

NP-Twins 2025

Faculty of Physics
Warsaw University of Technology

Towards more precise correlation studies with machine learning-based particle identification with missing data

Łukasz Graczykowski, Marek Mytkowski

in collaboration with

M. Janik, M. Karwowska, S. Monira, K. Deja, M. Kasak, M. Jakubowska, M. Olędzki

Messina, Italy 6 October 2025

Based on: EPJ C 84 (2024) 7, 691 JINST 19 (2024) 07, C07013

Goals

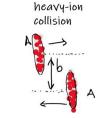
- Use ALICE and its data as a unique environment for Machine Learning (ML) research
- Identify areas where both ALICE (or HEP in general) and ML communities can mutually benefit from each other
- Our solutions should be easily applicable to other experiments with similar capabilities

• Disclaimer:

- I'm a physicist without a big ML background few years ago I started my (human)
 learning of machine learning :)
- My task is to guide and coordinate the work of WUT ML computer scientists within ALICE
- The solution may be **complicated** from a physicist perspective, but the balance is to keep the project interesting for ML itself and be useful for us at the same time!

QGP, HI collisions and dedicated experiments

Heavy-Ion collisions are used to create, for a brief moment, a deconfined state of matter - the **Quark-Gluon Plasma (QGP)**



quark-gluon

plasma

hadronisation

detection

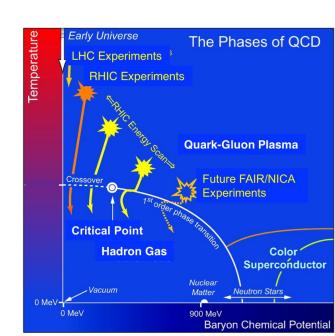
ALICE Collaboration Phys. Rev. C 101, 044907

QGP studies require dedicated experiments

In operation: ALICE@LHC, STAR@RHIC, NA61@SPS in future: CBM@FAIR, MPD@NICA

Common feature: Particle Identification (PID)

- QGP is a bulk phenomenon (low to intermediate-pT Particles; particle ratios, collective flow, etc.)
- possibility to identify particles in wide momentum range (down to ~100 MeV/c)
- π, K, p, e[±], μ[±], deuterons, tritons, ³He, ⁴He
 strange and charm hadrons



QGP, HI collisions and dedicated experiments

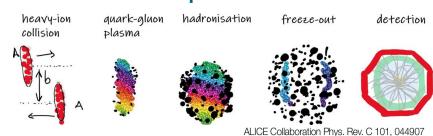
Heavy-Ion collisions are used to create, for a brief moment, a deconfined state of matter - the

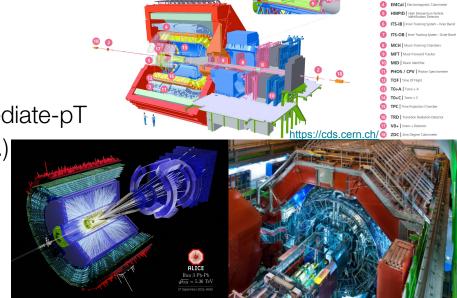
QGP studies require **dedicated experiments**

In operation: <u>ALICE@LHC</u>, STAR@RHIC, NA61@SPS in future: CBM@FAIR, MPD@NICA

Common feature: Particle Identification (PID)

- QGP is a bulk phenomenon (low to intermediate-pT
 - Particles; particle ratios, collective flow, etc.)
- possibility to identify particles in wide momentum range (down to ~100 MeV/c)
- π, K, p, e[±], μ[±], deuterons, tritons, ³He, ⁴He strange and charm hadrons



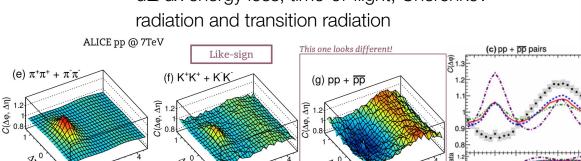


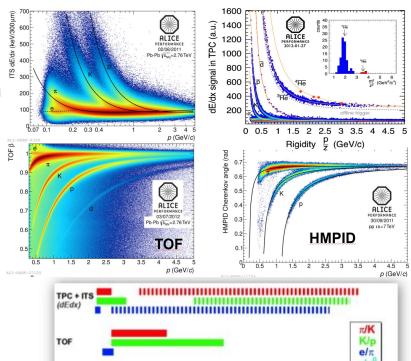
Particle identification (PID)

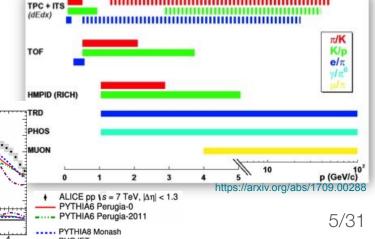
Aim: provide high purity samples of particles of a given type

- an essential step for many physics analyses, especially correlations of identified particles
- we use ALICE as our R&D environment
- PID is a distinguishing feature of ALICE

- identification of particles of momenta in a very wide momentum range
- practically all known PID techniques employed: dE/dx energy loss, time-of-flight, Cherenkov radiation and transition radiation



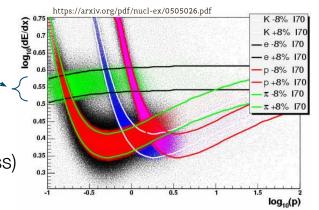




Present state-of-art

1. Traditional method:

- hand-crafted selections of selected quantities, e.g., nσ
- problems:
 - overlapping signals
 - high purity at the cost of low efficiency
 - time-consuming optimization (where the signals cross)



Metrics

- **Purity (precision)** and **efficiency (recall)** calculated from MC simulated data with full detector response (anchored to the specific data collection period = run)
 - ullet normally measured as a function of transverse momentum p_{T}

$$ext{Efficiency} = rac{N_{ ext{true positives}}}{N_{ ext{true particles}}}$$

$$ext{Purity} = rac{N_{ ext{true positives}}}{N_{ ext{true positives}} + N_{ ext{false positives}}}$$

Present state-of-art

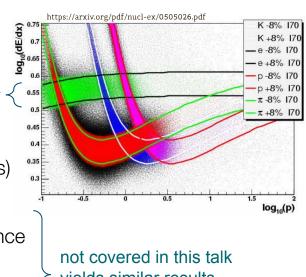
Traditional method:

- hand-crafted selections of selected quantities, e.g., **no**
- problems:
 - overlapping signals
 - high purity at the cost of low efficiency
 - time-consuming optimization (where the signals cross)

Bayesian method (ALICE, EPJ Plus 131 (2016) 168):

- updating probability of an hypothesis with each new evidence
- priors = best guess of true particle yields per events
- posteriors ~ purity of a given particle species
- increased purity, results consistent with the traditional method

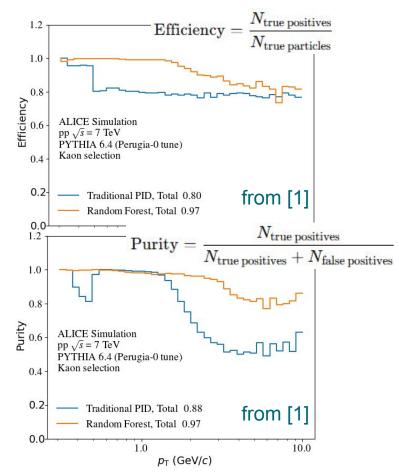
Both methods available in O² – ALICE Run 3 software



yields similar results

Yes! With ML:)

ML for PID



Advantages of the ML approach to PID:

- classification a "standard" ML problem
- can use more track parameters as input
- can learn more complex relationships
- many software libraries available

Note also **the limitations**:

- depends on quality of the training data (MC)
- hard to quantify uncertainties
- hard to follow classifier's "reasoning" (black box)

Our **first works** show ML can **greatly improve** purity and efficiency:

- **1.** Random Forest: T. Trzciński, Ł. Graczykowski, M. Glinka, ALICE Collaboration. Using Random Forest classifier for particle identification in the ALICE experiment. Conference on Information Technology, Systems Research and Computational Physics, pp. 3-17, 2018
- **2.** <u>Domain Adaptation</u>: M. Kabus, M. Jakubowska, Ł. Graczykowski, K. Deja, ALICE Collaboration. Using machine learning for particle identification in ALICE. JINST, v. 17, p. C07016. 2022

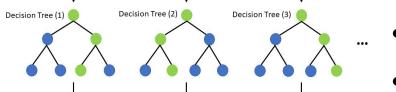
9/31

Result (3)

T. Trzciński, Ł. Graczykowski, M. Glinka, Conference on Information Technology, Systems Research and Computational Physics, 3-17, 2018

Preliminary work with ALICE Run 2 data

2018



Result (2)

Majority Voting/ Averaging

Final Result

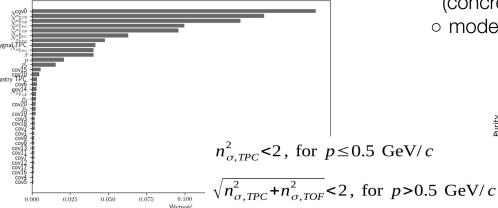
Random Forest

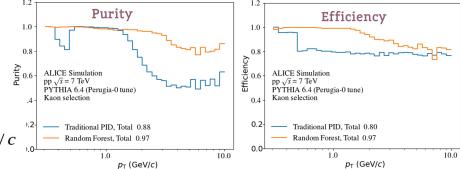
Ważność atrybutów

Result (1)

https://en.m.wikipedia.org/wiki/File:Random

- First solution Random Forest
- Model works on high-level track parameters
- Depends on the quality of Monte Carlo sample and post-processed information (i.e. no calculation)
- Can be used **only for analysis-specific use-case** (concrete dataset and specific particle selection)
 - model has to be trained by the specific end user

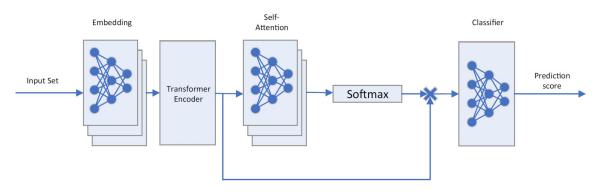




Current solution - our model

- Solution **general enough** to be used for variety of analyses
- At present our input data has 19 features: i.e. momentum components, charge sign, DCA_{XY},
 DCA_Z, TPC number of clusters, detector signals (TPC dE/dx, TOF time, TRD signal), etc.
- Data might be missing for a given track from one or more detectors due to, e.g., too small $\rho_{\rm T}$
- In "standard" ML approaches dealing with such cases, people use data imputation or case deletion however artificially altered data may bias the physics results!
 - Challenge: classify particles <u>without making any assumptions</u> about the missing values
- The proposed model is much more advanced than the proof-of-concept solution and has
 4 steps (see next slides)
- For details, see our two papers:
 - EPJ C 84 (2024) 7, 691
 - o JINST 19 (2024) 07, C07013

Current solution - our model



- Feature Set Embedding to encode the input features and their position in input vector
- **2. Transformer Encoder** to detect patterns in the input
- **3.** Additional **self-attention network** to pool the encoder output set into a single vector
- **4. Classifier** (a simple neural network) to classify a given particle type

M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, ŁG

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, ŁG, K. Deja, M. Kasak,

M. Jaik, JINST 19 (2024) 07, C07013

Inspired by <u>AMI-Net</u> proposed for medical diagnosis from incomplete data (medical records)

Attention-based Multi-instance Neural Network for Medical Diagnosis from Incomplete and Low Quality Data

Zeyuan Wang^{1,3}, Iosiah Poon¹, Shiding Sun², Simon Poon¹

¹School of Computer Science, The University of Sydney, Syndey, Australia

²School of Mathematics, Renmin University of China, Beijing, China

³Beijing Medicinovo Technology Co.,Ltd., Beijing, China

^{1,3}zwan7221@uni.sydeny.edu.au, ¹(fostah.poon, simon.poon/@sydney.edu.au, ²sunshiding@ruc.edu.cn

2019 International Joint Conference on Neural Networks (IJCNN)

Neural Network: How to handle missing data?

Raw input:

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4
1.6	35.6	-	2.7
0.6	35.4	16.7	-
3.5	57.3	-	-

Strategy 1: Mean Imputation

Raw input:

р	TPC	TPC TOF TF	
0.1	65.4 3.8 2.		2.4
1.6	35.6	- 2.7	
0.6	35.4	35.4 16.7	
3.5	57.3 -		-
	mean	10.3	2.55

Transformed input:

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4
1.6	35.6	10.3	2.7
0.6	35.4	16.7	2.55
3.5	57.3	10.3	2.55

NEXT: Train **single** neural network. Fill the same mean values for target data.

Strategy 2: Regression Imputation

Raw input:

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4
1.6	35.6	-	2.7
0.6	35.4	16.7	-
3.5	57.3	_	-

Missing column is treated as predicted response in regression method on the basis of the complete observations.

Transformed input:

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4
1.6	35.6	13.3	2.7
0.6	35.4	16.7	2.1
3.5	57.3	17.3	2.5

NEXT: Train **single** neural network. Use the same fitted regression model for target data.

Strategy 1 & 2: Drawbacks

- Imputation bias: Artificially filling missing values can distort physics results.
- **Information loss:** A missing feature carries meaning; replacing it with an average erases that signal.
- **Limitations of regression:** Standard regression methods may not be precise enough for the complexity of relationships in High Energy Physics data.

Mean imputation:

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4
1.6	35.6	10.3	2.7
0.6	35.4	16.7	2.55
3.5	57.3	10.3	2.55

Regression imputation:

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4
1.6	35.6	13.3	2.7
0.6	35.4	16.7	2.1
3.5	57.3	17.3	2.5

Strategy 3: Grouping and Ensembling

Raw input:

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4
1.6	35.6	-	2.7
0.6	35.4	16.7	_
3.5	57.3	-	-

Group observations by missing data combination. In this example 4 groups exists.

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4

p

0.6

р	TPC	TRD	р	TPC
1.6	35.6	2.7	3.5	57.3
				•

TPC

35.4

TOF

16.7

NEXT: Train **separate** neural networks for every missing data combination. Ensemble them to make it technically simpler.

17/31

Strategy 3: Grouping Drawbacks

- Complexity of training: More models are trained (4 in the example).
- Less training data: Each model of the ensemble is trained on merely subset of original training data; some groups are significantly less numerous: less information for model to extract.

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4

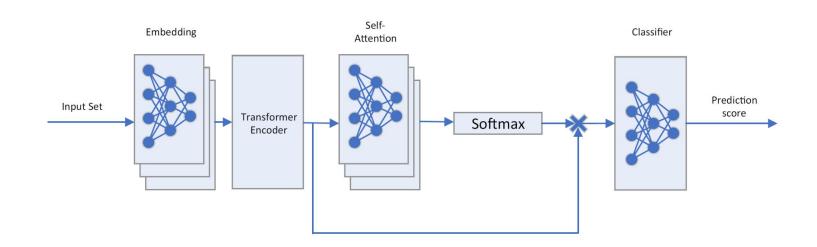
р	TPC
3.5	57.3

р	TPC	TRD
1.6	35.6	2.7

р	TPC	TOF
0.6	35.4	16.7

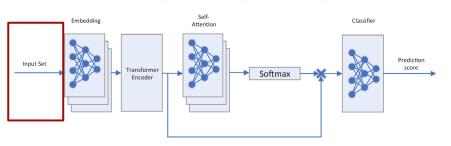
Why?

- **Flexible input handling:** Transformer encoder architecture can process data with varying feature sizes.
- Captures complex relationships: Learns intricate dependencies between features.
- Efficient scaling: Performs well as data size and complexity grow.



Raw input:

р	TPC	TOF	TRD
0.1	65.4	3.8	2.4
1.6	35.6	-	2.7
0.6	35.4	16.7	_
3.5	57.3	-	_



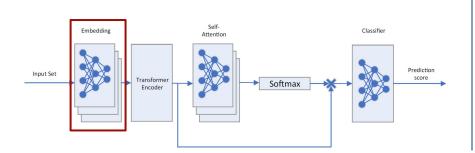
Feature-value encoding:

	Value			
1	0	0	0	1.6
0	1	0	0	35.6
0	0	0	1	2.7

From every observation vector we encode every feature as separate vector with position in original vector. We **skip** missing data.

Feature-value encoding:

	Value			
1	0	0	0	1.6
0	1	0	0	35.6
0	0	0	1	2.7



Feature-set embedding:

Embedding Neural Network

NN Layers: [5, 128, 32]

C1	C2	C3	C4	C32
0.53	0.25	0.57	0.35	0.16
0.12	0.67	0.47	0.23	 0.7
0.92	0.72	0.34	0.86	0.85

Feature-value encoding:

	Value		
1	0	0	1.6
0	1	 0	35.6
0	0	1	2.7

In reality we have 19 features for every particle track, which makes encoded vectors of 20 variables.

Feature-set embedding:

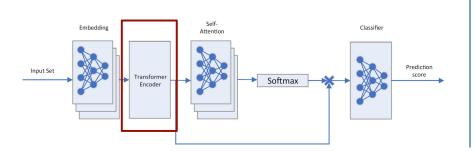
Embedding Neural Network

NN Layers: [20, 128, 32]

C1	C2	C3	C4	C32
0.53	0.25	0.57	0.35	0.16
0.12	0.67	0.47	0.23	 0.7
0.92	0.72	0.34	0.86	0.85

Feature-set embedding:

C1	C2	C3	C4	C32
0.53	0.25	0.57	0.35	0.16
0.12	0.67	0.47	0.23	 0.7
0.92	0.72	0.34	0.86	0.85

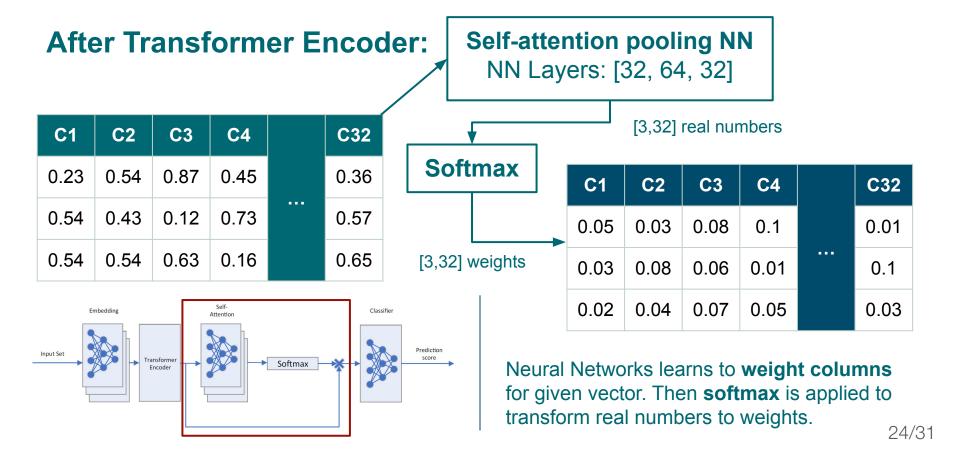


Transformer Encoder

2 blocks, 2 heads (multi-head attention)

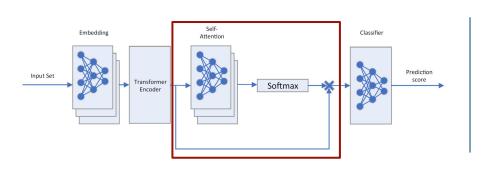
C1	C2	C3	C4	C32
0.23	0.54	0.87	0.45	0.36
0.54	0.43	0.12	0.73	 0.57
0.54	0.54	0.63	0.16	0.65

Transformer Encoder layer **captures complex relationships** between features. Dimensionality of data is the same.



With weights calculated:

C1	C2	C32		C1	C2	C32		C1	C2	C32
0.23	0.54	0.36	×	0.05	0.03	0.01		0.01	0.02	0
0.54	0.43	 0.57	×	0.03	0.08	 0.1	=	0.02	0.03	 0.06
0.54	0.54	0.65	×	0.02	0.04	0.03		0.01	0.02	0.02

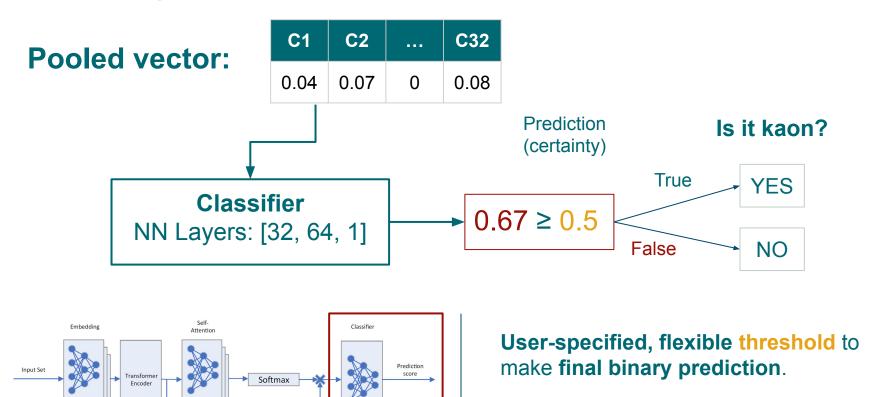


Sum:

C1	C2		C32
0.04	0.07	0	0.08

Perform **element-wise multiplication** of rows of data and weights matrices. Take a **sum over columns** to obtain single vector.

25/31



Details of the architecture

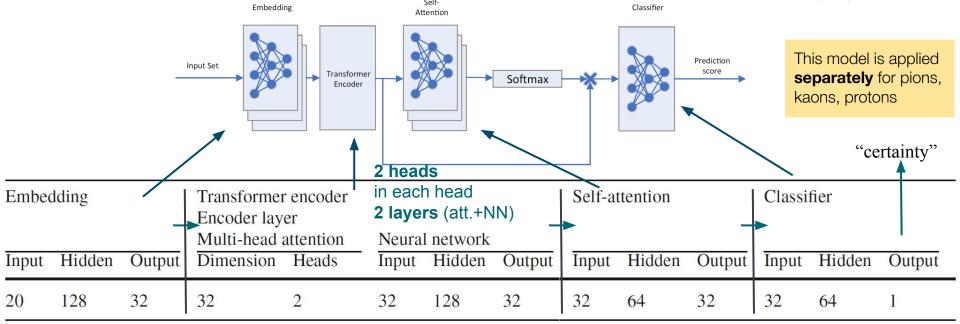
M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, ŁG

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, ŁG, K. Deja, M. Kasak,

M. Jaik, JINST 19 (2024) 07, C07013



- **dropout** value 0.1 at the output of embedding and each Encoder layer (to limit overfitting)
- activation function (between neural network layers): ReLU (Rectified Linear Unit)
- **loss function** that is minimized is *binary cross entropy* (for *one vs all* approach)
 - o to minimize differences between *predicted* and *true* values (labels from MC truth data)

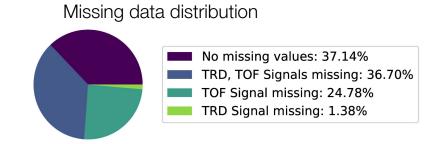
Test setup

M. Kasak, K. Deja. M. Karwowska, M. Jakubowska, ŁG M. Janik, EPJ C 84 (2024) 7, 691 M. Karwowska, ŁG, K. Deja, M. Kasak, M. Jaik, JINST 19 (2024) 07, C07013

- Dataset: Run 2 general-purpose MC (Pythia 8) pp at √s = 13 TeV with full detector simulation with GEANT 4 (both MC truth and reconstructed data are used)
 - TPC signal is always required
- Standard nσ method:

$$|n_{\sigma, TPC}| < 3 \text{ for } p_{T} < 0.5 \text{ GeV/}c, \ \sqrt{(n_{\sigma, TPC}^{2} + n_{\sigma, TOF}^{2})} < 3 \text{ for } p_{T} \ge 0.5 \text{ GeV/}c$$

- Dataset details:
 - o no. tracks: ~2.7 million
 - 30% test dataset
 - o from the 70% of the rest:
 - 70% training
 - 30% validation



Results – pions, kaons, protons

M. Kasak, K. Deja. M. Karwowska, M. Jakubowska, ŁG

M. Janik, EPJ C 84 (2024) 7, 691

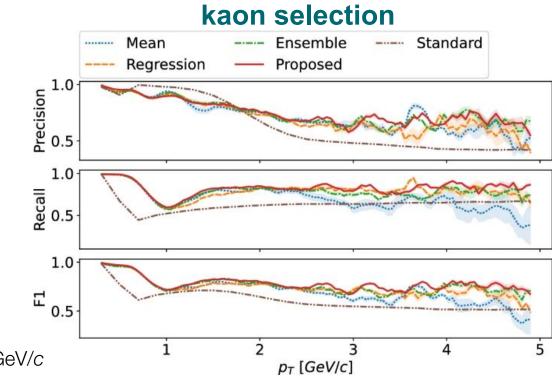
M. Karwowska, ŁG, K. Deja, M. Kasak, M. Jaik, JINST 19 (2024) 07, C07013

F₁ = (purity x efficiency) / (purity + efficiency)

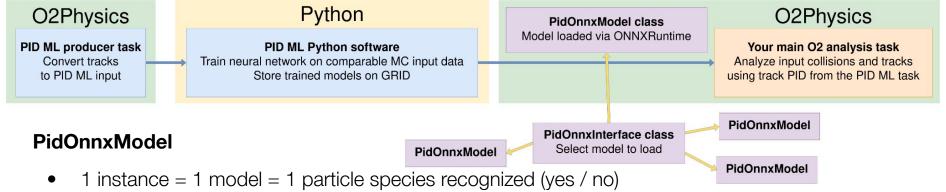
FSE + attention with very good scores of F₁, purity (precision) and efficiency (recall)

Proposed model (FSE+Attention) compared to other approaches:

- imputation: artificial bias in data
 - o mean
 - regression
- NN ensemble (4 networks): potentially large complexity less data for training
- standard: no method $|n_{\sigma, TPC}| < 3 \text{ for } p_{T} < 0.5 \text{ GeV/c}$ $\sqrt{(n_{\sigma, TPC}^{2} + n_{\sigma, TOF}^{2})} < 3 \text{ for } p_{T} \ge 0.5 \text{ GeV/c}$



Integration with O²: user interface



- convenient interface clearly separated from the rest of analysis
- using all capabilities of Python ML libraries for training
- ONNX file format and **ONNXRuntime** software used for inference in O² C++ environment
- models stored in CCDB (experiment's database) for each run and available to access in data analysis code by users (via a "helper task")

PidOnnxInterface

- automatically select most suitable model for user needs or manual mode
- as **little additional knowledge** from the analyser as possible ("change 1 line in the code")

30/31

Conclusions

R&D phase of the ML PID (almost) finished!

FSE+Attention model works well for the three basic identified hadron species (pions, kaons, protons)

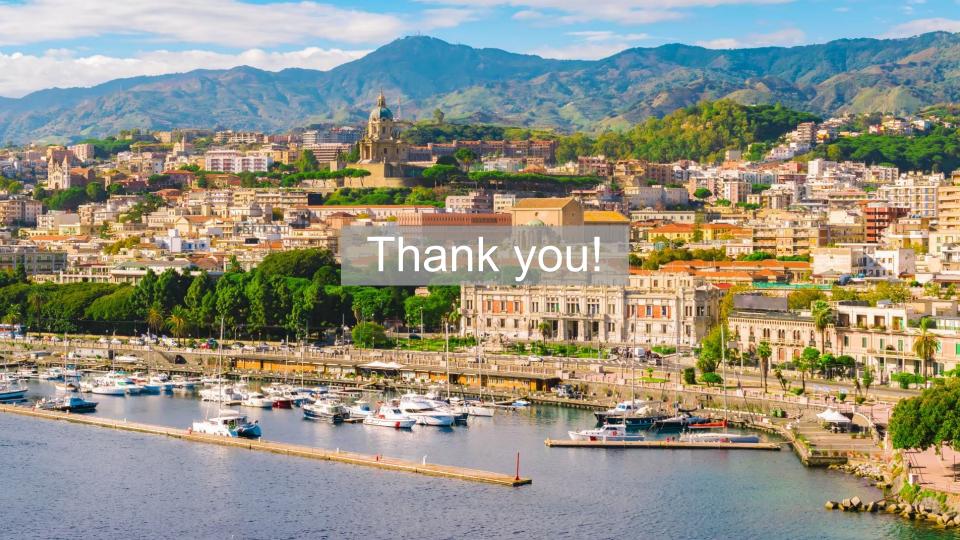
Lots of work done, but still more ahead!

Plans for future:

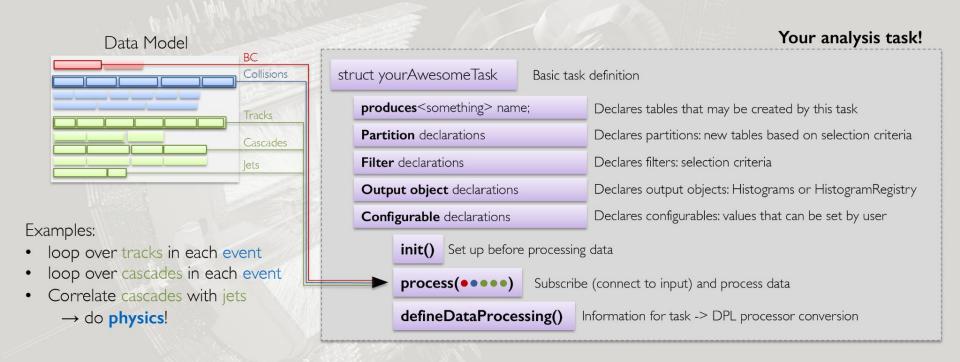
- tests with Run 3 data with new O² analysis framework (ongoing)
- automation of model training and regular training of models for new Run 3 datasets (implementation)
- extending the model with domain adaptation (still to do)
- advertise PID ML among ALICE analyzers (to do when fully implemented) and outside ALICE

The work has been carried out by an interdisciplinary team from 4 faculties of WUT:

- Physics: Ł. Graczykowski (general idea, coordination, evaluation), M. Janik (evaluation), M. Karwowska (implementation), S. Monira (tests of implemented model)
- Electronics and Information Technology: Kamil Deja, Miłosz Kasak (ML R&D)
- Electrical Engineering: Monika Jakubowska (coordination, evaluation)
- Mathematics and Computer Science: Marek Mytkowski, Mateusz Olędzki (implementation)



In a nutshell: the general analysis task structure



•••• = tells the framework which tables the user is interested in and which to merge / relate to one another

Very theoretical → now we will go practical! Let's run and customize our own task

Crash course: how do you run something?

• Each analysis task is an executable → this means you can run them in the command line!

```
Example task Input file Helper task Propagates tracks to PV Provides timestamps
```

- All tasks have to be provided separated with a 'pipe' character ("|")
- --aod-file can receive an AO2D file or you can use --aod-file @listoffiles.txt with a list of files!
- Typically, many helper tasks are required: we will introduce you to this in the hands-on!
- This is, among other things, a consequence of the AO2D content
 - not all table information is available in the AO2D: minimalistic!
 - Some tables and columns are generated on-the-fly to minimize data storage: a strict necessity in Run 3!
- General event (centrality/multiplicity percentile) and track properties (PID values) have to be calculated!
- And beyond that: tracks are stored at their 'innermost update' in the AO2D (TracksIU)
 - Tracks to be propagated to the primary vertices by the track propagation task
 - We'll also show you this later...

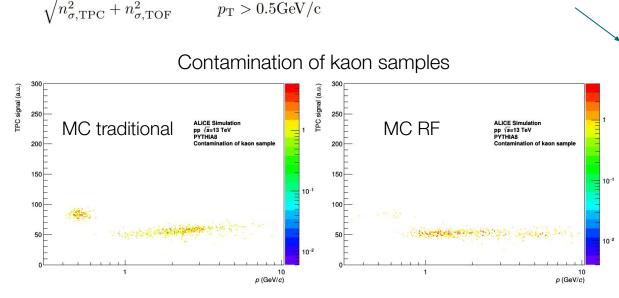
Run 2 results

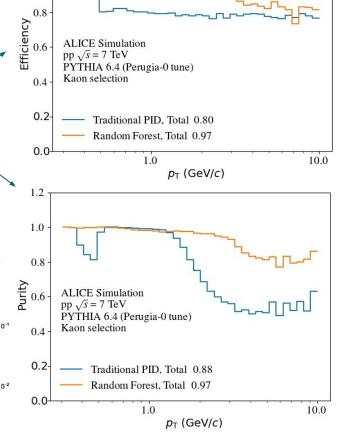
- pp at 7 TeV, Pythia 6 Perugia-0
- kaons vs other particles

Traditional PID:

$$n_{\sigma,\text{TPC}}^2$$
 $p_{\text{T}} \le 0.5 \text{GeV/c}$ $\sqrt{n_{\sigma,\text{TPC}}^2 + n_{\sigma,\text{TOF}}^2}$ $p_{\text{T}} > 0.5 \text{GeV/c}$

1.0





Example: FSE with one-hot encoding

M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, Ł. Graczykowski

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, Ł. Graczykowski, K. Deja, M. Kasak, JINST 19 (2024) 07, C07013

Table 1: Preprocessing of data samples into feature set values – example.

(a) 3 data samples with 5 attributes with different amount of missing values.

id	momentum	TOF	TPC	TRD	ITS
1	0.1		3		5
2	7	70	24	13	88
3		78			

(b) First particle

		value			
1	0	0	0	0	0.1
0	0	1	0	0	3
0	0	0	0	1	5

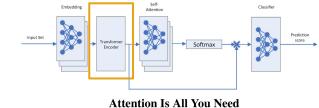
(c) Second particle.

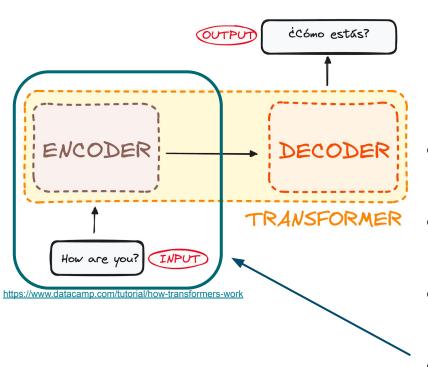
		value			
1	0	0	0	0	7
0	1	0	0	0	70
0	0	1	0	0	24
0	0	0	1	0	13
0	0	0	0	1	88

(d) Third particle.

key					value
0	1	0	0	0	78
			£		
	e e		S		

Step 2: Transformer Encoder





Ashish Vaswani Noam Shazeer Iakob Uszkoreit* Google Brain Google Research Google Research noam@google.com nikip@google.com Aidan N. Gomez* Llion Jones* Łukasz Kaiser* Google Research University of Toronto Google Brain llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com Illia Polosukhin* ‡

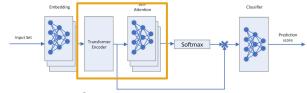
illia.polosukhin@gmail.com

- Idea from original **Transformer** architecture proposed by Google (<u>NIPS 2017 article</u>)
- Developed for transforming input data into a contextualized representation on the output
- Transformer currently serves as basis for the Natural Language Processing tools (such as ChatGPT)
- In our case, vectors from Embedding are processed by the Encoder only
 - we do not need Decoder in our use-case

37/31

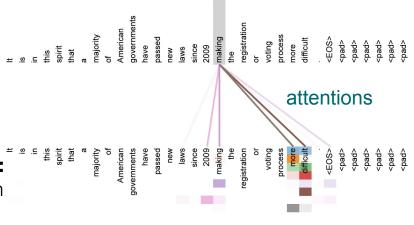
Steps 2 and 3: self-attention

- Attention and self-attention are mechanisms used to help model focus on relevant parts of the input data
 - self-attention focuses on relationships within the same input sequence
- Example: "The cat sat on the mat"
 - when processing the word "cat," it considers other words (i.e. "the" or "mat") to understand their contribution to the meaning of "cat" (in the context of the entire sentence)
- Usage of self-attention in Transformer architecture:
 - in single-head attention, a single set of attention scores is used to focus on a particular part of the input sequence → limited ability to capture different relationships
 - multi-headed attention uses multiple attention heads, where each head focuses on different parts of the input <u>simultaneously</u>



We use self-attention twice:

- in **Transformer Encoder**
- before Classifier



colors = attentions from different heads

NIPS 2017 article

38/31

Results

F₁ = 2 x (purity x efficiency) / (purity + efficiency) best model, 2nd best model

ML outperforms the standard way

FSE + attention with very good scores of F₁

No flaws of other methods:

- imputation: artificial bias in data
- case deletion:
 no ability to analyze samples
 with missing detector signals
- NN ensemble: potentially large complexity

	π	р	K	π^{-}	p	K
standard	87.87 ± 0.87	74.61 ± 1.88	73.17 ± 1.57	87.66 ± 0.87	69.12 ± 1.93	69.44 ± 1.60
NN ensemble	98.45 ± 0.04	95.42 ± 0.12	86.74 ± 0.16	98.27 ± 0.42	94.60 ± 0.10	84.91 ± 0.48
mean	98.40 ± 0.01	95.54 ± 0.06	86.36 ± 0.34	98.34 ± 0.01	94.75 ± 0.20	84.67 ± 0.38
attention + FSE	98.50 ± 0.02	95.79 ± 0.07	87.44 ± 0.14	98.44 ± 0.02	94.89 ± 0.14	86.00 ± 0.13
regression	98.40 ± 0.04	95.49 ± 0.15	86.22 ± 0.46	98.36 ± 0.03	94.57 ± 0.13	85.01 ± 0.13

	π, only complete data	p, only complete data	K, only complete data	π, only complete data	p , only complete data	K, only complete data
case deletion	99.37 ± 0.01	99.43 ± 0.16	96.95 ± 0.06	99.37 ± 0.01	99.13 ± 0.26	96.33 ± 0.11
NN ensemble	99.38 ± 0.01	99.46 ± 0.13	97.23 ± 0.10	99.34 ± 0.18	99.33 ± 0.10	96.87 ± 0.09
mean	99.27 ± 0.04	99.47 ± 0.08	96.08 ± 0.36	99.27 ± 0.04	99.20 ± 0.27	95.45 ± 0.33
attention + FSE	99.36 ± 0.01	99.48 ± 0.02	97.04 ± 0.17	99.37 ± 0.03	99.44 ± 0.08	96.91 ± 0.11
regression	99.25 ± 0.07	99.37 ± 0.07	95.62 ± 0.39	99.28 ± 0.02	99.10 ± 0.13	95.11 ± 0.58

Example: FSE with one-hot encoding

M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, Ł. Graczykowski

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, Ł. Graczykowski, K. Deja, M. Kasak, JINST 19 (2024) 07, C07013

Table 1: Preprocessing of data samples into feature set values – example.

(a) 3 data samples with 5 attributes with different amount of missing values.

id	momentum	TOF	TPC	TRD	ITS
1	0.1		3		5
2	7	70	24	13	88
3		78			

(b) First particle

		value			
1	0	0	0	0	0.1
0	0	1	0	$\mid 0 \mid$	3
0	0	0	0	1	5
J					

(c) Second particle.

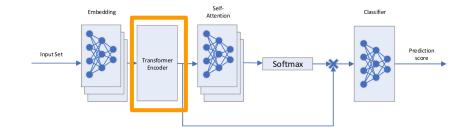
		value			
1	0	0	0	0	7
0	1	0	0	0	70
0	0	1	0	0	24
0	0	0	1	0	13
0	0	0	0	1	88

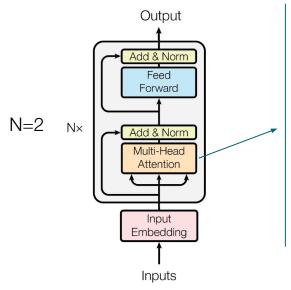
(d) Third particle.

		value			
0	1	0	0	0	78

The attention continued

2. Transformer Encoder





Scaled Dot-Product Attention holds $Q, K, V \in \mathbf{R}^{n \times d_k}$

Linear

Concat

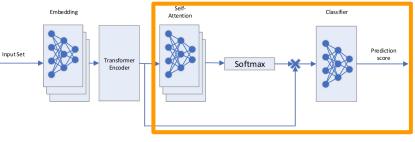
- adjusted original Transformer Encoder
- attention without convolutions and recurrence
- finding self-correlations in an instance set of vectors
- example: a specific detector signal could be used if and only if the momentum is in a specific range

modified diagram from the article

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_k}}\right)V$$

Pooling and classification

Classifier: a simple neural network expects a single vector as an input



Solution: self-attention to pool the variable-size vector set from Transformer Encoder

$$\{v_1,v_2,...,v_n\},\ v_i\in\mathbf{R}^{d_{model}}$$

$$e_i=NN(v_i) \quad \forall i\in[1,n] \qquad \text{self-attention values}$$

$$\alpha'_j=softmax(e'_j) \quad \forall j\in[1,d_{model}] \qquad \text{self-attention weights}$$

$$o_j=\sum_{k=1}^n\alpha_{kj}v_{kj} \quad \forall j\in[1,d_{model}] \qquad \text{pooled output vector}$$

Classifier score: logistic function $f(x) = \frac{1}{1+e^{-x}}$, range (0, 1) "certainty" that a given particle belongs to the given type

Architecture of tested neural networks

Attention + FSE

- embedding layers: 19 128 32 neurons
- Transformer Encoder:
 - Multi-Head Attention: dimension 32, 2 heads
 - neural network layers: 32 128 32 neurons
 - 2 layers of Multi-Head Attention + neural network
- Self-Attention layers: 32 64 32 neurons
- classifier layers: 32 64 1 neurons
- dropout 0.1 at the output of embedding and each Transformer Encoder layer
- ReLU activation between neural network layers
- classifier loss function: binary cross entropy

Imputations, case deletion, and NN ensemble

- 3 hidden layers of sizes 64, 32, 16 with Leaky ReLU activation
- dropout 0.1 after each activation layer
- input size:
 - imputations and case deletion: 19 as all missing features are imputed
 - ensemble: 4 networks with input sizes 19, 17, 17, 15

Simple network implementation

O PyTorch

- linear layers with ReLU, sigmoid at the end
- simple: dropout after each linear layer

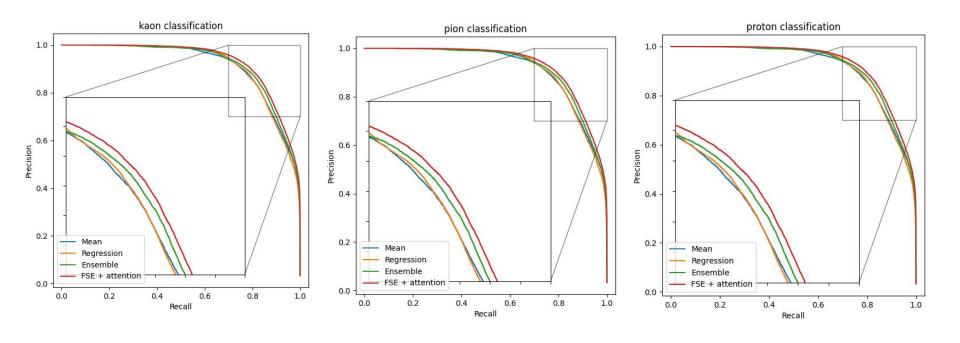
Parameters:

- optimizer: Adam
- output layer: 1 node (yes / no for a given particle)
- loss function: binary cross entropy
- scheduler: exponential with rate 0.98
- learning rate: 0.0005
- batch size: 64
- epochs: 30

Sample ROC curves

FSE+attention achieves **best results.**

Little variation between particle species.



More to go: domain adaptation

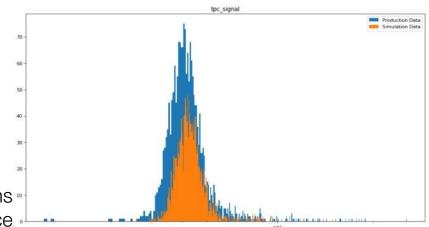
- Monte Carlo never ideally matches the experimental data (both physics and detector response simulation)
- Problem: transferring the knowledge from a labeled source domain (MC data) to unlabeled target domain (experimental data), when both domains have different distributions of attributes
- How can we transfer the knowledge from training to inference?

Standard PID example: "tune on data"

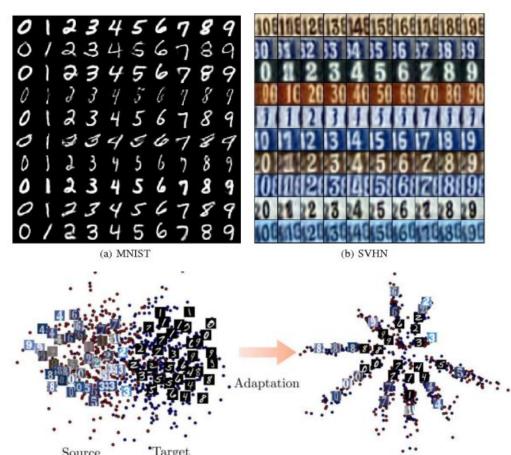
- get parametrization from data → real data
- generate a random detector signal → MC data
- equivalent distributions of real and MC samples
 - the differences are statistical fluctuations
- does not include correlations between attributes

Machine learning:

- actually learn the difference between data domains
- translate both data to a single common hyperspace



More to go: domain adaptation



More to go: domain adaptation

Feature mapping: input → domain invariant features

Particle classifier: recognize particles based on domain invariant latent space

Domain classifier: recognize MC vs real samples

Training more complicated:

1. Train the domain classifier independently.

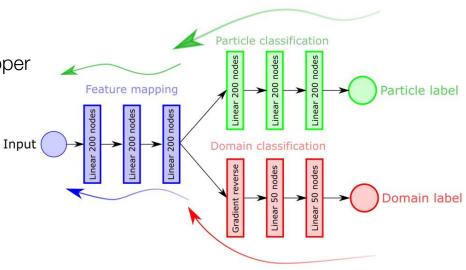
2. Freeze the domain classifier.

3. Train jointly particle classifier and feature mapper **adversarially** to the domain classifier.

4. Weights of the feature mapper: gradient from particle classifier+ reversed gradient from domain classifier

Application time similar to a standard classifier

Our current solution still misses this step



Step 1: Embedding

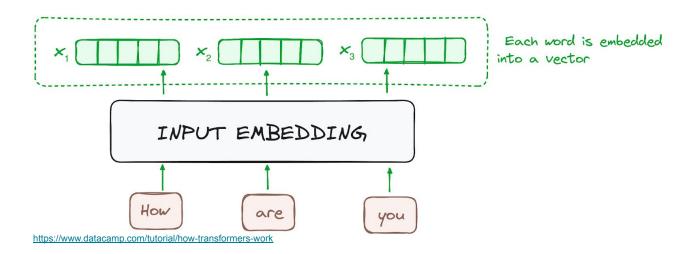
SelfAttention

Transformer
Encoder

Transformer
Encoder

Transformer
Encoder

- Embedding is a technique to handle complex data
- It works by converting high-dimensional data (i.e. sequences of words, documents, images, etc.), into lower-dimensional and abstract vector representation (embedding space)
- It allows for capturing meaningful relationships between data entities (words, etc.)



Step 1: Feature Set Embedding



Missing data challenge:

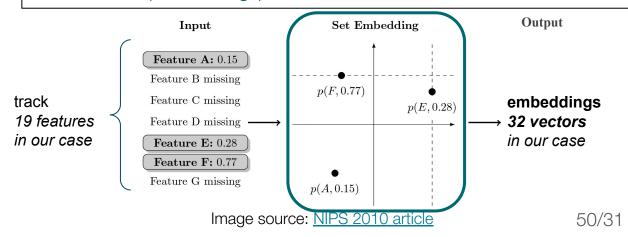
classify without making any assumptions about the missing values

Feature Set Embedding for Incomplete Data

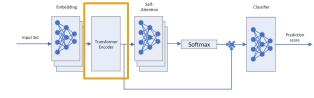
David Grangier NEC Labs America Princeton, NJ dgrangier@nec-labs.com Iain Melvin NEC Labs America Princeton, NJ iain@nec-labs.com

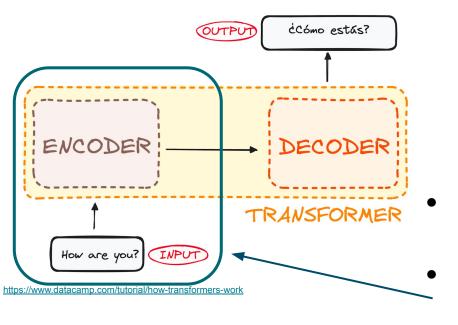
Feature Set Embedding (NIPS 2010 article):

- first, create (feature, value) pairs; no value \rightarrow no pair
 - no need to model missing data (i.e. imputation)
- pairs in embedding space: <u>similar features are close to each</u> <u>other</u>
- pairs are then combined (by NN with a single hidden layer) into vectors (<u>embeddings</u>)



Step 2: Transformer Encoder

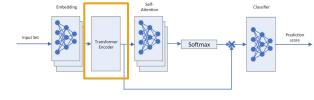


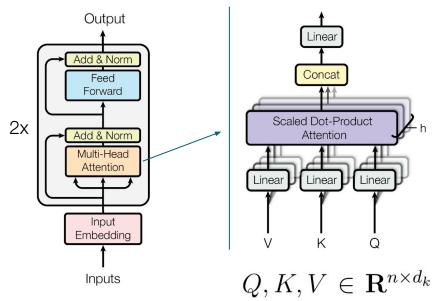


Attention Is All You Need Ashish Vaswani Noam Shazeer* Jakob Uszkoreit* Google Brain Google Brain Google Research Google Research avaswani@google.com noam@google.com nikip@google.com usz@google.com Llion Jones* Aidan N. Gomez* † Łukasz Kaiser* Google Research University of Toronto Google Brain llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com Illia Polosukhin* ‡ illia.polosukhin@gmail.com

- Idea from original **Transformer** architecture (NIPS 2017 article)
- In our case, vectors from Embedding are processed by the Encoder only
 - it finds relations between available features regardless of the amount of missing values

Step 2: Transformer Encoder





Encoder processes 32 embedding vectors to connect different features each vector represents

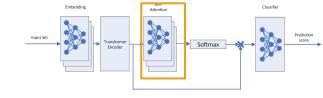
- we use **2-head attention** (to find more complex relationships)
- each head has 2 layers:
 attention (for to the whole set of vectors) + dense NN (applied to each vector separately)
- example: a specific detector signal could be used if and only if the momentum is in a specific range

modified diagram from the Transformer article

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Step 3: self-attention pooling

k=1



- The final **classifier** requires a **single output vector**, while we have 32 vectors (processed embeddings) at the output of the Encoder
 - Solution: another self-attention network (single layer) is used to pool the final vector

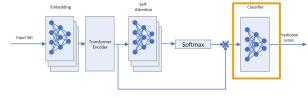
$$\{v_1,v_2,...,v_n\},\ v_i\in\mathbf{R}^{d_{model}} \qquad \text{processed embeddings}$$

$$e_i=NN(v_i) \qquad \forall i\in[1,n] \qquad \text{self-attention values}$$

$$\alpha_j'=softmax(e_j') \qquad \forall j\in[1,d_{model}] \qquad \text{self-attention weights}$$

$$o_j = \sum_{k=1}^{\infty} \alpha_{kj} v_{kj} \qquad \forall j \in [1, d_{model}]$$
 pooled output vector components

Step 4: classification



- Single output vector from the self-attention network is propagated to the classifier
- Classifier is represented by one simple neural network (one hidden layer) per particle type (one vs all approach)
 - o the same architecture is used **separately** for pions, kaons, protons
- Classifier score: logistic function $f(x) = \frac{1}{1+e^{-x}}$ in range (0, 1) represents "certainty" that a given particle belongs to the given particle type
 - users can still balance the efficiency and purity by setting their own threshold on the "certainty" value

