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(Goals

e Use ALICE and its data as a unique environment for Machine Learning (ML) research

e |[dentify areas where both ALICE (or HEP in general) and ML communities can mutually
benefit from each other

e Our solutions should be easily applicable to other experiments with similar capabilities

e Disclaimer:
o I’m a physicist without a big ML background — few years ago | started my (human)

learning of machine learning :)

o My task is to guide and coordinate the work of WUT ML computer scientists within
ALICE

o The solution may be complicated from a physicist perspective, but the balance is to
keep the project interesting for ML itself and be useful for us at the same time!

2/31



QGP, HI collisions and dedicated experiments

Heavy-lon collisions are used to create, for a brief ertcion  dufegioy Uilwiieshon  resmad  doteefie
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QGP studies require dedicated experiments ALICE Colabraion Pys. . 10, 0407
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In operation: ALICE@LHC, STAR@RHIC, NA61@SPS
in future: CBM@FAIR, MPD@NICA

Sl 0lelEe The Phases of QCD
LHC Experiments °

‘ RHIC Experiments

Temperature

Common feature: Particle Identification (PID)

Quark-Gluon Plasma

e QGP is a bulk phenomenon (low to intermediate-pT

Particles; particle ratios, collective flow, etc.) . .. s
* possibility to identify particles in wide e "

momentum range (down to ~100 MeV/¢) AR o
e 1, K, p,e*, ut, deuterons, tritons, 3He, *He o
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QGP, HI collisions and dedicated experiments

Heavy_lon collisions are used to Crea-te for a brief Ino“AVq—iow qrark—glmow hadronisation freeze-ont detection
) collision plasma

moment, a deconfined state of matter - the ;\%/»,

Quark-Gluon Plasma (QGP)

‘b

In operation: ALICE@| HC, STAR@RHIC, NA61@SPS
in future: CBM@FAIR, MPD@NICA

Common feature: Particle Identification (PID)

e QGP is a bulk phenomenon (low to intermediate-pT
Particles; particle ratios, collective flow, etc.)

e possibility to identify particles in wide
momentum range (down to ~100 MeV/c)

e 1, K p, e, u*, deuterons, tritons, SHe, “He
strange and charm hadrons


https://cds.cern.ch/
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https://arxiv.org/abs/1709.00288

Present state-of-art

1.

Traditional method:

e hand-crafted selections of selected quantities, e.g., no

e problems:

e overlapping signals
e high purity at the cost of low efficiency

/\\ log, (dE/dx)
e e

https://arxiv.org/pdf/nucl-ex/0505026.pdf

K -8% 170
K +8% 170
—e-8% 170
—e+8% 170

|—p +8% 170

—p -8% 170

e time-consuming optimization (where the signals cross) " *

e Metrics

e Purity (precision) and efficiency (recall) calculated from MC simulated data with full

#|—1x +8% 170

— 7 8% 170

detector response (anchored to the specific data collection period = run)

e normally measured as a function of transverse momentum p..

Efficiency —

N true positives

{Vtrue particles

Purity =

N true positives

Jvtrue positives + Arfalse positives

" l0g,(P)
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Present state-of-art

1. Traditional method:
e hand-crafted selections of selected quantities, e.g., no
* problems:
e overlapping signals
e high purity at the cost of low efficiency
e time-consuming optimization (where the signals cross)

K -8% 170

K +8% 170)
—e-8% 170
—e+8% 170
—p -8% 170
~—p +8% 170
—1x-8% I70
A — 1 +8% 70

S log, ((dE/dx)

2. Bayesian method (ALICE, EPJ Plus 131 (2016) 168): N ' " ogp
e updating probability of an hypothesis with each new evidence o
e priors = best guess of true particle yields per events not covered in this talk

, . . . _ ” yields similar results
e posteriors ~ purity of a given particle species

® increased purity, results consistent with the traditional method
J

Both methods available in 02 — ALICE Run 3 software

Can we do any better?
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https://link.springer.com/article/10.1140/epjp/i2016-16168-5

Yes!
With ML )



ML for PID

- Efficiency —

o

e

| ALICE Simulation

pp /s=7TeV
PYTHIA 6.4 (Perugia-0 tune)
Kaon selection

Efficiency
(=]
[=)}

from [1]

jVtrue positives

{Vtrue particles

T s
N true positives

0.4

0.21 —— Traditional PID, Total 0.80
——— Random Forest, Total 0.97

0.0

1.2 .

Purity =
1.0
0.8

>

T 0.6 ALICE Simulation
50.

a

pp /s=T7TeV
PYTHIA 6.4 (Perugia-0 tune)
0.44 Kaonselection

0.21 —— Traditional PID, Total 0.88
—— Random Forest, Total 0.97

true positives T Niale positives

from [1]

1.0
pr (GeV/c)

10.0

Advantages of the ML approach to PID:

e classification — a ''standard'’ ML problem
e can use more track parameters as input
e can learn more complex relationships

e many software libraries available

Note also the limitations:

e depends on quality of the training data (MC)
¢ hard to quantify uncertainties
e hard to follow classifier's ''reasoning'' (black box)

Our first works show ML can greatly improve purity
and efficiency:

1. Random Forest: T. Trzcinski, . Graczykowski, M. Glinka,
ALICE Collaboration. Using Random Forest classifier for particle
identification in the ALICE experiment. Conference on Information
Technology, Systems Research and Computational Physics, pp.
3-17.2018

2. Domain Adaptation: M. Kabus, M. Jakubowska, k.
Graczykowski, K. Deja, ALICE Collaboration. Using machine learning
for particle identification in ALICE. JINST, v. 17, p. CO7016. 202%/



https://link.springer.com/chapter/10.1007/978-3-030-18058-4_1
https://iopscience.iop.org/article/10.1088/1748-0221/17/07/C07016

F
https://en.m.wikipedia.org/wiki/File: Random '?ores A

Majority Voting/ Averaging

Final Result

[ J
Decision Tree (3)
[ J
Result (2) Result (3)
[ J
[ J

rest
EXD ain.png

nf,’TPC<2, for p<0.5 GeV/c

\/ni,TPC+ni,T0F<2, for p>0.5 GeV/c

T. Trzcinski, . Graczykowski, M. Glinka,
Conference on Information Technology

Pro Of Of CO n Ce pt R a n d O m FO re St Systems Research and Computational‘

Dataset

/CA.AAA/Q

Physics, 3-17. 2018
Preliminary work with ALICE Run 2 data 2018

First solution - Random Forest
Model works on high-level track parameters

Depends on the quality of Monte Carlo sample and
post-processed information (i.e. no calculation)

Can be used only for analysis-specific use-case
(concrete dataset and specific particle selection)

o model has to be trained by the specific end user

Purity Efficiency
1.0 1.0
0.8 0.8 m
o
z R 5 R
T 0.64 ALICE Simulation % 0.64 ALICE Simulation
& | ppvs=TTeV S pp5=7TeV
PYTHIA 6.4 (Perugia-0 tune) w PYTHIA 6.4 (Perugia-0 tune)
144 Kaon selection 0.44 Kaonselection
)-21 —— Traditional PID, Total 0.88 0.21 —— Traditional PID, Total 0.80
Random Forest, Total 0.97 Random Forest, Total 0.97
0.0
1.0 10.0 1.0 10.0

pr (GeV/c) pr (GeV/c)


https://en.m.wikipedia.org/wiki/File:Random_forest_explain.png

Current solution - our model

e Solution general enough to be used for variety of analyses

e At present our input data has 19 features: i.e. momentum components, charge sign, DCA,,
DCA,, TPC number of clusters, detector signals (TPC dE/dx, TOF time, TRD signal), etc.

e Data might be missing for a given track from one or more detectors due to, e.g., too small p;

e In “standard” ML approaches dealing with such cases, people use data imputation or case
deletion - however artificially altered data may bias the physics results!
o Challenge: classify particles without making any assumptions about the missing values

e The proposed model is much more advanced than the proof-of-concept solution and has
4 steps (see next slides)

e [or details, see our two papers:
o EPJC 84(2024) 7, 691
o JINST 19 (2024) 07, CO7013
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https://link.springer.com/article/10.1140/epjc/s10052-024-13047-3
https://iopscience.iop.org/article/10.1088/1748-0221/19/07/C07013

M. Kasak, K. Deja. M. Karwowska,
Current solution - our model . Jank £90 G54 12020 7, o

M. Karwowska, £G, K. Deja, M. Kasak,

M. Jaik, JINST 19 (2024) 07, C07013

Embedding Attseer:;on Classifier
Input Set Pr:g(i;:on
— o ] softmax_|—¢—> >
Inspired by AMI-Net proposed for
medical diagnosis from incomplete
1. Feature Set Embedding to encode the input features data (medical records)
and their position in input vector Attention-based Multi-instance Neural Network for Medical
2. Transformer Encoder to detect patterns in the input Diagnosis from Incomplete and Low Quality Data
3. Additional self-attention network to pool the encoder St o el T sty o e S v
. . 3Beijing Medicinovo Technology Co.,Ltd., Beijing, China
Output Set Into a Slngle Vec‘tor 13zwan722 1@uni.sydeny.edu.au, ! {josiah.poon, simon.poon}@sydney.edu.au, *sunshidi ~edu.cn
o ) . ) 2019 International Joint Conference on Neural Networks (IJCNN)
4. Classifier (a simple neural network) to classify a given
particle type

details on slide 27 12/31


https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1904.04460
https://ieeexplore.ieee.org/xpl/conhome/8840768/proceeding

Neural Network: How to handle missing data?

Raw input:
| p | TPC | TOF | TRD_
0.1 65.4 3.8 24
1.6 35.6 - 2.7

0.6 35.4 16.7

3.5 57.3

?
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Strategy 1: Mean Imputation

Raw input:

65.4

1.6 35.6 - 2.7
0.6 35.4 16.7 -
3.5 57.3 - -

e R

Transformed input:

65.4
1.6 35.6 10.3 2.7
0.6 35.4 16.7 2.55
3.5 57.3 10.3 2.55

NEXT: Train single neural network. Fill
the same mean values for target data.
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Strategy 2: Regression Imputation

Raw input:

1.6 35.6 - 2.7
0.6 35.4 16.7 -

3.5 57.3 - -

Missing column is treated as
predicted response in regression
method on the basis of the complete
observations.

65.4

Transformed input:

65.4
1.6 35.6 13.3 2.7
0.6 35.4 16.7 2.1
3.5 57.3 17.3 2.5
NEXT: Train single neural network.

Use the same fitted regression model
for target data.
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Strategy 1 & 2: Drawbacks

e Imputation bias: Artificially filling missing values can distort physics results.
e Information loss: A missing feature carries meaning; replacing it with an average

erases that signal.

e Limitations of regression: Standard regression methods may not be precise enough
for the complexity of relationships in High Energy Physics data.

Mean imputation:
: 65.4
1.6 35.6 10.3 2.7

0.6 35.4 16.7 2.55

3.5 57.3 10.3 2.55

Regression imputation:

65.4

1.6 35.6 13.3 2.7
0.6 35.4 16.7 21

3.5 57.3 17.3 25
16/31



Strategy 3: Grouping and Ensembling

Raw input:

II--/
65.4

1.6 35.6 ] 27
0.6 35.4 16.7 ;

::::
3.5 57.3 ] ;

Group observations by missing data
combination. In this example 4
groups exists.

: 65.4 :

II ENE
—> 1.6 35.6 2.7 3.5 57.3

TPC | TOF

0.6 35.4 16.7

NEXT: Train separate neural networks
for every missing data combination.
Ensemble them to make it technically

simpler.
17/31



Strategy 3: Grouping Drawbacks

e Complexity of training: More models are trained (4 in the example).
e Less training data: Each model of the ensembile is trained on merely subset of

original training data; some groups are significantly less numerous: less information for
model to extract.

: 65.4 :
35.4
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Strategy 4: Transformer (our solution)
Why?

e Flexible input handling: Transformer encoder architecture can process data with
varying feature sizes.

e Captures complex relationships: Learns intricate dependencies between features.

e Efficient scaling: Performs well as data size and complexity grow.

Embedding Attseer:i_ion Classifier

i Prediction

Transformer SEOLE
- ~ o | SR
g Encoder Softmax /\

T
[

19/31



Strategy 4: Transformer (our solution)

Raw input: Feature-value encoding:

Lo [we [wr w0
0.1 3.8 24

65.4

Pl 0 0 0 16

16 356 ] 2.7 / 0 1 0 0 356

0.6 35.4 16.7 - 0 0 0 1 2.7

3.5 57.3 - - _
From every observation vector we

EEEEEE encode every feature as separate

vector with position in original vector.
— “:::;:zef( >‘<—» %—» We skip missing data.
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Strategy 4: Transformer (our solution)

Feature-value encoding:

1 0 0 0 1.6
0 1 0 0 35.6
0 0 0 1 2.7

Embedding Classifier

nnnnnnn

/

\\\\\\\\

Prediction
sssss

|
b d

Feature-set embedding:

Embedding Neural Network
NN Layers: [5, 128, 32]

EEECc

0.53 0.25 0.57 0.35 0.16
012 0.67 047 0.23 0.7
092 0.72 0.34 0.86 0.85

21/31



Strategy 4: Transformer (our solution)

Feature-value encoding:

1 0 0 1.6
0 1 0 35.6
0 0 1 2.7
N J
Y

In reality we have 19 features
for every particle track, which
makes encoded vectors of 20
variables.

/

Feature-set embedding:

Embedding Neural Network
NN Layers: [20, 128, 32]

EEECc

0.53 0.25 0.57 0.35 0.16

012 0.67 047 0.23 0.7

092 0.72 0.34 0.86 0.85

22/31



Strategy 4: Transformer (our solution)

Feature-set embedding:

ECEI
0.53 0.25 0.57 0.35

012 0.67 047 0.23

092 0.72 0.34 0.86

Embedding selt Classifier

nnnnnnn

Transformer Encoder
> 2 blocks, 2 heads
(multi-head attention)

y
EaE

0.23 054 0.87 0.45

0.54 043 012 0.73 0.57

0.54 054 0.63 0.16 0.65

Transformer Encoder layer captures
complex relationships between features.
Dimensionality of data is the same.

23/31



Strategy 4: Transformer (our solution)

After Transformer Encoder:

Self-attention pooling NN
NN Layers: [32, 64, 32]

* S
023 054 087 o4s g ose | SOTTX
054 043 012 0.73 0.57 005 0.03 0.08 0.01
> .
054 054 063 0.16 065  [3,32] weights 003 008 0.06 001 0.1
iy, [ = ] - 0.02 004 0.07 0.05 0.03

Neural Networks learns to weight columns
for given vector. Then softmax is applied to
transform real numbers to weights.

24/31



Strategy 4: Transformer (our solution)

With weights calculated:

--

0.23 0.54 036 ¥ 0.05 0.03 0.01 0.01 0.02

0.54 0.43 057 § 0.03 0.08 01 = 0.02 0.03 0.06

0.54 0.54 065 ¢ 0.02 0.04 0.03 0.01 0.02 0.02
-+ EICIEEY

EEEEEE 0.04 0.07 0.08

% o *H—”“"‘* % ' Perform element-wise multiplication of
‘ rows of data and weights matrices. Take a

sum over columns to obtain single vector.

25/31




Strategy 4: Transformer (our solution)

Pooled vector:

xxxxxxxx

0.04 0.07

l_,

Classifier

NN Layers: [32, 64, 1]

Embedding

nnnnnnn

ccccccc

Classifier

—>*

Prediction

CICIEE

0.08

Prediction Is it kaon?
(certainty)

True YES
067205 <
False NO

User-specified, flexible threshold to
make final binary prediction.
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M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, +G

Detalls Of the arChlteCture M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, £G, K. Deja, M. Kasak,
M. Jaik, JINST 19 (2024) 07, C07013

Embedding Attseer::on Classifier

—_— Prediction This model is applied
— B —>_Softmax |—s)¢—> =" separately for pions,

kaons, protons

/ T \ “Cel‘tainty”
heads ~ A

Embedding 7| Transformer encoder N €ach head Seli-attention Classifier
_l,Encoder layer 2 layers (att.+NN) S S
Multi-head attention Neural network
Input Hidden Output| Dimension Heads Input Hidden Output | Input Hidden Output| Input Hidden Output

20 128 32 32 2 32 128 32 32 64 o ¥ 32 64 1

e dropout vélue 0.1 at the output of embedding and each Encoder layer (to limit overfitting)
e activation function (between neural network layers): ReLU (Rectified Linear Unit)
e loss function that is minimized is binary cross entropy (for one vs all approach)

o to minimize differences between predicted and true values (labels from MC truth data)
27/31



M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, +G

TeSt Set u p M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, £G, K. Deja, M. Kasak,
M. Jaik, JINST 19 (2024) 07, C07013

e Dataset: Run 2 general-purpose MC (Pythia 8) pp at /s = 13 TeV with full detector simulation
with GEANT 4 (both MC truth and reconstructed data are used)
o TPC signal is always required
e Standard nc method:
N, 1ecl < 8 for pp < 0.5 GeV/e, (N, pc° + Ny 7o) < 3 for pp = 0.5 GeV/e
e Dataset details:
o no. tracks: ~2.7 million
o 30% - test dataset
o from the 70% of the rest:
m /0% training
m  30% validation

Missing data distribution

HEEl No missing values: 37.14%
Hl TRD, TOF Signals missing: 36.70%
I TOF Signal missing: 24.78%

TRD Signal missing: 1.38%

28/31



M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, G

Results — pions, kaons, protons ¥ &t Easte .

M. Karwowska, £G, K. Deja, M. Kasak,
M. Jaik, JINST 19 (2024) 07, C07013

F, = (purity x efficiency) / (purity + efficiency)

FSE + attention with very good scores of F., purity (precision) and efficiency (recall)

Proposed model (FSE+Attention) kaon selection
compared to other approaches: Maan e Ensemble  -—— Standard

e imputation:

-~~~ Regression —— Proposed

artificial bias in data
O mean
O regression

e NN ensemble (4 networks):
potentially large complexity
less data for training

1.0
e standard: 4
no method “ 0.5
|n0, rcl 2< 3 for ,oT2< 0.5 GeV/c - : : "
\/(no, o NG 1o ) <3 forp,=0.5 GeV/e pr [GeVic]



Integration with O2: user interface € ONNX

O2Physics Python PidOnnxModel class O2Physics
Model loaded via ONNXRuntime
PID ML producer task PID ML Python software Your main O2 analysis task
Convert tracks m—eep 12N Neural network on comparable MC input data »  Analyze input collisions and tracks
to PID ML input Store trained models on GRID using track PID from the PID ML task
PidOnnxInterface class PidOnnxMadel
- i X
PidOnnxModel PidOnnxModel Select model to load
PidOnnxModel

e 1instance = 1 model = 1 particle species recognized (yes / no)

e convenient interface clearly separated from the rest of analysis

e using all capabilities of Python ML libraries for training

e  ONNKX file format and ONNXRuntime software used for inference in O? C++ environment

e models stored in CCDB (experiment’s database) for each run and available to access in data
analysis code by users (via a “helper task”)

PidOnnxInterface

e automatically select most suitable model for user needs or manual mode

e gs little additional knowledge from the analyser as possible (‘change 1 line in the code”)

https://onnx.ai/ 30/31



https://onnx.ai/

Conclusions
R&D phase of the ML PID (almost) finished!

FSE+Attention model works well for the three basic identified hadron species (pions, kaons,
protons)

Lots of work done, but still more ahead!
Plans for future:

e tests with Run 3 data with new O? analysis framework (ongoing)

e automation of model training and regular training of models for new Run 3 datasets
(implementation)

e extending the model with domain adaptation (still to do)

e advertise PID ML among ALICE analyzers (to do when fully implemented) and outside ALICE

The work has been carried out by an interdisciplinary team from 4 faculties of WUT:

e Physics: . Graczykowski (general idea, coordination, evaluation), M. Janik (evaluation), M.
Karwowska (implementation), S. Monira (tests of implemented model)

e Flectronics and Information Technology: Kamil Deja, Mitosz Kasak (ML R&D)

e Flectrical Engineering: Monika Jakubowska (coordination, evaluation) 31/31

e Mathematics and Computer Science: Marek Mytkowski, Mateusz Oledzki (implementation)
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In a nutshell: the general analysis task structure

Data Model M Your analysis task!
— = | - - | - |
i 1 1 T 1 g Collisions f struct yourAwesome lask Basic task definition
produces<something> name; Declares tables that may be created by this task
C_ I ] I I ——
Partition declarations Declares partitions: new tables based on selection criteria
| I I | }
Filter declarations Declares fifters: selection criteria
[E— p—
Output object declarations Declares output objects: Histograms or HistogramRegistry
Configurable declarations Declares configurables: values that can be set by user
Examples: :
* loop over tracks in each event | init() Set up before processing data
* loop over cascades in each event

o ====P process(®®eee) Subscribe (connect to input) and process data
e Correlate cascades with |ets ;

— do physics! defineDataProcessing() Information for task -> DPL processor conversion

ees oo — tells the framework which tables the user is interested in and which to merge / relate to one another

Very theoretical — now we will go practicall Let's run and customize our own task

O2AT4 - First hands-on session 3 ALICE


https://onnx.ai/

Crash course: how do you run something?

* FEach analysis task is an executable — this means you can run them in the command line!

102—analysistutorial—histogramsjl——aod—file AO2D.root | loZ—analysis—track—propagation Al (\)Z—analysis—timestampJ
T T T T
Example task Input file Helper task Helper task
Propagates tracks to PV Provides timestamps

» All tasks have to be provided separated with a ‘pipe’ character (“|")
e —-aod-file can receive an AO2D file or you can use ——aod-file @listoffiles.txt with a list of files!
* Typically, many helper tasks are required: we will introduce you to this in the hands-on!
* This is,among other things, a consequence of the AO2D content

* not all table information is available in the AO2D: minimalistic!

* Some tables and columns are generated on-the-fly to minimize data storage: a strict necessity in Run 3!

* General event (centrality/multiplicity percentile) and track properties (PID values) have to be calculated!
* And beyond that: tracks are stored at their ‘innermost update’ in the AO2D (TrackslU)

* Tracks to be propagated to the primary vertices by the track propagation task

* WEe'll also show you this later...

O2AT4 - First hands-on session 4
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TPC signal (a.u.)

Run 2 results

e ppat7 TeV, Pythia 6 Perugia-0

e kaons vs other particles

Traditional PID:

2
Ng TPC

2 2
\/no,TPC + N5 ToF

pr < 0.5GeV/c
pr > 0.5GeV /c

much higher /
efficiency and purity
with Random Forest

N

Contamination of kaon samples

300

250— l

E M 0 | ALICE Simulation

- MC traditional g e =
200— Contamination of kaon sample =
150~ |
100 :— =

50—
0 C | L]
1 10

p (GeVic)

102

TPC signal (a.u.)

300

250

200

150

100

50

0

II\\llllll\\llllll\‘ill\‘\lll

ALICE Simulation

pp {s=13TeV

PYTHIA8
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Example: FSE with one-hot
encoding

M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, £. Graczykowski

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, k. Graczykowski, K. Deja,
M. Kasak, JINST 19 (2024) 07, C07013

Table 1: Preprocessing of data samples into feature set values — example.

(a) 3 data samples with 5 attributes with different amount of missing values.

id | momentum | TOF | TPC | TRD | ITS
1 k1 3 5)
2 7 70 24 13| 88
3 78
(b) First particle (c) Second particle. (d) Third particle.
key value key value key value
1/0(010]0 0.1 1{0(010]0 ] 0/1]0 78
0/0]1]01]0 3 011]0(01]0 70
001001 5) 0/0|1]01]0 24
01010110 13
010|001 88
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Step 2: Transformer Encoder
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Attention Is All You Need
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|dea from original Transformer architecture proposed
by Google (NIPS 2017 article)

Developed for transforming input data into a
contextualized representation on the output

Transformer currently serves as basis for the Natural
Language Processing tools (such as ChatGPT)

In our case, vectors from Embedding are
processed by the Encoder only

o we do not need Decoder in our use-case 37/31
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Steps 2 and 3: self-attention

Attention and self-attention are mechanisms used to
help model focus on relevant parts of the input data
o self-attention focuses on relationships within
the same input sequence

Example: "The cat sat on the mat"

o when processing the word "cat," it considers
other words (i.e. "the" or "mat") to understand
their contribution to the meaning of "cat" (in the
context of the entire sentence)

is

Usage of self-attention in Transformer architecture:

o in single-head attention, a single set of attention
scores is used to focus on a particular part of the
input sequence — limited ability to capture
different relationships

o multi-headed attention uses multiple attention
heads, where each head focuses on different
parts of the input simultaneously

in

in

this
spirit
that

nnnnnnnnnnnnnnnnnnn

nnnnnnn

We use self-attention twice:
e in Transformer Encoder
e Dbefore Classifier

this

spirit

that
majority
of
American
governments
have
passed
new

laws
since
2009
making
the
registration
voting
process
more
difficult
<EOS>
<pad>
<pad>
<pad>
<pad>
<pad>
<pad>

attentions

a
majority
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voting

American
governments
have
passed
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2009
making
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registration
process
more

B [Eiffcutt
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<pad>
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<pad>
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colors = attentions from different heads

NIPS 2017 article
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Results

F, =2 x (purity x efficiency) / (purity + efficiency)

ML outperforms the standard way

FSE + attention with very good
scores Of F,

No flaws of other methods:

e imputation:
artificial bias in data
e case deletion:
no ability to analyze samples
with missing detector signals
e NN ensemble:
potentially large complexity

m p K m o K
standard 87.87 £0.87(74.61 £1.88(73.17 £+ 1.57|87.66 + 0.8769.12 + 1.93(69.44 + 1.60
NN ensemble |98.45 + 0.04|95.42 + 0.12 (86.74 + 0.16 [ 98.27 + 0.42|94.60 + 0.10(84.91 + 0.48
mean 98.40 + 0.01[95.54 + 0.06 | 86.36 + 0.34 |98.34 + 0.01[94.75 + 0.20 | 84.67 + 0.38
attention + FSE [98.50 + 0.02 (95.79 + 0.07 [ 87.44 + 0.14 |98.44 + 0.02(94.89 + 0.14 [ 86.00 + 0.13
regression 98.40 + 0.04(95.49 + 0.15(86.22 + 0.46 |98.36 + 0.03 | 94.57 + 0.13[85.01 + 0.13
m, P, K, m, P K,
only only only only only only
complete complete complete complete complete complete
data data data data data data
case deletion  [99.37 + 0.01(99.43 + 0.1696.95 + 0.06 |99.37 + 0.01]99.13 + 0.2696.33 + 0.11
NN ensemble [99.38 + 0.01[99.46 + 0.13(97.23 + 0.10(99.34 + 0.18|99.33 + 0.10[96.87 + 0.09
mean 99.27 + 0.04[99.47 + 0.08 | 96.08 + 0.36 |99.27 + 0.04 [99.20 + 0.27(95.45 + 0.33
attention + FSE | 99.36 + 0.01[99.48 + 0.02 |97.04 + 0.17 |99.37 + 0.03|99.44 + 0.0896.91 + 0.11
regression 99.25 + 0.07(99.37 + 0.0795.62 + 0.39]99.28 + 0.02(99.10 £ 0.13[95.11 + 0.58

39/31




Example: FSE with one-hot
encoding

M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, £. Graczykowski

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, k. Graczykowski, K. Deja,
M. Kasak, JINST 19 (2024) 07, C07013

Table 1: Preprocessing of data samples into feature set values — example.

(a) 3 data samples with 5 attributes with different amount of missing values.

id | momentum | TOF | TPC | TRD | ITS
1 k1 3 5)
2 7 70 24 13| 88
3 78
(b) First particle (c) Second particle. (d) Third particle.
key value key value key value
1/0(010]0 0.1 1{0(010]0 ] 0/1]0 78
0/0]1]01]0 3 011]0(01]0 70
001001 5) 0/0|1]01]0 24
01010110 13
010|001 88
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Embedding Classifier

The attention continued .. %

2. Transformer Encoder

rrrrrrrrrrrrr

nnnnn

Output
4 Linear . .
e w ° gdjusted original Transformer
Feed ncoder
s . e attention without convolutions and
N=2 N R ScaledAtE)gr:;izlr’]oduot .J&h recurrence
—— / T 1 I e finding self-correlations in an
&nﬁi) [rLinear]J[Ir_inear]_][T_inear]J |nStanC9 Set Of VQF)’[OI’S .
1 ¥ 7 ¥ e example: a specific detector signal
g could be used if and only if the
Emb‘}ddi”g v K Q momentum is in a specific range
Inputs Q) K, V e ]:'_{nxdl.c
modified diqgram Q KT
from the article Attention(Q, K, V) = softmax ( > 1%
Vdy
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Self-
Attention

Pooli d classification _.
ooling and classification %% [%ﬂ%%_,

Classifier: a simple neural network
expects a single vector as an input

Solution: self-attention to pool the variable-size vector set from Transformer Encoder

{U17U27'“7U1’L}7 () S RdmOdel

e; = NN (Uz) Vi € [1, n] self-attention values
/ / :
o = softmax (6j) Vj € |1, dmodel] self-attention weights
n
0j = Z Ok Uk Vi € (1, dnodel] pooled output vector
k=1

Classifier score: logistic function f (z) = H% range (O, 1)

"certainty" that a given particle belongs to the given type
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Architecture of tested neural networks

Attention + FSE

e embedding layers: 19 — 128 — 32 neurons
e Transformer Encoder:
e Multi-Head Attention: dimension 32, 2 heads
e neural network layers: 32 — 128 — 32 neurons
e 2 layers of Multi-Head Attention + neural network
Self-Attention layers: 32 — 64 — 32 neurons
classifier layers: 32 — 64 — 1 neurons
dropout 0.1 at the output of embedding and each Transformer Encoder layer
RelU activation between neural network layers
classifier loss function: binary cross entropy

Imputations, case deletion, and NN ensemble

e 3 hidden layers of sizes 64, 32, 16 with Leaky Rel.U activation

e dropout 0.1 after each activation layer

* input size:
e imputations and case deletion: 19 as all missing features are imputed
e ensemble: 4 networks with input sizes 19, 17, 17, 15
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Simple network implementation O PyTorch

e linear layers with RelLU, sigmoid at the end
e simple: dropout after each linear layer

Parameters:

e optimizer: Adam

e output layer: 1 node (yes / no for a given particle)
e |oss function: binary cross entropy

e scheduler: exponential with rate 0.98

® |earning rate: 0.0005

e Dpatch size: 64

e epochs: 30
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Precision

Sample ROC curves

FSE+attention achieves best resulits.

Little variation between particle species.

kaon classification pion classification proton classification
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M. Kabus, M. Jakubowska,
t. Graczykowski, K. Deja

MOre to go domaln adaptat|on JINST 17, C07016. 2022

e Monte Carlo never ideally matches the experimental data (both
physics and detector response simulation)

¢ Problem: transferring the knowledge from a labeled source domain
(MC data) to unlabeled target domain (experimental data), when
both domains have different distributions of attributes

e How can we transfer the knowledge from training to inference?

Standard PID example: '"tune on data"

e et parametrization from data — real data

e generate a random detector signal — MC data

e cquivalent distributions of real and MC samples
— the differences are statistical fluctuations

e does not include correlations between attributes

Machine learning:

e actually learn the difference between data domains =
e translate both data to a single common hyperspace == nms il e




More to go: domain adaptatlon
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More to go: domain adaptation

Feature mapping: input — domain invariant features

Particle classifier: recognize particles based on domain invariant latent space

Domain classifier: recognize MC vs real samples
Training more complicated:

1. Train the domain classifier independently.
2. Freeze the domain classifier.

3. Train jointly particle classifier and feature mapper -

adversarially to the domain classifier.

4.  Weights of the feature mapper:
gradient from particle classifier Input .
+ reversed gradient from domain classifier

Application time similar to a standard classifier

Our current solution still misses this step

Feature
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mapping

Linear 200 nodes
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i Linear 200 nodes
[ Linear 200 nodes ‘

Gradient reverse l

M. Kabus, M. Jakubowska,
t. Graczykowski, K. Deja
JINST 17, CO7016. 2022

v

Linear 50 nodes

| Linear 50 nodes |

/

Linear 200 nodes |

*>O Domain label
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Step 1: Embedding %(%ﬁgjﬁ%

Embedding is a technique to handle complex data

e |t works by converting high-dimensional data (i.e. sequences of words, documents, images,
etc.), into lower-dimensional and abstract vector representation (embedding space)

e |t allows for capturing meaningful relationships between data entities (words, etc.)

< JEAS ) = ( ) | S Ul

{ INPUT EMBEDDING }

https://www.datacam com/tutorlal/how transformers -work
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Step 1: Feature Set Embedding - ¥ -

Feature Set Embedding (NIPS 2010 article):

mmmmmmmm

Missing data challenge:
classify without making any
assumptions about the
missing values

Feature Set Embedding for Incomplete Data

e first, create (feature,value) pairs; no value — no pair

no need to model missing data (i.e. imputation)

O
:> e pairs in embedding space: similar features are close to each
other
e pairs are then combined (by NN with a single hidden layer) into
vectors (embeddings)

track
19 features <
in our case

f

-

Input f Set Embedding \

[ Feature A: 0.15 j E
Feature B missing |~ """ U I .
Feature C missing PRI p(E‘O 28)
Feature D missing ’: |

( Feature E: 0.28 ) i

( Feature F: 0.77 ) - i
Feature G missing p(A,0.15) i

Image source: NIPS 2010 article

Output

embeddings

» 32 vectors

in our case
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https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf

h

Step 2: Transformer Encoder

[ ¢Cémo estds? ]
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W N :' K ?
|| ENCODER|— | . | DECODER ;!
] ) X iR

TRANSFORMER

T [ J
ttps://www.datacamp.com/tutorial/how-transformers-work

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Rescarch Google Rescarch
avaswaniQgoogle.com noam@google.com nikip@google.com usz@google.com
Llio Aidan N. Gomez* Lukasz Kaiser*
carch University of Toronto Google Brain

1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

1llia Polosukhin*
illia.polosukhin®gmail.com

|dea from original Transformer architecture
(NIPS 2017 article)

In our case, vectors from Embedding are
processed by the Encoder only
o it finds relations between available features
regardless of the amount of missing values
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Transformer article
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Encoder processes 32 embedding
vectors to connect different features
each vector represents

o we use 2-head attention (to find
more complex relationships)

o each head has 2 layers:
attention (for to the whole set of
vectors) + dense NN (applied to
each vector separately)

o example: a specific detector
signal could be used if and only if
the momentum is in a specific
range

)"
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Step 3: self-attention pooling —%(% T%ﬁ

e The final classifier requires a single output vector, while we have 32 vectors (processed
embeddings) at the output of the Encoder
o Solution: another self-attention network (single layer) is used to pool the final vector

{?Jl, Vs s ?Jn}, v; € Rdmodel processed embeddings
e; = NN (Uz) Vi € [1, n] self-attention values
a; = s0 ftmax(e}) Vj € [1,dmoder]  self-attention weights
n
0; = Z Ol Ukj Vi € (1, dnodel] pooled output vector components
k=1
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Step 4: classification

e Single output vector from the self-attention network is propagated to
the classifier

e Classifier is represented by one simple neural network (one hidden
layer) per particle type (one vs all approach)
o the same architecture is used separately for pions, kaons, protons
e Classifier score: logistic function f(z) = 5 +i_x in range (0, 1)
represents "certainty" that a given particle belongs to the given particle
type
o users can still balance the efficiency and purity by setting their
own threshold on the “certainty” value
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