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Goals
● Use ALICE and its data as a unique environment for Machine Learning (ML) research

● Identify areas where both ALICE (or HEP in general) and ML communities can mutually 
benefit from each other

● Our solutions should be easily applicable to other experiments with similar capabilities

● Disclaimer:
○ I’m a physicist without a big ML background – few years ago I started my (human) 

learning of machine learning :)
○ My task is to guide and coordinate the work of WUT ML computer scientists within 

ALICE
○ The solution may be complicated from a physicist perspective, but the balance is to 

keep the project interesting for ML itself and be useful for us at the same time!
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QGP, HI collisions and dedicated experiments
Heavy-Ion collisions are used to create, for a brief 
moment, a deconfined state of matter - the 
Quark-Gluon Plasma (QGP)

QGP studies require dedicated experiments

In operation: ALICE@LHC, STAR@RHIC, NA61@SPS
in future: CBM@FAIR, MPD@NICA

Common feature: Particle Identification (PID)

• QGP is a bulk phenomenon (low to intermediate-pT 
Particles; particle ratios, collective flow, etc.)

• possibility to identify particles in wide 
momentum range (down to ~100 MeV/c)

• π, K, p, e±, μ±, deuterons, tritons, 3He, 4He
strange and charm hadrons  
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Particle identification (PID)
Aim: provide high purity samples of particles of a given 
type

• an essential step for many physics analyses, especially 
correlations of identified particles

• we use ALICE as our R&D environment 
• PID is a distinguishing feature of ALICE

• identification of particles of momenta in a very 
wide momentum range

• practically all known PID techniques employed: 
dE/dx energy loss, time-of-flight, Cherenkov 
radiation and transition radiation

https://arxiv.org/abs/1709.00288 

Eur. Phys. J. C77 (2017) 569

https://arxiv.org/abs/1709.00288
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Present state-of-art
1. Traditional method:

• hand-crafted selections of selected quantities, e.g., nσ
• problems:

• overlapping signals
• high purity at the cost of low efficiency
• time-consuming optimization (where the signals cross)

• Metrics

• Purity (precision) and efficiency (recall) calculated from MC simulated data with full 
detector response (anchored to the specific data collection period = run)

• normally measured as a function of transverse momentum pT
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Present state-of-art
1. Traditional method:

• hand-crafted selections of selected quantities, e.g., nσ
• problems:

• overlapping signals
• high purity at the cost of low efficiency
• time-consuming optimization (where the signals cross)

2. Bayesian method (ALICE, EPJ Plus 131 (2016) 168):
• updating probability of an hypothesis with each new evidence
• priors = best guess of true particle yields per events
• posteriors ~ purity of a given particle species
• increased purity, results consistent with the traditional method

Both methods available in O2 – ALICE Run 3 software 

Can we do any better?

not covered in this talk
yields similar results

https://link.springer.com/article/10.1140/epjp/i2016-16168-5


Yes!
With ML :)
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ML for PID Advantages of the ML approach to PID:

• classification – a ''standard'' ML problem
• can use more track parameters as input
• can learn more complex relationships 
• many software libraries available

Note also the limitations:

• depends on quality of the training data (MC)
• hard to quantify uncertainties
• hard to follow classifier's ''reasoning'' (black box)

Our first works show ML can greatly improve purity 
and efficiency:
1. Random Forest: T. Trzciński, Ł. Graczykowski, M. Glinka, 

ALICE Collaboration. Using Random Forest classifier for particle 
identification in the ALICE experiment. Conference on Information 
Technology, Systems Research and Computational Physics, pp. 
3-17. 2018

2. Domain Adaptation: M. Kabus, M. Jakubowska, Ł. 
Graczykowski, K. Deja, ALICE Collaboration. Using machine learning 
for particle identification in ALICE. JINST, v. 17, p. C07016. 2022

from [1]

from [1]

https://link.springer.com/chapter/10.1007/978-3-030-18058-4_1
https://iopscience.iop.org/article/10.1088/1748-0221/17/07/C07016
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Proof-of-concept: Random Forest
● Preliminary work with ALICE Run 2 data

● First solution - Random Forest

● Model works on high-level track parameters

● Depends on the quality of Monte Carlo sample and 
post-processed information (i.e. nσ calculation)

● Can be used only for analysis-specific use-case 
(concrete dataset and specific particle selection)

○ model has to be trained by the specific end user

T. Trzciński, Ł. Graczykowski, M. Glinka, 
Conference on Information Technology, 
Systems Research and Computational 
Physics, 3-17. 2018

https://en.m.wikipedia.org/wiki/File:Random_forest_explain.png 

2018

https://en.m.wikipedia.org/wiki/File:Random_forest_explain.png
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Current solution - our model
● Solution general enough to be used for variety of analyses

● At present our input data has 19 features: i.e. momentum components, charge sign, DCAXY, 
DCAZ, TPC number of clusters, detector signals (TPC dE/dx, TOF time, TRD signal), etc.

● Data might be missing for a given track from one or more detectors due to, e.g., too small pT

● In “standard” ML approaches dealing with such cases, people use data imputation or case 
deletion - however artificially altered data may bias the physics results!

○ Challenge: classify particles without making any assumptions about the missing values

● The proposed model is much more advanced than the proof-of-concept solution and has 
4 steps (see next slides)

● For details, see our two papers:

○ EPJ C 84 (2024) 7, 691

○ JINST 19 (2024) 07, C07013

https://link.springer.com/article/10.1140/epjc/s10052-024-13047-3
https://iopscience.iop.org/article/10.1088/1748-0221/19/07/C07013
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1. Feature Set Embedding to encode the input features 
and their position in input vector

2. Transformer Encoder to detect patterns in the input
3. Additional self-attention network to pool the encoder 

output set into a single vector
4. Classifier (a simple neural network) to classify a given 

particle type

Current solution - our model
M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, ŁG
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, ŁG, K. Deja, M. Kasak, 
M. Jaik, JINST 19 (2024) 07, C07013 

Inspired by AMI-Net proposed for 
medical diagnosis from incomplete 
data (medical records)

2019 International Joint Conference on Neural Networks (IJCNN)

https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1904.04460
https://ieeexplore.ieee.org/xpl/conhome/8840768/proceeding
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Neural Network: How to handle missing data?

?
p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 - 2.7

0.6 35.4 16.7 -

3.5 57.3 - -

Raw input:
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Strategy 1: Mean Imputation

p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 - 2.7

0.6 35.4 16.7 -

3.5 57.3 - -

mean 10.3 2.55

Raw input:

p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 10.3 2.7

0.6 35.4 16.7 2.55

3.5 57.3 10.3 2.55

Transformed input:

NEXT: Train single neural network. Fill 
the same mean values for target data.
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Strategy 2: Regression Imputation

p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 - 2.7

0.6 35.4 16.7 -

3.5 57.3 - -

Raw input:

p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 13.3 2.7

0.6 35.4 16.7 2.1

3.5 57.3 17.3 2.5

Missing column is treated as 
predicted response in regression 
method on the basis of the complete 
observations.

NEXT: Train single neural network. 
Use the same fitted regression model 
for target data.

Transformed input:
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Strategy 1 & 2: Drawbacks

p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 13.3 2.7

0.6 35.4 16.7 2.1

3.5 57.3 17.3 2.5

Regression imputation:
p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 10.3 2.7

0.6 35.4 16.7 2.55

3.5 57.3 10.3 2.55

Mean imputation:

● Imputation bias: Artificially filling missing values can distort physics results.
● Information loss: A missing feature carries meaning; replacing it with an average 

erases that signal.
● Limitations of regression: Standard regression methods may not be precise enough 

for the complexity of relationships in High Energy Physics data.
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Strategy 3: Grouping and Ensembling

p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 - 2.7

0.6 35.4 16.7 -

3.5 57.3 - -

Raw input:

Group observations by missing data 
combination. In this example 4 
groups exists.

NEXT: Train separate neural networks 
for every missing data combination. 
Ensemble them to make it technically 
simpler.

p TPC TOF TRD

0.1 65.4 3.8 2.4

p TPC TOF

0.6 35.4 16.7

p TPC TRD

1.6 35.6 2.7

p TPC

3.5 57.3
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Strategy 3: Grouping Drawbacks

p TPC TOF TRD

0.1 65.4 3.8 2.4

p TPC TOF

0.6 35.4 16.7

p TPC TRD

1.6 35.6 2.7

p TPC

3.5 57.3

● Complexity of training: More models are trained (4 in the example).
● Less training data: Each model of the ensemble is trained on merely subset of 

original training data; some groups are significantly less numerous: less information for 
model to extract.
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Strategy 4: Transformer (our solution)
Why?
● Flexible input handling: Transformer encoder architecture can process data with 

varying feature sizes.
● Captures complex relationships: Learns intricate dependencies between features.
● Efficient scaling: Performs well as data size and complexity grow.
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Strategy 4: Transformer (our solution)

p TPC TOF TRD

0.1 65.4 3.8 2.4

1.6 35.6 - 2.7

0.6 35.4 16.7 -

3.5 57.3 - -

Raw input: Feature-value encoding:
Feature Value

1 0 0 0 1.6

0 1 0 0 35.6

0 0 0 1 2.7

From every observation vector we 
encode every feature as separate 
vector with position in original vector. 
We skip missing data.
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Strategy 4: Transformer (our solution)

Feature-value encoding:
Feature Value

1 0 0 0 1.6

0 1 0 0 35.6

0 0 0 1 2.7

Feature-set embedding:

Embedding Neural Network
NN Layers: [5, 128, 32]

C1 C2 C3 C4

…

C32

0.53 0.25 0.57 0.35 0.16

0.12 0.67 0.47 0.23 0.7

0.92 0.72 0.34 0.86 0.85
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Strategy 4: Transformer (our solution)

Feature-value encoding:
Feature Value

1 0

…

0 1.6

0 1 0 35.6

0 0 1 2.7

Feature-set embedding:

C1 C2 C3 C4

…

C32

0.53 0.25 0.57 0.35 0.16

0.12 0.67 0.47 0.23 0.7

0.92 0.72 0.34 0.86 0.85

Embedding Neural Network
NN Layers: [20, 128, 32]

In reality we have 19 features 
for every particle track, which 
makes encoded vectors of 20 
variables.
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Strategy 4: Transformer (our solution)

Feature-set embedding:

C1 C2 C3 C4

…

C32

0.53 0.25 0.57 0.35 0.16

0.12 0.67 0.47 0.23 0.7

0.92 0.72 0.34 0.86 0.85

C1 C2 C3 C4

…

C32

0.23 0.54 0.87 0.45 0.36

0.54 0.43 0.12 0.73 0.57

0.54 0.54 0.63 0.16 0.65

Transformer Encoder layer captures 
complex relationships between features. 
Dimensionality of data is the same.

Transformer Encoder
2 blocks, 2 heads 

(multi-head attention)
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Strategy 4: Transformer (our solution)

After Transformer Encoder:

C1 C2 C3 C4

…

C32

0.23 0.54 0.87 0.45 0.36

0.54 0.43 0.12 0.73 0.57

0.54 0.54 0.63 0.16 0.65

Neural Networks learns to weight columns 
for given vector. Then softmax is applied to 
transform real numbers to weights.

Self-attention pooling NN
NN Layers: [32, 64, 32]

[3,32] real numbers

Softmax

[3,32] weights

C1 C2 C3 C4

…

C32

0.05 0.03 0.08 0.1 0.01

0.03 0.08 0.06 0.01 0.1

0.02 0.04 0.07 0.05 0.03
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Strategy 4: Transformer (our solution)

With weights calculated:

Perform element-wise multiplication of 
rows of data and weights matrices. Take a 
sum over columns to obtain single vector.

C1 C2

…

C32

0.23 0.54 0.36

0.54 0.43 0.57

0.54 0.54 0.65

C1 C2

…

C32

0.05 0.03 0.01

0.03 0.08 0.1

0.02 0.04 0.03

C1 C2

…

C32

0.01 0.02 0

0.02 0.03 0.06

0.01 0.02 0.02

Sum: C1 C2 … C32

0.04 0.07 0 0.08
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Strategy 4: Transformer (our solution)

Pooled vector:

Classifier
NN Layers: [32, 64, 1]

Prediction 
(certainty)

0.67 ≥ 0.5

User-specified, flexible threshold to 
make final binary prediction.

Is it kaon?

YES

NO

True

False

C1 C2 … C32

0.04 0.07 0 0.08
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Details of the architecture

● embedding layers: 20 – 128 – 32 neurons
● Transformer Encoder:

○ Multi-Head Attention: dimension 32, 2 heads
○ neural network layers: 32 – 128 – 32 neurons
○ 2 layers of Multi-Head Attention + neural network

● Self-Attention layers: 32 – 64 – 32 neurons
● classifier layers: 32 – 64 – 1 neurons
● dropout value 0.1 at the output of embedding and each Encoder layer (to limit overfitting)
● activation function (between neural network layers): ReLU  (Rectified Linear Unit)
● loss function that is minimized is binary cross entropy (for one vs all approach)

○ to minimize differences between predicted and true values (labels from MC truth data)

2 heads
in each head
2 layers (att.+NN)

“certainty”

This model is applied 
separately for pions, 
kaons, protons

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, ŁG
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, ŁG, K. Deja, M. Kasak, 
M. Jaik, JINST 19 (2024) 07, C07013 
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Test setup
● Dataset: Run 2 general-purpose MC (Pythia 8) pp at √s = 13 TeV with full detector simulation 

with GEANT 4 (both MC truth and reconstructed data are used)
○ TPC signal is always required 

● Standard nσ method: 
|nσ, TPC| < 3 for pT < 0.5 GeV/c,  √(nσ, TPC

2 + nσ, TOF
2) < 3 for pT ≥ 0.5 GeV/c

● Dataset details:
○ no. tracks: ~2.7 million
○  30% - test dataset
○ from the 70% of the rest:

■ 70% training
■ 30% validation

Missing data distribution

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, ŁG
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, ŁG, K. Deja, M. Kasak, 
M. Jaik, JINST 19 (2024) 07, C07013 
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Results – pions, kaons, protons
F1 = (purity x efficiency) / (purity + efficiency)                                   

FSE + attention with very good scores of F1, purity (precision) and efficiency (recall)

Proposed model (FSE+Attention)
compared to other approaches:

● imputation:
artificial bias in data

○ mean
○ regression

● NN ensemble (4 networks):
potentially large complexity
less data for training

● standard:
nσ method
|nσ, TPC| < 3 for pT < 0.5 GeV/c
√(nσ, TPC

2 + nσ, TOF
2) < 3 for pT ≥ 0.5 GeV/c

kaon selection

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, ŁG
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, ŁG, K. Deja, M. Kasak, 
M. Jaik, JINST 19 (2024) 07, C07013 
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Integration with O2: user interface

PidOnnxModel

• 1 instance = 1 model = 1 particle species recognized (yes / no)
• convenient interface clearly separated from the rest of analysis
• using all capabilities of Python ML libraries for training
• ONNX file format and ONNXRuntime software used for inference in O2 C++ environment
• models stored in CCDB (experiment’s database) for each run and available to access in data 

analysis code by users (via a “helper task”)

PidOnnxInterface

• automatically select most suitable model for user needs or manual mode
• as little additional knowledge from the analyser as possible (“change 1 line in the code”)

https://onnx.ai/ 

https://onnx.ai/
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Conclusions
R&D phase of the ML PID (almost) finished!

FSE+Attention model works well for the three basic identified hadron species (pions, kaons, 
protons)

Lots of work done, but still more ahead!

Plans for future:

• tests with Run 3 data with new O2 analysis framework (ongoing)
• automation of model training and regular training of models for new Run 3 datasets 

(implementation)
• extending the model with domain adaptation (still to do)
• advertise PID ML among ALICE analyzers (to do when fully implemented) and outside ALICE

The work has been carried out by an interdisciplinary team from 4 faculties of WUT:

• Physics: Ł. Graczykowski (general idea, coordination, evaluation), M. Janik (evaluation), M. 
Karwowska (implementation), S. Monira (tests of implemented model)

• Electronics and Information Technology: Kamil Deja, Miłosz Kasak (ML R&D)
• Electrical Engineering: Monika Jakubowska (coordination, evaluation)
• Mathematics and Computer Science: Marek Mytkowski, Mateusz Olędzki (implementation)



Thank you!
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Integration with O2: user interface

PidOnnxModel

• 1 instance = 1 model = 1 particle species recognized (yes / no)
• convenient interface clearly separated from the rest of analysis
• using all capabilities of Python ML libraries for training
• ONNX file format and ONNXRuntime software used for inference in O2 C++ environment

PidOnnxInterface

• automatically select most suitable model for user needs or manual mode
• as little additional knowledge from the analyser as possible (“change 1 line in the code”)

https://onnx.ai/ 

https://onnx.ai/
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Integration with O2: user interface
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Run 2 results
• pp at 7 TeV, Pythia 6 Perugia-0
• kaons vs other particles

Traditional PID:

MC traditional MC RF

Contamination of kaon samples

much higher 
efficiency and purity 
with Random Forest
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Example: FSE with one-hot
encoding

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, Ł. Graczykowski
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, Ł. Graczykowski, K. Deja, 
M. Kasak, JINST 19 (2024) 07, C07013 



37/31

Step 2: Transformer Encoder

● Idea from original Transformer architecture proposed 
by Google (NIPS 2017 article)

● Developed for transforming input data into a 
contextualized representation on the output

● Transformer currently serves as basis for the Natural 
Language Processing tools (such as ChatGPT)

● In our case, vectors from Embedding are 
processed by the Encoder only

○ we do not need Decoder in our use-case

https://www.datacamp.com/tutorial/how-transformers-work 

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.datacamp.com/tutorial/how-transformers-work
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Steps 2 and 3: self-attention
● Attention and self-attention are mechanisms used to 

help model focus on relevant parts of the input data 
○ self-attention focuses on relationships within 

the same input sequence

● Example: "The cat sat on the mat" 
○ when processing the word "cat," it considers 

other words (i.e. "the" or "mat") to understand 
their contribution to the meaning of "cat" (in the 
context of the entire sentence)

● Usage of self-attention in Transformer architecture:
○ in single-head attention, a single set of attention 

scores is used to focus on a particular part of the 
input sequence → limited ability to capture 
different relationships 

○ multi-headed attention uses multiple attention 
heads, where each head focuses on different 
parts of the input simultaneously

NIPS 2017 article

We use self-attention twice:
● in Transformer Encoder
● before Classifier 

attentions

colors = attentions from different heads 

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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F1 = 2 x (purity x efficiency) / (purity + efficiency)
best model, 2nd best model                                   

ML outperforms the standard way

FSE + attention with very good
scores of F1

No flaws of other methods:

• imputation:
artificial bias in data

• case deletion:
no ability to analyze samples
with missing detector signals

• NN ensemble:
potentially large complexity

Results

π p K π̅ p̅ K̅

standard 87.87 ± 0.87 74.61 ± 1.88 73.17 ± 1.57 87.66 ± 0.87 69.12 ± 1.93 69.44 ± 1.60

NN ensemble 98.45 ± 0.04 95.42 ± 0.12 86.74 ± 0.16 98.27 ± 0.42 94.60 ± 0.10 84.91 ± 0.48

mean 98.40 ± 0.01 95.54 ± 0.06 86.36 ± 0.34 98.34 ± 0.01 94.75 ± 0.20 84.67 ± 0.38

attention + FSE 98.50 ± 0.02 95.79 ± 0.07 87.44 ± 0.14 98.44 ± 0.02 94.89 ± 0.14 86.00 ± 0.13
regression 98.40 ± 0.04 95.49 ± 0.15 86.22 ± 0.46 98.36 ± 0.03 94.57 ± 0.13 85.01 ± 0.13

π,
only 

complete 
data

p,
only 

complete 
data

K,
only 

complete 
data

π̅,
only 

complete 
data

p̅,
only 

complete 
data

K̅,
only 

complete 
data

case deletion 99.37 ± 0.01 99.43 ± 0.16 96.95 ± 0.06 99.37 ± 0.01 99.13 ± 0.26 96.33 ± 0.11

NN ensemble 99.38 ± 0.01 99.46 ± 0.13 97.23 ± 0.10 99.34 ± 0.18 99.33 ± 0.10 96.87 ± 0.09

mean 99.27 ± 0.04 99.47 ± 0.08 96.08 ± 0.36 99.27 ± 0.04 99.20 ± 0.27 95.45 ± 0.33
attention + FSE 99.36 ± 0.01 99.48 ± 0.02 97.04 ± 0.17 99.37 ± 0.03 99.44 ± 0.08 96.91 ± 0.11
regression 99.25 ± 0.07 99.37 ± 0.07 95.62 ± 0.39 99.28 ± 0.02 99.10 ± 0.13 95.11 ± 0.58
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Example: FSE with one-hot
encoding

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, Ł. Graczykowski
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, Ł. Graczykowski, K. Deja, 
M. Kasak, JINST 19 (2024) 07, C07013 
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The attention continued
2. Transformer Encoder

N=2

● adjusted original Transformer 
Encoder

● attention without convolutions and 
recurrence

● finding self-correlations in an 
instance set of vectors

● example: a specific detector signal 
could be used if and only if the 
momentum is in a specific range

modified diagram 
from the article

https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
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Pooling and classification
Classifier: a simple neural network
                  expects a single vector as an input

Solution: self-attention to pool the variable-size vector set from Transformer Encoder

Classifier score: logistic function                      ,  range (0, 1)
                             "certainty" that a given particle belongs to the given type

self-attention values

self-attention weights

pooled output vector
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Architecture of tested neural networks
Attention + FSE

• embedding layers: 19 – 128 – 32 neurons
• Transformer Encoder:

• Multi-Head Attention: dimension 32, 2 heads
• neural network layers: 32 – 128 – 32 neurons
• 2 layers of Multi-Head Attention + neural network

• Self-Attention layers: 32 – 64 – 32 neurons
• classifier layers: 32 – 64 – 1 neurons
• dropout 0.1 at the output of embedding and each Transformer Encoder layer
• ReLU activation between neural network layers
• classifier loss function: binary cross entropy

Imputations, case deletion, and NN ensemble

• 3 hidden layers of sizes 64, 32, 16 with Leaky ReLU activation
• dropout 0.1 after each activation layer
• input size:

• imputations and case deletion: 19 as all missing features are imputed
• ensemble: 4 networks with input sizes 19, 17, 17, 15
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Simple network implementation
• linear layers with ReLU, sigmoid at the end
• simple: dropout after each linear layer

Parameters:

• optimizer: Adam
• output layer: 1 node (yes / no for a given particle)
• loss function: binary cross entropy
• scheduler: exponential with rate 0.98
• learning rate: 0.0005
• batch size: 64
• epochs: 30
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Sample ROC curves
FSE+attention achieves best results.

Little variation between particle species.
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More to go: domain adaptation
• Monte Carlo never ideally matches the experimental data (both 

physics and detector response simulation)

• Problem: transferring the knowledge from a labeled source domain 
(MC data) to unlabeled target domain (experimental data), when 
both domains have different distributions of attributes

• How can we transfer the knowledge from training to inference?

Standard PID example: ''tune on data''

• get parametrization from data → real data
• generate a random detector signal → MC data
• equivalent distributions of real and MC samples 

– the differences are statistical fluctuations
• does not include correlations between attributes 

Machine learning:

• actually learn the difference between data domains
• translate both data to a single common hyperspace

M. Kabus, M. Jakubowska, 
Ł. Graczykowski, K. Deja
JINST 17, C07016. 2022
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More to go: domain adaptation
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Feature mapping: input → domain invariant features

Particle classifier: recognize particles based on domain invariant latent space

Domain classifier: recognize MC vs real samples

Training more complicated:

1. Train the domain classifier independently.
2. Freeze the domain classifier.
3. Train jointly particle classifier and feature mapper

adversarially to the domain classifier.
4. Weights of the feature mapper:

gradient from particle classifier
+ reversed gradient from domain classifier

Application time similar to a standard classifier

Our current solution still misses this step

More to go: domain adaptation
M. Kabus, M. Jakubowska, 
Ł. Graczykowski, K. Deja
JINST 17, C07016. 2022
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Step 1: Embedding
● Embedding is a technique to handle complex data

● It works by converting high-dimensional data (i.e. sequences of words, documents, images, 
etc.), into lower-dimensional and abstract vector representation (embedding space)

● It allows for capturing meaningful relationships between data entities (words, etc.)

https://www.datacamp.com/tutorial/how-transformers-work 

https://www.datacamp.com/tutorial/how-transformers-work
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Step 1: Feature Set Embedding

Image source: NIPS 2010 article

Feature Set Embedding (NIPS 2010 article):
● first, create (feature,value) pairs; no value → no pair

○ no need to model missing data (i.e. imputation) 
● pairs in embedding space: similar features are close to each 

other
● pairs are then combined (by NN with a single hidden layer) into 

vectors (embeddings)

Missing data challenge: 
classify without making any 
assumptions about the 
missing values

embeddings
32 vectors
in our case

track
19 features
in our case

Output

https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf
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Step 2: Transformer Encoder

● Idea from original Transformer architecture
(NIPS 2017 article)

● In our case, vectors from Embedding are 
processed by the Encoder only

○ it finds relations between available features 
regardless of the amount of missing values

https://www.datacamp.com/tutorial/how-transformers-work 

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.datacamp.com/tutorial/how-transformers-work
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● Encoder processes 32 embedding 
vectors to connect different features 
each vector represents

○ we use 2-head attention (to find 
more complex relationships)

○ each head has 2 layers: 
attention (for to the whole set of 
vectors) + dense NN (applied to 
each vector separately)

○ example: a specific detector 
signal could be used if and only if 
the momentum is in a specific 
range

modified diagram from the 
Transformer article

Step 2: Transformer Encoder

2x
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● The final classifier requires a single output vector, while we have 32 vectors (processed 
embeddings) at the output of the Encoder

○ Solution: another self-attention network (single layer) is used to pool the final vector

self-attention values

self-attention weights

pooled output vector components

Step 3: self-attention pooling

processed embeddings
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Step 4: classification

● Single output vector from the self-attention network is propagated to 
the classifier

● Classifier is represented by one simple neural network (one hidden 
layer) per particle type (one vs all approach)

○ the same architecture is used separately for pions, kaons, protons

● Classifier score: logistic function                       in range (0, 1) 
represents "certainty" that a given particle belongs to the given particle 
type

○ users can still balance the efficiency and purity by setting their 
own threshold on the “certainty” value  


