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The ”Physics-Informed” Learning Problem

We want to learn an unknown function u∗ : Ω → R, but we have two sources of
information:

1. Observational Data
We have a (potentially small) set of
measurements:

(xi, yi) where yi ≈ u∗(xi)

2. Physical Laws
We know u∗ must satisfy a governing
partial differential equation (PDE):

Du(x) = f(x) for x ∈ Ω

How can we leverage both the data and the physics?
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Example: Heat Transfer in a 1D Rod

Temperature distribution u(x) along a rod of length L.

The Data
Measurements yi of the temperatures at
the sensors xi.

The Physics: steady-state 1D heat
Equation

d2u
dx2︸︷︷︸
Du

(x) = 0 for x ∈ (0, L).
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Physics-Informed Neural Networks (PINNs)

[Raissi et al ’17]

General principle
▶ Neural network uθ(x), parameterized by weights θ.
▶ Composite loss function:

L(θ) = Ldata(θ) + Lphysics(θ) + R(θ).

▶ Train uθ by minimizing L.

There are no physics-informed neural networks, only physics-informed losses!
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Data-driven physics

Remember Du∗(x) = f(x).

1. Data Loss (Ldata)

Ldata(θ) =
1
n

n∑
i=1

(uθ(xi)− yi)2

▶ Classical data:

yi ≈ u∗(xi)

2. Physics Loss (Lphysics)

Lphysics(θ) =
1
m

m∑
j=1

(Duθ(zj)− dj)
2

▶ Physics-informed data:

dj = f(zj) = Du∗(zj)

▶ Derivatives in D are computed via
automatic differentiation.
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Different settings

▶ yi = u∗(xi)
▶ dj = f(zj) = Du∗(zj)
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PINNs: Summary

Strengths
▶ Approximation capabilities
▶ Flexible
▶ Fast inference
▶ Hard problems: nonlinearity, dimension

Limitations
▶ Training difficulties
▶ Tend to underperform in forward problems (vs classical solvers)
▶ Spectral bias
▶ Theoretically hard to analyze
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Kernel Ridge Regression

▶ x1, . . . , xn ∈ Ω sampled according to PX ;
▶ yi = u∗(xi).

We want to minimize the true risk

L(u) = E[(u(x)− u∗(x))2] = ∥u− u∗∥2L2(PX)
.

Instead we consider the empirical risk

L̂(u) =
1
n

n∑
i=1

(u(xi)− yi)2.
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Kernel Ridge Regression

Hypothesis space: space H of functions Ω → R.
Assumption: H is a Reproducing Kernel Hilbert Space (RKHS).

Reproducing property:

For all x ∈ Ω, there exists Kx ∈ H such that

u(x) = ⟨u,Kx⟩H ∀u ∈ H.
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Kernel Ridge Regression

Regularized Empirical Risk

L̂λ(u) =
1
n

n∑
i=1

(u(xi)− yi)2 + λ∥u∥2H.

The Representer Theorem
The minimizer û has a simple finite-dimensional form:

û(x) =
n∑

i=1

αiK(xi, x)

We only need to find the coefficients α = (α1, . . . , αn)
T .

This reduces an infinite-dimensional problem to a finite one!
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Kernel Ridge Regression

Substituting the form of û into the objective leads to a simple matrix equation.

The Kernel Matrix
Let K ∈ Rn×n be the Gram matrix of the data points:

Kij = ⟨Kxi ,Kxj⟩H = K(xi, xj)

Closed-Form Solution
The vector of coefficients α is given by:

α = (K+ λnI)−1y.

14



Theoretical guarantees for KRR

Consider u∗ ∈ L2(PX).
If K(x, y) is universal, i.e. if the hypothesis space H is rich enough
Then we have the asymptotic convergence

L(û) = ∥û− u∗∥2L2(PX)
−→
n→∞

0 a.s.

If further assumptions on K, Px and u∗ =⇒ rates
e.g. effective dimension, source condition...

Can we adapt this to physics-informed problems?
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Physics-informed setting

▶ x1, . . . , xn ∈ Ω sampled according to PX ;
▶ yi = u∗(xi).

▶ z1, . . . , zm ∈ Ω sampled according to PZ;
▶ dj = f(zj) = Du∗(zj).
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PDE reproducing property

Consider a linear differential operator Du(x) =
∑

|α|≤s cα(x)∂αu(x).
We then have the PDE reproducing property:

For all x ∈ Ω, there exists JDx ∈ H such that

Du(x) = ⟨u, JDx ⟩H ∀u ∈ H.

[Kimeldorf and Wahba ’70, Fasshauer ’96, Wendland ’04]
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The physics-informed empirical risk

Pick a kernel K defined over Ω, with its RKHS H. Define the physics-informed loss, for
u ∈ H,

L̂λ(u) =
1
n

n∑
i=1

(u(xi)− yi)2︸ ︷︷ ︸
Ldata

+
1
m

m∑
j=1

(Du(zj)− dj)
2

︸ ︷︷ ︸
Lphysics

+ λ∥u∥2H︸ ︷︷ ︸
regularization

. (1)

▶ Minimizer û ∈ H.
▶ Can we have convergence guarantees when n,m → ∞?
▶ What is the impact of the physics-informed term?
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PIML with kernels

Representer theorem
The minimizer of the physics-informed loss has the form:

û(x) =
n∑

i=1

αiK(xi, x) +
m∑
j=1

βjDzjK(zj, x)

This leads to a larger, block-structured kernel matrix K ∈ R(n+m)×(n+m).

Closed form solution
The vectors of coefficients α ∈ Rn and β ∈ Rm are given by

(α,β)T = (K+ λI)−1
(
y
d

)
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The kernel (block) matrix

K =

 1
nB00

1
nB01

1
mB10

1
mB11

 ∈ R(n+m)×(n+m), (2)

where the blocks are

B00 ∈ Rn×n (B00)i,i′ = K(xi, xi′) ∀i, i′ ∈ J1, nK

B01 ∈ Rn×m (B01)i,j′ = D2K(xi, zj′) ∀i ∈ J1, nK,∀j′ ∈ J1,mK

B10 ∈ Rm×n (B10)j,i′ = D1K(zj, xi) ∀j ∈ J1,mK, ∀i′ ∈ J1, nK

B11 ∈ Rm×m (B11)j,j′ = D1D2K(zj, zj′) ∀j, j′ ∈ J1,mK.
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Theoretical guarantees

Assume u∗ ∈ Hs(Ω). If K(x, y) is Cs-universal (stronger than classical universality), we
have

Proposition
There exists a choice of λn,m such that almost surely, when n,m → +∞, we have

∥û− u∗∥2L2(PX)
−→
n→∞

0

and
∥Dû−Du∗∥2L2(PZ)

−→
n→∞

0.

Convergence to the target and PDE consistency!
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Better convergence: an example

Assume D is elliptic of order 2 and PX and PZ are equivalent to the Lebesgue measure on
Ω.

Corollary
There exists a choice of λn,m such that almost surely, when n,m → +∞, for any open V
such that V ⊂ Ω, we have

ûλn,m

H2(V)−→ u∗.

The PDE information allows to get a stronger convergence!
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Some experiments
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Some experiments
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Conclusion

▶ For linear PDEs, it is possible to extend KRR to physics-informed problems
▶ Theoretical guarantees under universality assumption
▶ Can work in some experimental settings where PINNs struggle

Some questions:
▶ Are these methods scalable?
▶ Convergence rates, scaling laws...
▶ What about nonlinear PDEs?

Thank you for your attention!
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