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EIC ePIC: overview
The ePIC collaboration currently
consists of almost 500 members from 171 
institutions and is working jointly with 
the DOE EIC Project to realize the ePIC
experiment. 
ePIC experiment will be a ~10-meter 
long cylindrical barrel detector with 
additional instrumentation that extends
to up to 45m in each direction down the 
EIC beamline.

• A 1.7 Tesla superconducting magnet 
• High-precision silicon detectors for 

particle tracking 
• Precise calorimeters for measuring 

particles electromagnetic energy
• A suite of particle identification (PID) 

detectors
• Dense calorimetric detectors to allow 

the measurement of “jets“ 1



dRICH ⇒ Design and PID perfomance
• A dual Ring Imaging CHerenkov detector (dRICH) will be employed in the 

forward region (1.5 < 𝜂 < 3.5) to provide efficient hadron PID from 3 GeV/c to 50 
GeV/c .

• The dRICH comprises two different radiators, aerogel and gas (𝐶2 𝐹6 ), to cover 
the entire momentum range. 

• SiPM based photosensors are placed in six spherical sectors to detect
Cherenkov photons which are focused by six corresponding spherical mirrors.
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ePIC: DAQ System
• The data from the Front End Boards (FEBs) will be aggregated into

Readout Boards (RDOs) using bidirectional interfaces.
• The RDOs will distribute configuration and control information to the FEBs

and read hit data as well as monitoring information from the FEBs. 
• The RDOs will also use a bidirectional optical connection to the Data 

Aggregation and Manipulation Board (DAM) FPGA-based PCIe cards.
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dRICH ⇒ RDO and ePIC DAQ

• 1 photodetector unit PDU: 4x64 SiPM array 
device (256 channels), 4 FEBs, 1 RDO

• 1248 PDUs for full dRICH readout
• 319488 readout channels divided in six

sectors

PDU

SiPMs

DAM
Data Aggregation Module

• 42 links from PDUs to Felix-155 board
• 30 Felix-155 boards in total

ePIC processing
and storage system

Forward cap

(hexafluoroethane)

SE
R
V
E
R
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ePIC: DAM boards (FELIX)

FELIX FLX-155 board is built around the new Xilinx Versal FPGA/SoC family:
• 48 serial links running at speeds up to 25Gbps
• 100Gb ethernet link off the board 
• DDR4 16GB RAM slot available to support buffering 
• PCIe Gen5x16 bus

Next generation FELIX boards – developed for the Phase-II upgrade of 
the ATLAS experiment at LHC – adopted as DAM boards.

(FLX-182 currently available at our lab, used
for DAQ development)

(FLX-155 : actual target HW to be used in ePIC
dRICH DAQ system ) 5



dRICH: Analysis of Output Bandwidth
The dRICH DAQ chain in ePIC ⇒ bandwidth/throughput issue

• Sensors DCR: 3-300 kHz (increasing with radiation
damage ⇒with experiment lifetime).

• Considering planned techinques to manage SiPMs
irradiation (e.g. annealing):

- worst DCR case: 300 kHz 
⇒ Full detector throughput (FE): 6.792,19 Gbps
⇒ a reduction is needed to cope with 30 channels

(30x100GbE) bandwidth availability

⇒ Single DAM output bandwidth : 226,41 Gbps (!) 6



dRICH: Analysis of Output Bandwidth
The dRICH DAQ chain in ePIC ⇒ bandwidth/throughput issue

• Sensors DCR: 3-300 kHz (increasing with radiation
damage ⇒with experiment lifetime).

• Considering planned techinques to manage SiPMs
irradiation (e.g. annealing):

- worst DCR case: 300 kHz 
⇒ Full detector throughput (FE): 6.792,19 Gbps
⇒ a reduction is needed to cope with 30 channels

(30x100GbE) bandwidth availability

• EIC beams bunch spacing: ~10 ns ⇒ bunch crossing 
rate of 100 MHz

• For the low interaction cross-section (DIS) ⇒ one 
interaction every ~100 bunches ⇒ interaction rate of 
~1MHz.

⇒ A system tagging dark current noise-only events 
can solve the throughput issue (reducing down to 1/5 
the data throughput)

⇒ Single DAM output bandwidth : 45,64 Gbps 7



dRICH: Analysis of Output Bandwidth

100 GbE x 30

Net payload BW < ¼ Max < Net payload BW < 1/2 Max < Net payload BW < 3/4 Max < Net payload BW < Max
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dRICH: Data reduction with ML Classifier

Online Signal/ Noise discrimination using ML

• Signal (i.e. Merged 
Phys Signal + Bkg):

o Dark count rate (DCR) modelled in the reconstruction stage 

• Physics Signal:
○ e.g DIS

• Physics Background:
○ e/p with beam pipe
○ Synchrotron radiation (not included yet)

• SiPM Noise:

Discriminate between Noise-Only and Signal+Noise events

ML task:

9
Noise-Classifier:

Positive: Noise-Only event

Negative: Signal+Noise event



dRICH Data reduction:  Classes Def.

Noise-Only Phys Signal+Phys Background+Noise

10

(Positive) (Negative)



dRICH Data reduction:
Tensorflow-Keras Model definition 

• The 30 DAM networks are concatenated to feed 6 intermediate model (called Sector 
NN) to be deployed on an additional Trigger Processor (TP) FPGA. 

• Each Sector NN work on the aggregated information of a single sector (5 DAMs)
• The 6 outputs from Sector NNs are then aggregated and processed in a lightweight TP 

NN (single layer, 5 neurons), deployed on the same TP FPGA

SECTOR NN

DAM NN

AGGREGATION NN 11



dRICH Data reduction:
Tensorflow-Keras Model definition 

SECTOR NN

DAM NN

• The NN model mimics the DAQ system architecture
- 30 (# of subsectors x # of sectors) MLP networks deployed on 30 DAM  FPGAs.
- 6 sector MLP networks + 1 aggregation network deployed on the TP FPGA.

12AGGREGATION NN



dRICH Data reduction:
Tensorflow-Keras Model definition

For each sector, 5 MLP DAM 
output (embedding) are 
concatenated and then used to 
feed the Sector MLP model 

⇒ sector local information
extracted from the incoming 
data to perform the final
prediction

5 MLP DAM NNs (same sector)

Sector MLP NN
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dRICH Data Reduction Stage on FPGA: 
subsectors’ design
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dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

16



dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• Generation strategy of training and validation data sets.

17



dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• TensorFlow/Keras
⇒ NN architecture (number and kind of layers) and representation of the input
⇒ Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).
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dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• Qkeras ⇒ Search iteratively the minimal representation size in bits of weights, 
biases and activations.
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dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• hls4ml ⇒ Tuning of REUSE FACTOR config param (low values ⇒ low latency, high 
throughput, high resource usage), clock frequency.
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dRICH Data reduction: How?
⇒ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• Vitis HLS ⇒ co-simulation for verification of performance (experimented very
good agreement with QKeras Model)
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dRICH: Data reduction ⇒ Mapping
• 42 input links for each DAM, corresponding to the number of 

expected PDUs per subsector (~210/5).

⇒ Each PDU is input to a neuron of the input layer of the MLP NN
⇒ 42 input neuron for the input layer of the MLP NN
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dRICH Data reduction ⇒ Dataset

Montecarlo Events
(Physics Sig + Physics Bg)

(GEANT4) Simulation
(ePIC detectors output)

Reconstruction
(digitization, quantum 
efficiency, safety factor)

(Python) Noise Generation
(dRICH SiPMs Dark count) 

We have produced ~1.2M events to 
train and test our ML models
⇒ Various noise rates for each
generated dataset

ePIC software framework workflow 
(e.g, EICrecon library) 

+
= Signal+Noise Dataset

Noise-Only Dataset
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dRICH Data reduction: Noise Distribution
• Gaussian dark current SiPM noise hits distribution: 

- mean = noiseRate*noiseTimeWindow*NumberOfSiPMsDRICH
- sigma = 0.1*avg
- noiseTimeWindow = 10 ns

noiseRate = 300 kHz
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dRICH Data reduction:
Tensorflow training and evaluation

⇒ We trained the 30 MLP DAM models concatenated to the single MLP TP 
model by using 100k Signal+Noise and 100k Noise Only events.
⇒ 200k balanced dataset (90% training set, 8% testing set, 2% validation
set) varying the Dark Count Rate parameter:

◆ Gaussian Noise Hits Distribution model:
• noiseRate = 25 kHz, noisetimeWindow = 10ns;
• noiseRate = 50 kHz, noisetimeWindow = 10ns;
• noiseRate = 100 kHz, noisetimeWindow = 10ns; 
• noiseRate = 150 kHz, noisetimeWindow = 10ns; 
• noiseRate = 200 kHz, noisetimeWindow = 10ns; 
• noiseRate = 300 kHz, noisetimeWindow = 10ns; 

25
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NN Model performance (100 kHz & 10ns)

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN) = 
0.921

❏ Purity = TP/(TP+FP) = 0.870
❏ Recall = TP/(TP+FN) = 0.992

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.906

❏ Purity = TP/(TP+FP) = 0.858
❏ Recall = TP/(TP+FN) = 0.977

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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NN Model performance (100 KHz & 10ns)

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN) = 
0.921

❏ Purity = TP/(TP+FP) = 0.870
❏ Recall = TP/(TP+FN) = 0.992

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.906

❏ Purity = TP/(TP+FP) = 0.858
❏ Recall = TP/(TP+FN) = 0.977

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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NN Model performance scaling

28

• We noticed a drop of classification performance with increasing dark 
count rate (e.g. increasing number of noise hits per event), but still purity 
> 85% for noisiest case (DCR = 300 kHz).

• As expected, performance drop after quantization step Preliminary results



NN Model performance scaling
• We noticed a drop of classification performance with increasing dark 

count rate (e.g. increasing number of noise hits per event), but still purity 
> 85% for noisiest case (DCR = 300 kHz).

• As expected, performance drop after quantization step

(NOT OK) no QKeras training, only quantization

(OK) QKeras post-
quantization

training

29

Preliminary results



dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation
Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6 
Sector MLP + Aggregate Layer) implementation and  to assess system performance.

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock
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dRICH Data reduction:
HLS4ML ⇒ (FPGA) HW Synthesis
• TP NN design (6 Sector NN + Aggregation MLP NN) fits into the available

FPGA resources of the Xilinx Alveo U280 board.
• Post-synthesis Vitis reports ⇒ high BRAM utilization due to allocation of 6 

different sets of weights and biases for the 6 Sector NNs
⇒ occupation percentage to take into account when moving to the target HW
(FELIX-155 Xilinx Versal Prime) and integrating with the standard DAQ firmware.
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dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock
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Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6 
Sector MLP + Aggregate Layer) implementation and  to assess system performance.



dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock

k
r
n
l
_
l
o
a
d

A
g
g
r
e
g
a
t
e
 
L
a
y
e
r
 

H
W
b
l
o
c
k

H
O
S
T
 
(
P
C
I
e
)
H
O
S
T
 
(
P
C
I
e
)

sync sync

33

Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6 
Sector MLP + Aggregate Layer) implementation and  to assess system performance.



dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation
• The 40 input ap_fixed<16,8> are connected to the preprocessing block, which

merges the whole set of input in order to feed the MLP HLS4ML block. 
• The NN block computes its output by using ap_fixed<8,0> weights and biases.  
• The output, composed by 4 features, is then merged into a single ape_word of 

128bits and then sent through the network via the APEIRON switch
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dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation

SectorMLP HWblock

SectorMLP HWblock

SectorMLP HWblock
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Stripped-down HW design (on Xilinx Alveo U280) used to validate the TP NN model (6 
Sector MLP + Aggregate Layer) implementation and  to assess system performance.



dRICH Data reduction stage on FPGA: 
HW challenges and targets

• Customizable I/O and deterministic latency make 
them well suited for TDAQ systems.

• Improvements to silicon manufacturing process
made them very interesting for heavy computation
as well.

• In our case, the challenge is the processing 
throughput
⇒ a pipelined design can potentially produce a new 
output at each clock cycle.

• Initiation interval (II): Number of clock cycles
before the function can accept new input data. 
⇒ the lower the II, the higher the throughput

• The greater the number of pipeline stages, the 
greater the latency.

• High level synthesis tools allows to describe
datapaths in FPGA using high level software 
languages (C/C++, OpenCL, SYCL,...).

⇒ Why FPGA are good for real-time inference?
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HLS4ML FPGA performance (100kHz & 10ns)

❏ Throughput (DDR) = 2.065 MHz 
è instantiation interval II~97 cycles (@200 MHz)

❏ Throughput (BRAM) = 10.867 MHz 
è instantiation interval II~19 cycles (@200 MHz)

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>
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❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.898

❏ Purity = TP/(TP+FP) = 0.831
❏ Recall = TP/(TP+FN) = 0.999



❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.898

❏ Purity = TP/(TP+FP) = 0.831
❏ Recall = TP/(TP+FN) = 0.999

HLS4ML FPGA performance (100kHz & 10ns)

❏ Throughput (DDR) = 2.065 MHz 
è instantiation interval II~97 cycles (@200 MHz)

❏ Throughput (BRAM) = 10.867 MHz 
è instantiation interval II~19 cycles (@200 MHz)

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>

Throughput issue! ==> evaluation ongoing
on whole HW design instantiation interval!
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Conclusions

• Implementation of a simplified version of the distributed MLP NN model
• Assessed its performance in terms of accuracy/purity/recall (ML 

classification metrics) and resources/throughput (HW implementation
metrics)

• Working to improve:
o purity (reduce at minimum the number of signal events classified as

noise)
o Post-quantization performance beyond 100kHz noise rate
o Throughput of the full pipeline

• Development of a simplified distributed MLP on two FPGAs including all
the architectural blocks (5 DAM NNs and a full TP) is ongoing ⇒ validation
of the DAM to TP communication

• Sector NN model fully validated ⇒ Xilinx Versal design for the target FELIX 
implementation is ongoing
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Thanks for your attention! 

Contacts:
• cristian.rossi@roma1.infn.it
• alessandro.lonardo@roma1.infn.it
• https://apegate.roma1.infn.it
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BACKUP SLIDES



NN Model performance scaling
We noticed a drop of prediction performance with increasing dark count 
rate (e.g. increasing number of noise hits per event), but still purity > 85%
for noisiest case (DCR = 300 kHz).
As expected, prediction performance drop after quantization step

No QKeras training, only HLS4ML quantization

(Correct) QKeras
post-quantization

training



dRICH Data reduction: Noise Distribution

noiseRate = 200 KHz

● Dark current SiPM noise hits distribution, 
obtained by introducing Dark Count probability of 
single dRICH SiPM with a dependence on its radial 
distance from the detector z-axis and on the 
integrated luminosity
⇒ Implemented in EICRecon digitization step 
(new flag to enable new model noise)

(R. Preghenella’s contribution)



Performance 
>80%

(@100fb-1)
Eic-shell 

version=25.06

Performance ~99%
(@100fb-1)

Eic-shell 
version=24.12



Noise comparison
(@100fb-1)

==> same distro
mean

Signal Comparison
(@100fb-1)

Eic-shell 
version=24.12 vs 25.06

==> same starting
MC files



dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation
è krnl_load is connected to the Host CPU via PCIe bus, allowing to load events 

data on the FPGA DDR. Corresponding input data are sent to each of the 6 
Sector MLP blocks through 40 input hls::stream<ap_fixed<16,8>>. 

è By disabling the ddr kernel flag, krnl_load can send through the system few
events data (O(10)) already loaded on the FPGA BRAM during firmware 
synthesis. In this way, throughput measurements can be performed without
DDR reading bottleneck
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dRICH Data reduction stage on FPGA:
HLS4ML ⇒ HW implementation
è Aggregate MLP HWblock receives as input 6 ape_word from the 6 Sector MLP 

blocks, each containing 4 features corresponding to the information extracted
from a single dRICH sector. Here, incoming data are merged to feed the last 
MLP layer of the NN model, which finally computes the prediction.  This last 
output is then loaded back to the Host CPU via PCIe in order to compare 
prediction with the true label of the processed event 
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NN Model performance (25 KHz & 10ns)

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN) = 
0.928

❏ Purity = TP/(TP+FP) = 0.878
❏ Recall = TP/(TP+FN) = 0.997

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.926

❏ Purity = TP/(TP+FP) = 0.876
❏ Recall = TP/(TP+FN) = 0.993

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>



NN Model performance (50 KHz & 10ns)

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN) = 
0.925

❏ Purity = TP/(TP+FP) = 0.873
❏ Recall = TP/(TP+FN) = 0.994

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.915

❏ Purity = TP/(TP+FP) = 0.863
❏ Recall = TP/(TP+FN) = 0.985

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>



NN Model performance (150 KHz & 10ns)

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN) = 
0.917

❏ Purity = TP/(TP+FP) = 0.863
❏ Recall = TP/(TP+FN) = 0.991

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.817

❏ Purity = TP/(TP+FP) = 0.731
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>



NN Model performance (200 KHz & 10ns)

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN) = 
0.910

❏ Purity = TP/(TP+FP) = 0.858
❏ Recall = TP/(TP+FN) = 0.986

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.822

❏ Purity = TP/(TP+FP) = 0.736 
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>



NN Model performance (300 KHz & 10ns)

❏ Accuracy = 
(TP+TN)/(TP+TN+FP+FN) = 
0.905

❏ Purity = TP/(TP+FP) = 0.850
❏ Recall = TP/(TP+FN) = 0.984

❏ Accuracy = (TP+TN)/(TP+TN+FP+FN) = 
0.829

❏ Purity = TP/(TP+FP) = 0.744
❏ Recall = TP/(TP+FN) = 1.000

Keras model

Model Quantization
● Inputs, Activations: 

fixed point<16,6>
● Weights, Biases: 

fixed point<8,1>



BACKUP2 SLIDES



APEIRON: overview
APEIRON is a framework developed to offer hardware and 
software support for the execution of real-time dataflow 
applications on a system composed by interconnected 
FPGAs
● Enabling the mapping the dataflow graph of the 

application on the distributed FPGA system and 
offering runtime support for the execution.

● Allowing users, with no (or little) experience in 
hardware design tools, to develop their applications on 
such distributed FPGA-based platforms:
○ Tasks are implemented in C++ using High Level 

Synthesis tools (Xilinx® Vitis).
○ Lightweight C++ communication API (HAPECOM)

■ Non-blocking send()
■ Blocking receive()

APEIRON enables the scaling of Xilinx® Vitis High Level 
Synthesis applications on multiple FPGA interconnected 
by the INFN communication IP.



APEIRON for smart TDAQ Systems
Abstract Processing Environment for Intelligent Read-Out systems based 
on Neural networks

● Input data streams from several different channels (data sources, 
detectors/sub-detectors) recombined through the processing layers 
using a low-latency, modular and scalable network infrastructure

● More resource-demanding 
NN layers can be 
implemented in subsequent 
processing layers.

● Classification produced by 
the NN in last processing 
layer (e.g. pid) will be input 
for the trigger 
processor/storage online 
data reduction stage for 
triggerless systems.



APEIRON building blocks:
● INFN Communication IP

INFN is developing the IPs implementing
a direct network that allows low-latency
data transfer between processing tasks deployed 
on the same FPGA (intra-node communication) 
and on different FPGAs (inter-node communication) 

● Host Interface IP: Interface the FPGA 
logic with the host through the system 
bus.

● Routing IP: Routing of intra-node and 
inter-node messages between processing 
tasks on FPGA. •

● Network IP: Network channels and 
Application-dependent I/O 
○ APElink 20 Gbps → 40 Gbps 
○ UDP/IP over 1/10 GbE → 25/40/100 GbE
○ ETH port → Xilinx® 10G/25G High Speed 

Ethernet Subsystem



APEIRON building blocks:
● Software Stack The APEIRON runtime software stack is

built on top of the Xilinx® XRT one adding
three layers to: 

● add the functionalities required to manage 
multiple FPGA execution platforms (e.g., program the 
devices, configure the IPs, start/stop execution, monitor
the status of IPs, ...); 

● reduce the impact of changes in XRT API introduced with 
any new version of Vitis on the APEIRON host-side 
applications; 

● decouple the APEIRON software stack from the specific 
platform, easing the future porting of the framework to 
different platforms/vendors.

Apeirond is a persistent daemon used to manage multiple 
access request from user apps to the board. 
Using the network socket exposed by apeirond modules, the 
supervisor can write commands and read status of the 
different instances of the APEIRON framework running in 
each node, allowing the user to have a complete overview of 
the multiple FPGA execution platform



APEIRON: FPGA bitstream generation
● The HLS task must have a generic interface, 

implementation is free
● A YAML configuration file is used to describe 

the kernels interconnection topology, specifying 
how many input/output channels they have

Adaptation toward/from IntraNode ports of the 
Routing IP is done by the automatically generated 
Aggregator and Dispatcher kernel templates.

void example_task(
[list of optional kernel specific 
parameters], message_stream_t 
message_data_in[N_INPUT_CHANNELS],
message_stream_t 
message_data_out[N_OUTPUT_CHANNELS])



APEIRON performance
(Communication IP: 256 bit datapath @200MHz)

Latency
DDR+sync(ns) BRAM(ns)

Intra-node (localtrip) 533 
213

Inter-node (roundtrip) 1065
768 Bandwidth

DDR+sync(MB/s) BRAM(MB/s)
Intra-node (loopback) 3938 

5967
Inter-node (oneway) 3938



APEIRON applications:
● FIPLib-multiFPGA

FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON 

● Developed by ENEA in C++, it employs the 
Vitis HLS flow to construct the library's 
kernels for the execution of image processing 
algorithms.

● FIPLib encompasses nearly 70 functionalities, 
conceived with a streaming behavior

● On a multi-FPGA setup, we were able to split 
the overall image processing by 
implementing a single RGB kernel on each 
node
⇒ increased internal datapath to 32B, 
avoiding FPGA resource limitation



APEIRON applications:
● FIPLib-multiFPGA

FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON 

● Implementing FIPLib HLS 
kernels as APEIRON tasks
means changing the 
interface of each of them 
to cope with the standard 
required by the framework 
to compile the entire 
project and to generate 
the bitstream
⇒ use of  HAPECOM C++ 
communication API



APEIRON applications:
● FIPLib-multiFPGA

Energy Efficiency -

Throughput

trade-off



APEIRON applications:
● RAIDER

Real-time AI-based Data analytics on hEteRogeneous distributed systems

● High throughput online streaming processing on 
multi-FPGA ⇒ number of Cherenkov rings prediction
on the stream of events generated by the RICH detector 
in the CERN NA62 experiment at a rate of about 10 MHz, 
using multiple CNN_kernel replica.

● Lightweight CNN model deployed on Xilinx Alveo U280 
FPGA (limited resource usage)
⇒ receives as input compressed 
representation of the 
original event in form of 
B&W 16x16 image 
(via imagifier kernel)



APEIRON applications:
● RAIDER 

x100

x20



Conclusions 

● The APEIRON framework enables the development and deployment 
of Vitis HLS dataflow applications distributed on multiple-FPGA 
systems, leading to increased performance in terms of throughput 
and energy efficiency

● The co-design of its software stack and of the Communication IP 
allowed to reach very low and deterministic latency and a high 
fraction of the channel's raw bandwidth for communications 
between FPGAs, addressing fundamental bottlenecks for real-time 
distributed dataflow applications.

● We control the workflow for the implementation of real-time/high 
throughput classifiers on FPGA using limited resources, 
This hints for applying the methodology also to: 
○ less capable (i.e. front-end) FPGAs 
○ complex design making use of a large fraction of FPGA resource

⇒ multi-node setup/user-defined topology



FPGA overview

The basic structure of an FPGA is 
composed of the following elements:
● Look-up table (LUT): This 

element performs logic
operations

● Flip-Flop (FF): This register 
element stores the result of the 
LUT

● Wires: These elements connect 
elements to one another, both 
logic and clock

● Input/Output (I/O) pads: These 
physically available ports get 
signals in and out of the FPGA



Conclusions

o We sketched a data reduction system designed based on DAM's FPGAs as a 
risk-mitigation action to the possible problem of an excessive data bandwidth 
requirement from the dRICH to Echelon-0 due to SiPM DCR.

o We showed results of the initial activities we made to proof the design concept.
o The design is based on a distributed Dense NN model, that can reach near-optimal 

performance in terms of accuracy (using simulated data), and promising 
performance in terms of pipeline throughput.

o Next steps:
o Deploy the distributed NN on two FPGAs already available in our lab (Xilinx Alveo 

U200) representing a DAM and the TP, integrating the communication in the 
pipeline and assessing its impact on pipeline throughput (and latency).

o Become familiar with the FELIX board HW and FW (we are receiving a FLX-182 
on loan from JLab) to start devising the integration of our design in its FW. 

o In addition different NN models (CNNs, GNN,…) and data reduction tasks/ideas 
(Cherenkov ring detection...) can be explored, taking into account ePIC DAQ 
parameters and without altering its data streaming design ("parasitic" mode)



FPGA FPGA FPGA

FPGA CPU FPGA CPU
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CPU

STORAGE SERVER
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Proc Layer n-1

Input data 
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Input data 
Ch 1

Input data 
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