

Physics-informed machine learning with kernels

Joachim Bona-Pellissier

MaLGa; Università degli studi di Genova

Joint work with Giacomo Meanti, Matteo Santacesaria, Lorenzo Rosasco

October 8, 2025

Outline

The physics-informed learning problem

Physics-Informed Neural Networks (PINNs)

Kernel methods for PIML

The "Physics-Informed" Learning Problem

We want to learn an unknown function $u^* : \Omega \to \mathbb{R}$, but we have two sources of information:

1. Observational Data

We have a (potentially small) set of measurements:

$$(x_i, y_i)$$
 where $y_i \approx u^*(x_i)$

2. Physical Laws

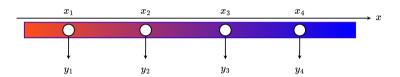
We know u^* must satisfy a governing partial differential equation (PDE):

$$\mathcal{D}u(x) = f(x)$$
 for $x \in \Omega$

How can we leverage both the **data** and the **physics**?

Example: Heat Transfer in a 1D Rod

Temperature distribution u(x) along a rod of length L.



The Data

Measurements y_i of the temperatures at the sensors x_i .

The Physics: steady-state 1D heat Equation

$$\underbrace{\frac{d^2u}{dx^2}}_{\mathcal{D}u}(x)=0\quad\text{for }x\in(0,L).$$

Outline

The physics-informed learning problem

Physics-Informed Neural Networks (PINNs)

Kernel methods for PIML

Physics-Informed Neural Networks (PINNs)

[Raissi et al '17]

General principle

- Neural network $u_{\theta}(x)$, parameterized by weights θ .
- ► Composite loss function:

$$L(\theta) = L_{data}(\theta) + L_{physics}(\theta) + R(\theta).$$

ightharpoonup Train u_{θ} by minimizing L.

There are no physics-informed neural networks, only physics-informed losses!

Data-driven physics

Remember $\mathcal{D}u^*(x) = f(x)$.

1. Data Loss (L_{data})

$$L_{data}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (u_{\theta}(x_i) - y_i)^2$$

Classical data:

$$y_i \approx u^*(x_i)$$

Data-driven physics

Remember $\mathcal{D}u^*(x) = f(x)$.

1. Data Loss (L_{data})

$$L_{data}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (u_{\theta}(x_i) - y_i)^2$$

Classical data:

$$y_i \approx u^*(x_i)$$

2. Physics Loss ($L_{physics}$)

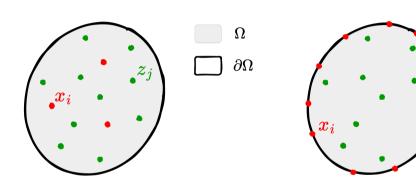
$$L_{physics}(\theta) = \frac{1}{m} \sum_{j=1}^{m} (\mathcal{D}u_{\theta}(z_j) - d_j)^2$$

Physics-informed data:

$$d_j = f(z_j) = \mathcal{D}u^*(z_j)$$

Derivatives in D are computed via automatic differentiation.

Different settings



$$ightharpoonup y_i = u^*(x_i)$$

PINNs: Summary

Strengths

- ► Approximation capabilities
- ► Flexible
- ► Fast inference
- ► Hard problems: nonlinearity, dimension

PINNs: Summary

Strengths

- ► Approximation capabilities
- ► Flexible
- ► Fast inference
- ► Hard problems: nonlinearity, dimension

Limitations

- ► Training difficulties
- ► Tend to underperform in forward problems (vs classical solvers)
- ► Spectral bias
- ► Theoretically hard to analyze

Outline

The physics-informed learning problem

Physics-Informed Neural Networks (PINNs)

Kernel methods for PIML

- ▶ $x_1, ..., x_n \in \Omega$ sampled according to P_X ;
- $ightharpoonup y_i = u^*(x_i).$

We want to minimize the true risk

$$L(u) = \mathbb{E}[(u(x) - u^*(x))^2] = \|u - u^*\|_{L^2(P_X)}^2.$$

Instead we consider the empirical risk

$$\widehat{L}(u) = \frac{1}{n} \sum_{i=1}^{n} (u(x_i) - y_i)^2.$$

Hypothesis space: space $\mathcal H$ of functions $\Omega \to \mathbb R$.

Assumption: \mathcal{H} is a **Reproducing Kernel Hilbert Space** (RKHS).

Reproducing property:

For all $x \in \Omega$, there exists $K_x \in \mathcal{H}$ such that

$$u(x) = \langle u, K_x \rangle_{\mathcal{H}} \quad \forall u \in \mathcal{H}.$$

Regularized Empirical Risk

$$\widehat{L}_{\lambda}(u) = \frac{1}{n} \sum_{i=1}^{n} (u(x_i) - y_i)^2 + \lambda ||u||_{\mathcal{H}}^2.$$

The Representer Theorem

The minimizer \hat{u} has a simple finite-dimensional form:

$$\widehat{u}(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$$

We only need to find the coefficients $\alpha = (\alpha_1, \dots, \alpha_n)^T$. This reduces an infinite-dimensional problem to a finite one!

Substituting the form of \hat{u} into the objective leads to a simple matrix equation.

The Kernel Matrix

Let $\mathbf{K} \in \mathbb{R}^{n \times n}$ be the Gram matrix of the data points:

$$\mathbf{K}_{ij} = \langle K_{x_i}, K_{x_j} \rangle_{\mathcal{H}} = K(x_i, x_j)$$

Closed-Form Solution

The vector of coefficients α is given by:

$$\alpha = (\mathbf{K} + \lambda n \mathbf{I})^{-1} y.$$

Theoretical guarantees for KRR

Consider $u^* \in L^2(P_X)$. If K(x,y) is **universal**, i.e. if the hypothesis space \mathcal{H} is rich enough Then we have the asymptotic convergence

$$L(\widehat{u}) = \|\widehat{u} - u^*\|_{L^2(P_X)}^2 \underset{n \to \infty}{\longrightarrow} 0$$
 a.s.

If further assumptions on K, P_x and $u^* \Longrightarrow$ rates e.g. effective dimension, source condition...

Theoretical guarantees for KRR

Consider $u^* \in L^2(P_X)$. If K(x,y) is **universal**, i.e. if the hypothesis space \mathcal{H} is rich enough Then we have the asymptotic convergence

$$L(\widehat{u}) = \|\widehat{u} - u^*\|_{L^2(P_X)}^2 \underset{n \to \infty}{\longrightarrow} 0$$
 a.s.

If further assumptions on K, P_x and $u^* \implies$ rates e.g. effective dimension, source condition...

Can we adapt this to physics-informed problems?

Physics-informed setting

- ▶ $x_1, ..., x_n \in \Omega$ sampled according to P_X ;

Physics-informed setting

- $ightharpoonup x_1, \ldots, x_n \in \Omega$ sampled according to P_X ;
- $\triangleright y_i = u^*(x_i).$

- $ightharpoonup z_1, \ldots, z_m \in \Omega$ sampled according to P_Z ;
- $ightharpoonup d_i = f(z_i) = \mathcal{D}u^*(z_i).$

PDE reproducing property

Consider a **linear** differential operator $\mathcal{D}u(x) = \sum_{|\alpha| \leq s} c_{\alpha}(x) \partial_{\alpha} u(x)$. We then have the PDE reproducing property:

For all $x \in \Omega$, there exists $J_x^{\mathcal{D}} \in \mathcal{H}$ such that

$$\mathcal{D}u(x) = \langle u, J_x^{\mathcal{D}} \rangle_{\mathcal{H}} \qquad \forall u \in \mathcal{H}.$$

[Kimeldorf and Wahba '70, Fasshauer '96, Wendland '04]

The physics-informed empirical risk

Pick a kernel K defined over $\overline{\Omega}$, with its RKHS \mathcal{H} . Define the physics-informed loss, for $u \in \mathcal{H}$,

$$\widehat{L}_{\lambda}(u) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} (u(x_i) - y_i)^2}_{L_{data}} + \underbrace{\frac{1}{m} \sum_{j=1}^{m} (\mathcal{D}u(z_j) - d_j)^2}_{L_{physics}} + \underbrace{\lambda \|u\|_{\mathcal{H}}^2}_{regularization} . \tag{1}$$

- Minimizer $\hat{\mathbf{u}} \in \mathcal{H}$.
- ▶ Can we have convergence guarantees when $n, m \to \infty$?
- ▶ What is the impact of the physics-informed term?

PIML with kernels

Representer theorem

The minimizer of the physics-informed loss has the form:

$$\widehat{u}(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x) + \sum_{j=1}^{m} \beta_j \mathcal{D}_{z_j} K(z_j, x)$$

This leads to a larger, block-structured kernel matrix $\mathbf{K} \in \mathbb{R}^{(n+m)\times (n+m)}$.

Closed form solution

The vectors of coefficients $\alpha \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^m$ are given by

$$(\boldsymbol{\alpha}, \boldsymbol{\beta})^T = (\mathbf{K} + \lambda \mathbf{I})^{-1} \begin{pmatrix} \mathbf{y} \\ \mathbf{d} \end{pmatrix}$$

The kernel (block) matrix

$$\mathbf{K} = \begin{pmatrix} \frac{1}{n}B_{00} & \frac{1}{n}B_{01} \\ \frac{1}{m}B_{10} & \frac{1}{m}B_{11} \end{pmatrix} \in \mathbb{R}^{(n+m)\times(n+m)}, \tag{2}$$

where the blocks are

$$B_{00} \in \mathbb{R}^{n \times n} \qquad (B_{00})_{i,i'} = K(x_i, x_{i'}) \qquad \forall i, i' \in \llbracket 1, n \rrbracket$$

$$B_{01} \in \mathbb{R}^{n \times m} \qquad (B_{01})_{i,j'} = \mathcal{D}_2 K(x_i, z_{j'}) \qquad \forall i \in \llbracket 1, n \rrbracket, \forall j' \in \llbracket 1, m \rrbracket$$

$$B_{10} \in \mathbb{R}^{m \times n} \qquad (B_{10})_{j,i'} = \mathcal{D}_1 K(z_j, x_i) \qquad \forall j \in \llbracket 1, m \rrbracket, \forall i' \in \llbracket 1, n \rrbracket$$

$$B_{11} \in \mathbb{R}^{m \times m} \qquad (B_{11})_{j,j'} = \mathcal{D}_1 \mathcal{D}_2 K(z_j, z_{j'}) \qquad \forall j, j' \in \llbracket 1, m \rrbracket.$$

Theoretical guarantees

Assume $u^* \in H^s(\Omega)$. If K(x,y) is C^s -universal (stronger than classical universality), we have

Proposition

There exists a choice of $\lambda_{n,m}$ such that almost surely, when $n,m\to +\infty$, we have

$$\|\widehat{u}-u^*\|_{L^2(P_X)}^2 \longrightarrow 0$$

and

$$\|\mathcal{D}\widehat{u} - \mathcal{D}u^*\|_{L^2(P_Z)}^2 \quad \underset{n \to \infty}{\longrightarrow} \quad 0.$$

Theoretical guarantees

Assume $u^* \in H^s(\Omega)$. If K(x,y) is C^s -universal (stronger than classical universality), we have

Proposition

There exists a choice of $\lambda_{n,m}$ such that almost surely, when $n,m \to +\infty$, we have

$$\|\widehat{u}-u^*\|_{L^2(P_X)}^2 \longrightarrow 0$$

and

$$\|\mathcal{D}\widehat{u} - \mathcal{D}u^*\|_{L^2(P_Z)}^2 \quad \underset{n \to \infty}{\longrightarrow} \quad 0.$$

Convergence to the target and PDE consistency!

Better convergence: an example

Assume \mathcal{D} is elliptic of order 2 and P_X and P_Z are equivalent to the Lebesgue measure on Ω .

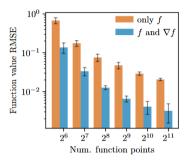
Corollary

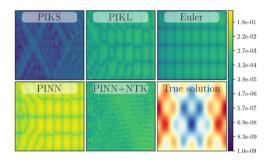
There exists a choice of $\lambda_{n,m}$ such that almost surely, when $n,m\to +\infty$, for any open V such that $\overline{V}\subset \Omega$, we have

$$\widehat{u}_{\lambda_{n,m}} \stackrel{H^2(V)}{\longrightarrow} u^*.$$

The PDE information allows to get a stronger convergence!

Some experiments

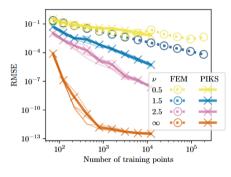




improve accuracy.

Figure 1: Improved learning accuracy with Figure 2: Comparison of errors on 1D wave equaderivative data. A dataset of function val-tion. The color-scale is logarithmic and at this scale ues (in red) is augmented by gradient (in of errors (between 10^{-3} and 10^{-7}), only the standard blue) or laplacian (in green) information to PINN produces a solution which is qualitatively incorrect.

Some experiments



10⁰ FEM

PIKS

10-1

10-2

10-3

Noise standard deviation

Figure 3: FEM vs. PIKS on noiseless data of different smoothness. All FEM results apart from $\nu=0.5$ overlap at the top of the plot. The PIKS results with $\nu=\infty$ plateau due to numerical accuracy.

Figure 4: FEM vs. PIKS with increasing noise on the boundary conditions. 500 data-points were used; the true function comes from a Matérn 3/2 kernel.

Conclusion

- ► For linear PDEs, it is possible to extend KRR to physics-informed problems
- ► Theoretical guarantees under universality assumption
- ► Can work in some experimental settings where PINNs struggle

Some questions:

- ► Are these methods scalable?
- Convergence rates, scaling laws...
- What about nonlinear PDEs?

Conclusion

- ► For linear PDEs, it is possible to extend KRR to physics-informed problems
- Theoretical guarantees under universality assumption
- ► Can work in some experimental settings where PINNs struggle

Some questions:

- ► Are these methods scalable?
- Convergence rates, scaling laws...
- What about nonlinear PDEs?

Thank you for your attention!

