-based Data analytics on hEteRogeneous distributed systems

● High throughput online streaming processing on
multi-FPGA ⇒ number of Cherenkov rings prediction
on the stream of events generated by the RICH detector
in the CERN NA62 experiment at a rate of about 10 MHz,
using multiple CNN_kernel replica.

● Lightweight CNN model deployed on Xilinx Alveo U280
FPGA (limited resource usage)
⇒ receives as input compressed
representation of the
original event in form of
B&W 16x16 image
(via imagifier kernel)

APEIRON applications:
● RAIDER

x100

x20

Conclusions

● The APEIRON framework enables the development and deployment
of Vitis HLS dataflow applications distributed on multiple-FPGA
systems, leading to increased performance in terms of throughput
and energy efficiency

● The co-design of its software stack and of the Communication IP
allowed to reach very low and deterministic latency and a high
fraction of the channel's raw bandwidth for communications
between FPGAs, addressing fundamental bottlenecks for real-time
distributed dataflow applications.

● We control the workflow for the implementation of real-time/high
throughput classifiers on FPGA using limited resources,
This hints for applying the methodology also to:
○ less capable (i.e. front-end) FPGAs
○ complex design making use of a large fraction of FPGA resource

⇒ multi-node setup/user-defined topology

FPGA overview

The basic structure of an FPGA is
composed of the following elements:
● Look-up table (LUT): This

element performs logic
operations

● Flip-Flop (FF): This register
element stores the result of the
LUT

● Wires: These elements connect
elements to one another, both
logic and clock

● Input/Output (I/O) pads: These
physically available ports get
signals in and out of the FPGA

Conclusions

o We sketched a data reduction system designed based on DAM's FPGAs as a
risk-mitigation action to the possible problem of an excessive data bandwidth
requirement from the dRICH to Echelon-0 due to SiPM DCR.

o We showed results of the initial activities we made to proof the design concept.
o The design is based on a distributed Dense NN model, that can reach near-optimal

performance in terms of accuracy (using simulated data), and promising
performance in terms of pipeline throughput.

o Next steps:
o Deploy the distributed NN on two FPGAs already available in our lab (Xilinx Alveo

U200) representing a DAM and the TP, integrating the communication in the
pipeline and assessing its impact on pipeline throughput (and latency).

o Become familiar with the FELIX board HW and FW (we are receiving a FLX-182
on loan from JLab) to start devising the integration of our design in its FW.

o In addition different NN models (CNNs, GNN,…) and data reduction tasks/ideas
(Cherenkov ring detection...) can be explored, taking into account ePIC DAQ
parameters and without altering its data streaming design ("parasitic" mode)

FPGA FPGA FPGA

FPGA CPU FPGA CPU
FPGA FPGA

CPU

STORAGE SERVER
/

TRIGGER PROCESSOR

Proc Layer 0

Proc Layer 1…

Proc Layer n-1

Input data
Ch 0

Input data
Ch 1

Input data
Ch n-1

72

