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The "Physics-Informed” Learning Problem

We want to learn an unknown function u* : Q — R, but we have two sources of
information:

1. Observational Data 2. Physical Laws

We have a (potentially small) set of We know u* must satisfy a governing

measurements: partial differential equation (PDE):
(xi,yi) where y; ~ u*(x;) Du(x) = f(x) forxeQ

How can we leverage both the data and the physics?



Example: Heat Transfer in a 1D Rod

Temperature distribution u(x) along a rod of length L.

x1 T2 T3 T4 2
Y1 Y2 Ys Y4
The Data The Physics: steady-state 1D heat
Measurements y; of the temperatures at Equation
the sensors x;.
d’u
——(x)=0 forxe(0,L).
&
Du
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Physics-Informed Neural Networks (PINNs)

[Raissi et al "17]
General principle

> Neural network uy(x), parameterized by weights 6.
» Composite loss function:

L(H) = Ldata(a) + Lphys,'cs(e) + R(6).

» Train uy by minimizing L.

There are no physics-informed neural networks, only physics-informed losses!



Data-driven physics

Remember Du*(x) = f(x).
1. Data Loss (Lgata)

n

Laaa(6) = 1 D (us(x) — y)?

i=1

» Classical data:

yi= U*(X,')
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Data-driven physics

Remember Du*(x) = f(x).

1. Data Loss (Ldata) 2. PhySiCS Loss (Lphysics)
1 n
Ldata(a) = E Z(UG(XI) - yi)z Lphystcs(o Z(DU9 Z/) - dl)
i=1 J=1
> Classical data: > Physics-informed data:
yi = u”(xi) d; = f(z}) = Du*(z)

» Derivatives in D are computed via
automatic differentiation.
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Different settings

9]

(] o

> yi = u*(x)
> d; =f(z) = Du"(z)
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PINNs: Summary

Strengths

> Approximation capabilities

> Flexible

> Fast inference

» Hard problems: nonlinearity, dimension
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PINNs: Summary

Strengths
> Approximation capabilities
> Flexible
> Fast inference
» Hard problems: nonlinearity, dimension

Limitations
» Training difficulties
» Tend to underperform in forward problems (vs classical solvers)
» Spectral bias
» Theoretically hard to analyze

s | nq‘éggfa



Outline

The physics-informed learning problem

Physics-Informed Neural Networks (PINNs)

UniGe | MaLGa



Kernel Ridge Regression

> Xxq,...,%X, € Q sampled according to Py;
> yi = ur(x)-
We want to minimize the true risk

L(u) = E[(u(x) — u*(x))*] = llu — u*|[Ez(py.

Instead we consider the empirical risk




Kernel Ridge Regression

Hypothesis space: space H of functions Q — R.

Assumption: 7 is a Reproducing Kernel Hilbert Space (RKHS).

Reproducing property:

For all x € Q, there exists Ky € H such that

u(x) = (u,Kx)x Yu e H.




Kernel Ridge Regression

Regularized Empirical Risk

La(u) = = (u(xi) = yi)* + Mul%-

i=1

The Representer Theorem
The minimizer U has a simple finite-dimensional form:

ﬁ(x) = zn: Oz,'K(X,',X)
i=1

We only need to find the coefficients a = (ag,...,ap)".
This reduces an infinite-dimensional problem to a finite one!
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Kernel Ridge Regression

Substituting the form of U into the objective leads to a simple matrix equation.

The Kernel Matrix
Let K € R™" be the Gram matrix of the data points:

Kif = <KXMKX,‘>H = K(Xi7)(f)
Closed-Form Solution
The vector of coefficients « is given by:

a=(K+ i) y.



Theoretical guarantees for KRR

Consider u* € L%(Px).
If K(x,y) is universal, i.e. if the hypothesis space # is rich enough
Then we have the asymptotic convergence

L(@) = [[U - u* )1 2py — 0 as.

If further assumptions on K, P, and u* — rates
e.g. effective dimension, source condition...




Theoretical guarantees for KRR

Consider u* € L%(Px).
If K(x,y) is universal, i.e. if the hypothesis space # is rich enough
Then we have the asymptotic convergence
L(@) = [[U - u* )1 2py — 0 as.
If further assumptions on K, P, and u* — rates

e.g. effective dimension, source condition...

Can we adapt this to physics-informed problems?




Physics-informed setting

> Xxq,...,%, € Q sampled according to Py;
>y = u*(x).



Physics-informed setting

> Xxq,...,%, € Q sampled according to Py;
>y = u*(x).
> z,...,Zm € Q sampled according to Py;

> dj = f(Zj) = DU*(Z]').
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PDE reproducing property

Consider a linear differential operator Du(x) = > jaj<s Ca(X)0aU(X).
We then have the PDE reproducing property:

For all x € Q, there exists JP € H such that

Du(x) = (u,J)n  VueH.

[Kimeldorf and Wahba '70, Fasshauer '96, Wendland 'os]
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The physics-informed empirical risk

Pick a kernel K defined over Q, with its RKHS #. Define the physics-informed loss, for
uewH,

m

1
Z(ux, I 2(Pu(z) — ) Al (1)
= ——
Lgata (I regularization

» Minimizer u ¢ 7.
» Can we have convergence guarantees when n,m — oo?
» What is the impact of the physics-informed term?
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PIML with kernels

Representer theorem
The minimizer of the physics-informed loss has the form:

U(x) = aiK(x;,x) + > _ D;K(z;,X)
i=1 j=1

This leads to a larger, block-structured kernel matrix K € R(+m)x(n+m)_

Closed form solution
The vectors of coefficients o € R” and 3 € R™ are given by

(a, B)7 = (K+ Al)™ ({I)
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where the blocks are

Bgg € R™"
Bg1 € R™™
Big € R™*"
By € R™*M
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The kernel (block) matrix

1 1
7Boo  Bo

1 1
mBio 5Bn

(Boo)i,i

B

(

B

01)ij

(
(B1o)j,ir

=

s

)iy

= K(x;, Xi")

= DgK(X,’,Zjl)

= D1K(Zj,X,’)

= D1DyK(z},Z)r)

e }R(ner)><(n+m)7 (2)

Vi,i' € [1,n]

vie [1, n],vj € [1,m]
vj e [1,m], vi' € [1,n]
vj,j € [1,m].
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Theoretical guarantees

Assume u* € H3(Q). If K(x,y) is CS-universal (stronger than classical universality), we
have

Proposition
There exists a choice of A\n m such that almost surely, when n,m — +oc, we have
T %12
[U = U [I2(py v 0
and
DU - Du*(|E2p,y —> O

n—oo
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Theoretical guarantees

Assume u* € H3(Q). If K(x,y) is CS-universal (stronger than classical universality), we
have

Proposition
There exists a choice of A\n m such that almost surely, when n,m — +oc, we have

= 2
U—ulpe,y — 0

n—oo

and
DU - Du*(|E2p,y —> O

n—oo

Convergence to the target and PDE consistency!

ot
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Better convergence: an example

Assume D is elliptic of order 2 and Px and Pz are equivalent to the Lebesgue measure on
Q.

Corollary

There exists a choice of A\, m such that almost surely, when n,m — +oc, for any open V

such that V c Q, we have

~ H2(V
Uz, —>() u*.

The PDE information allows to get a stronger convergence!

i
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Some experiments
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Figure 1: Improved learning accuracy with
derivative data. A dataset of function val-
ues (in red) is augmented by gradient (in
blue) or laplacian (in green) information to
improve accuracy.
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Figure 2: Comparison of errors on 1D wave equa-
tion. The color-scale is logarithmic and at this scale
of errors (between 1073 and 10~7), only the standard
PINN produces a solution which is qualitatively in-
correct.
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Figure 3: FEM vs. PIKS on noiseless data of dif-
ferent smoothness. All FEM results apart from
v = 0.5 overlap at the top of the plot. The PIKS
results with v = oo plateau due to numerical ac-
curacy.
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Figure 4: FEM vs. PIKS with increasing noise
on the boundary conditions. 500 data-points
were used; the true function comes from a
Matérn 3/2 kernel.
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Conclusion

> For linear PDEs, it is possible to extend KRR to physics-informed problems
» Theoretical guarantees under universality assumption
» Can work in some experimental settings where PINNs struggle
Some questions:
> Are these methods scalable?
» Convergence rates, scaling laws...
» What about nonlinear PDEs?
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Conclusion

> For linear PDEs, it is possible to extend KRR to physics-informed problems
» Theoretical guarantees under universality assumption
» Can work in some experimental settings where PINNs struggle
Some questions:
> Are these methods scalable?
» Convergence rates, scaling laws...
» What about nonlinear PDEs?

Thank you for your attention!
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