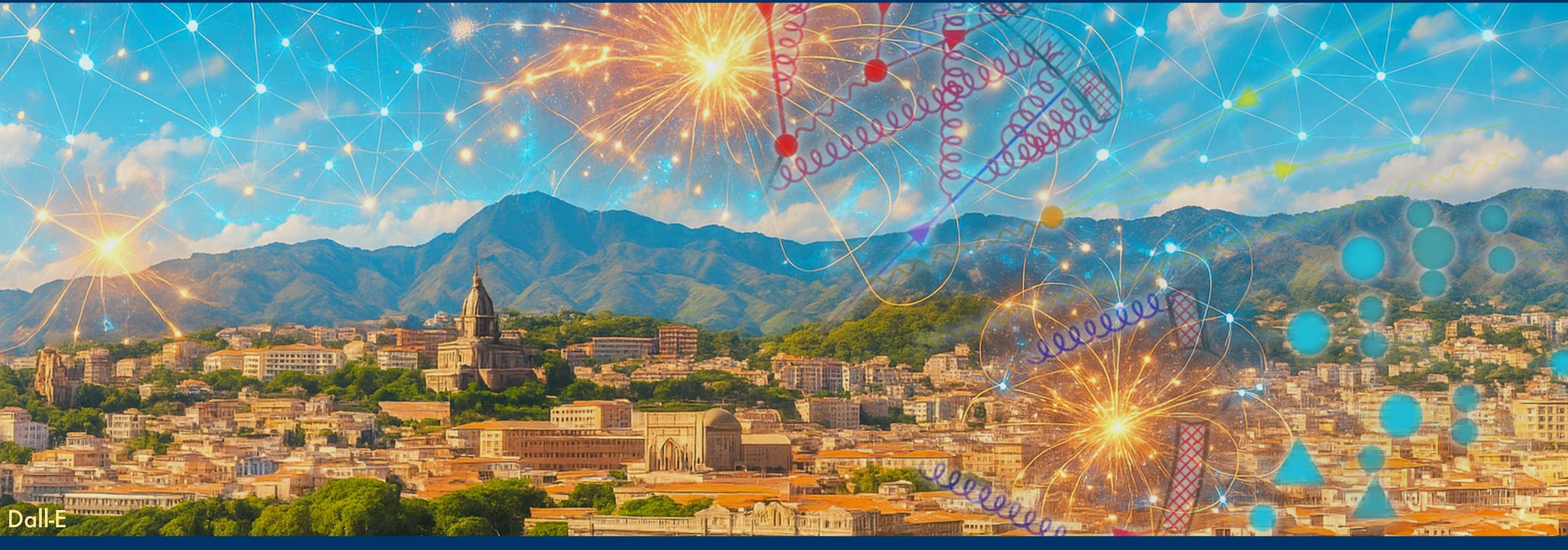
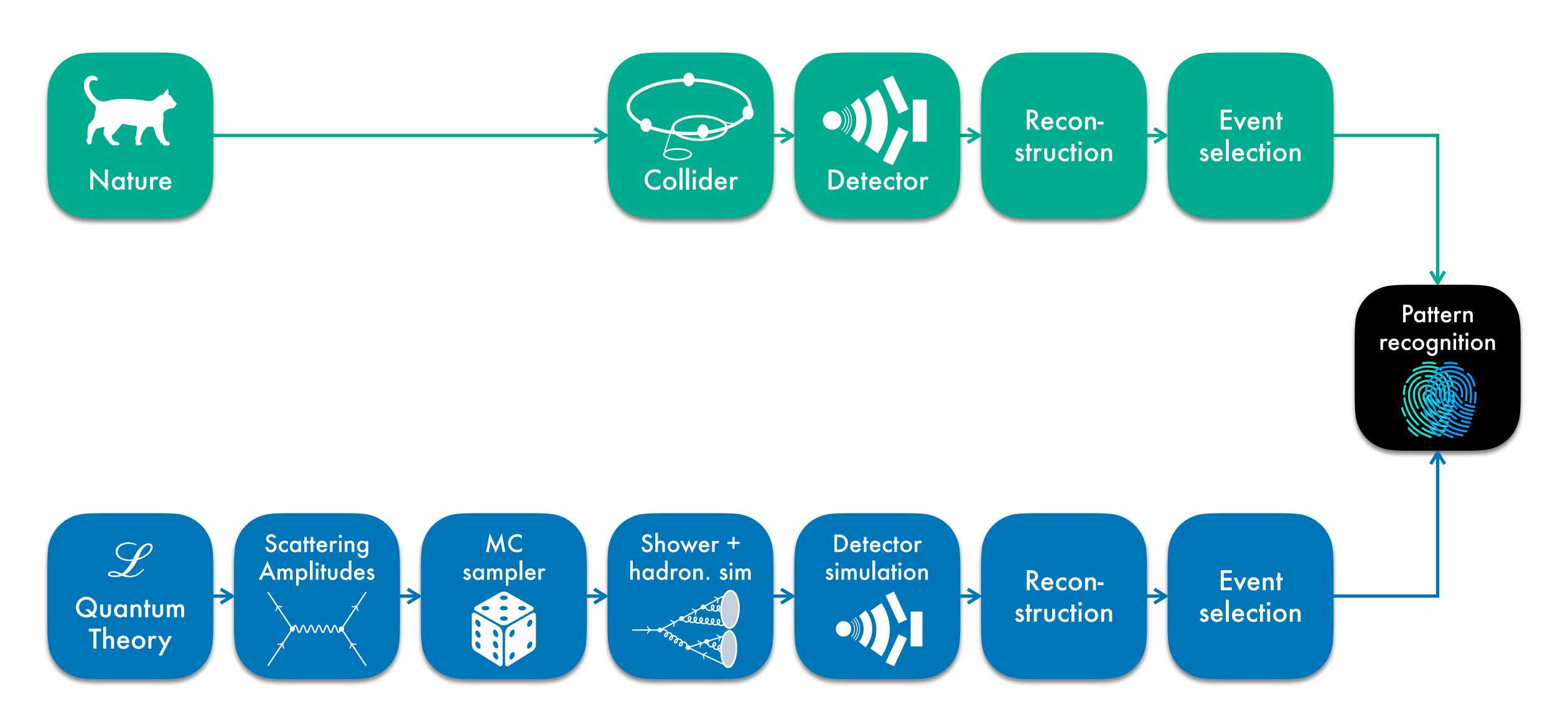
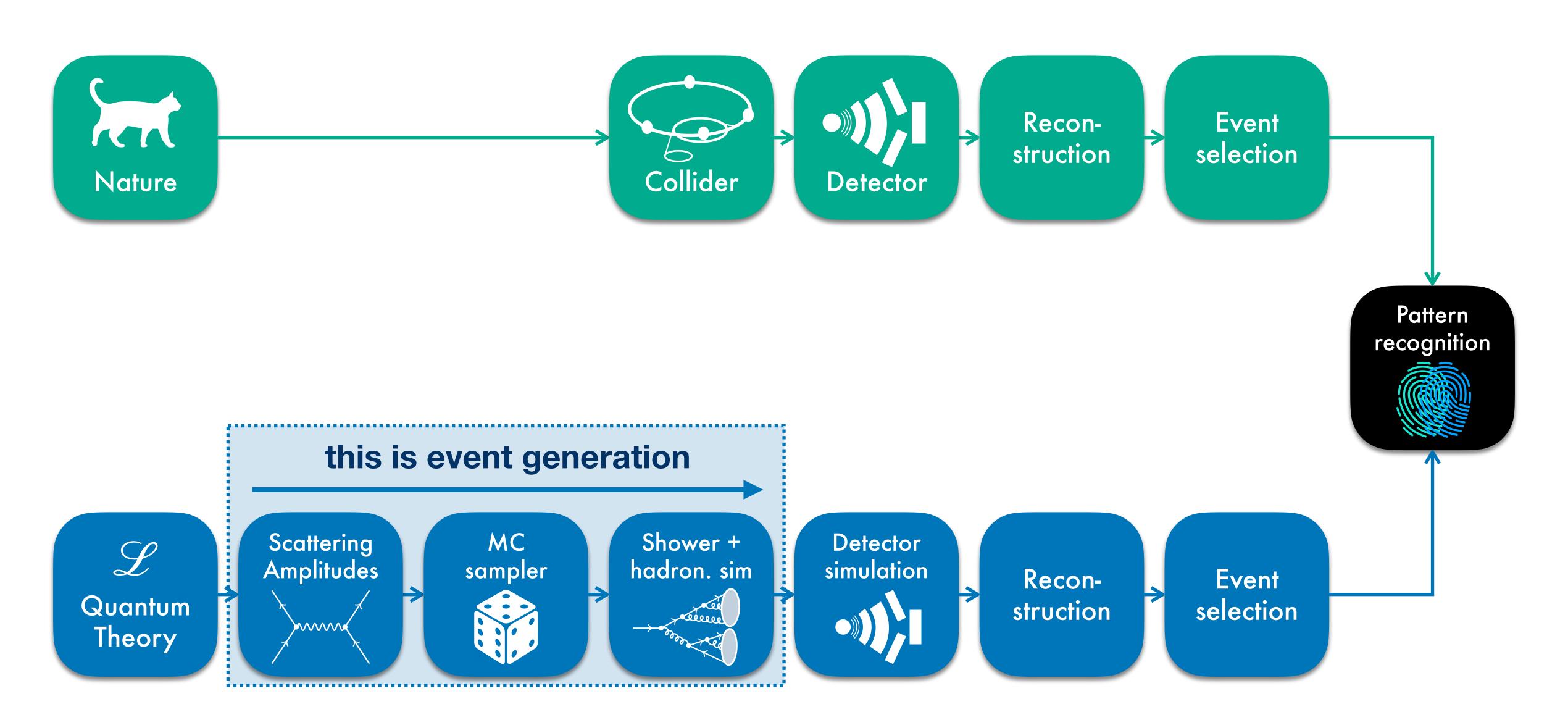
Modern Machine Learning for Monte Carlo Event Generators



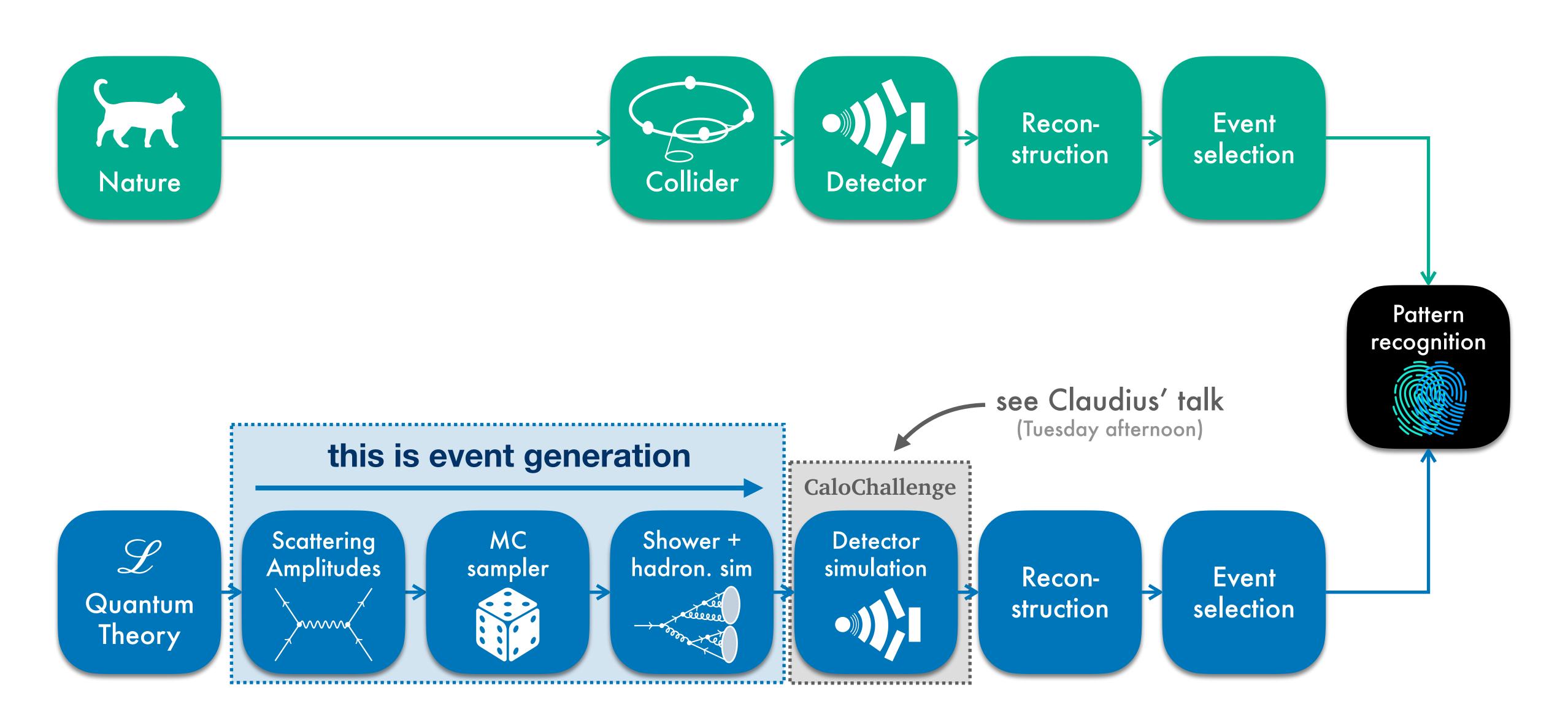
Collider analysis in a nutshell



Collider analysis in a nutshell



Collider analysis in a nutshell



The devil is in the details

O Hard Interaction

■ Weak Showers

■ Beam Remnants*

Multiparton Interactions

String Interactions

Primary Hadrons

Secondary Hadrons

■ Hadronic Reinteractions

(*: incoming lines are crossed)

Colour Reconnections

Bose-Einstein & Fermi-Dirac

■ Hard Onium

FSR

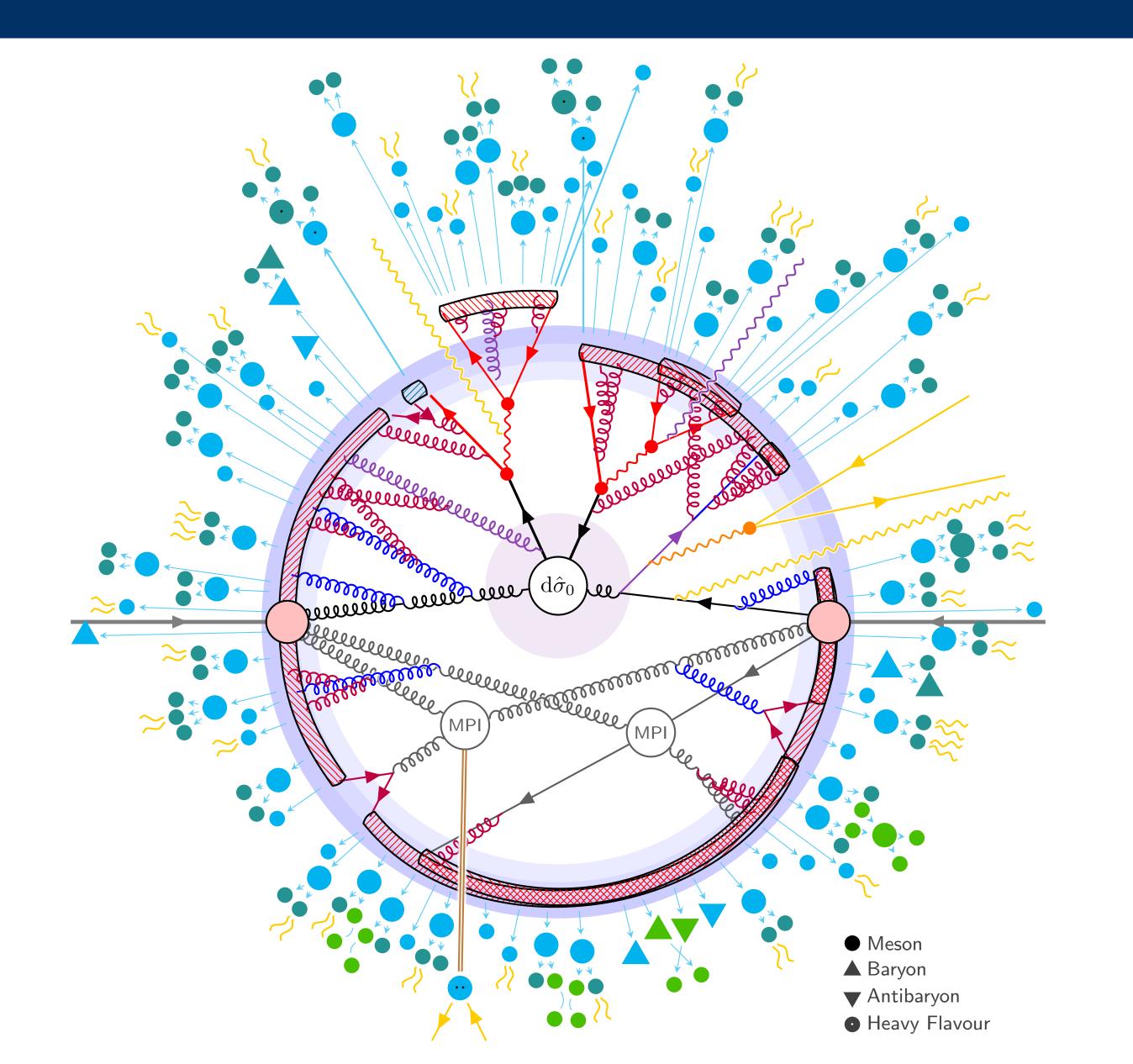
ISR*

QED

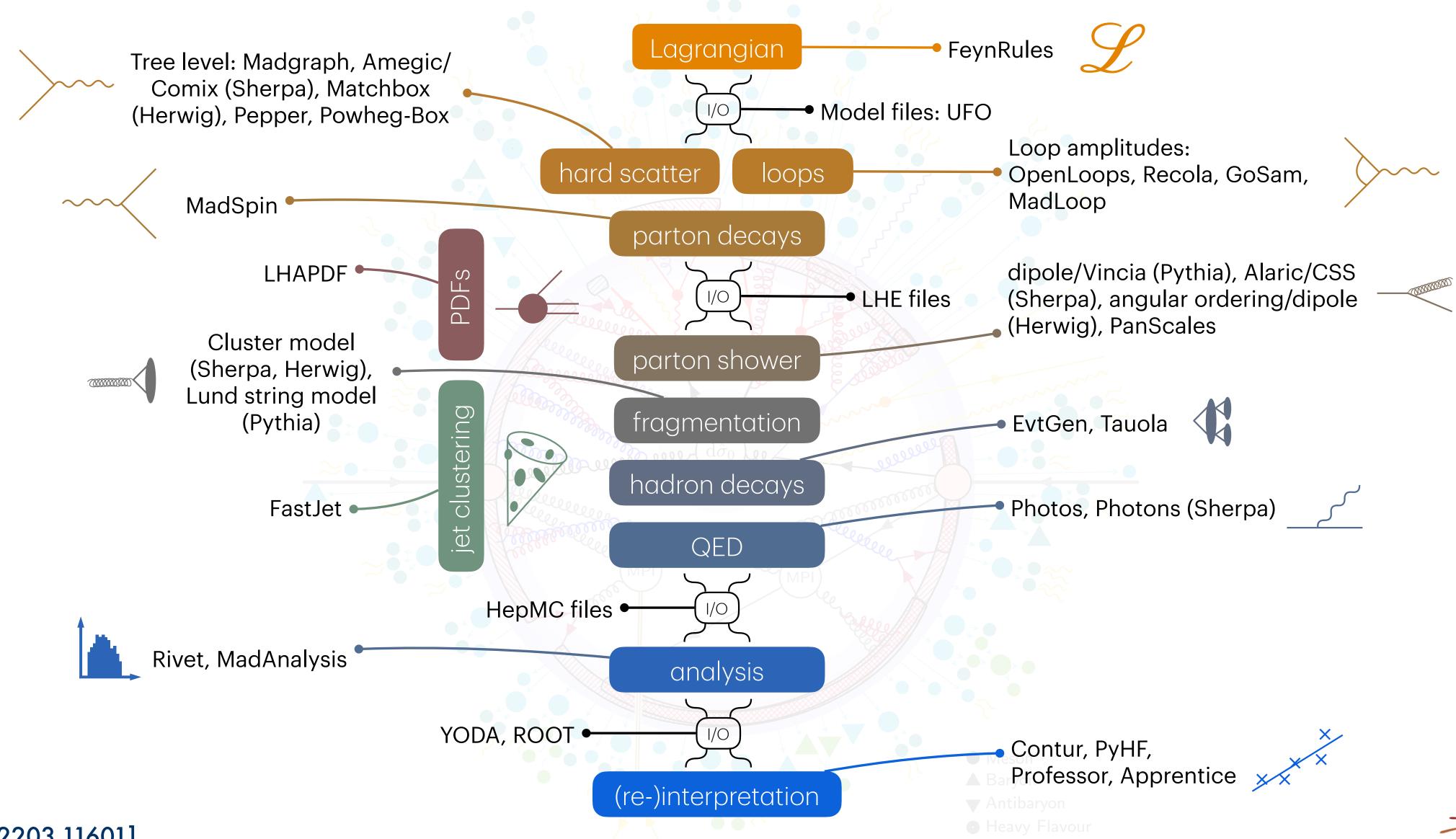
Strings

Resonance Decays

■ MECs, Matching & Merging



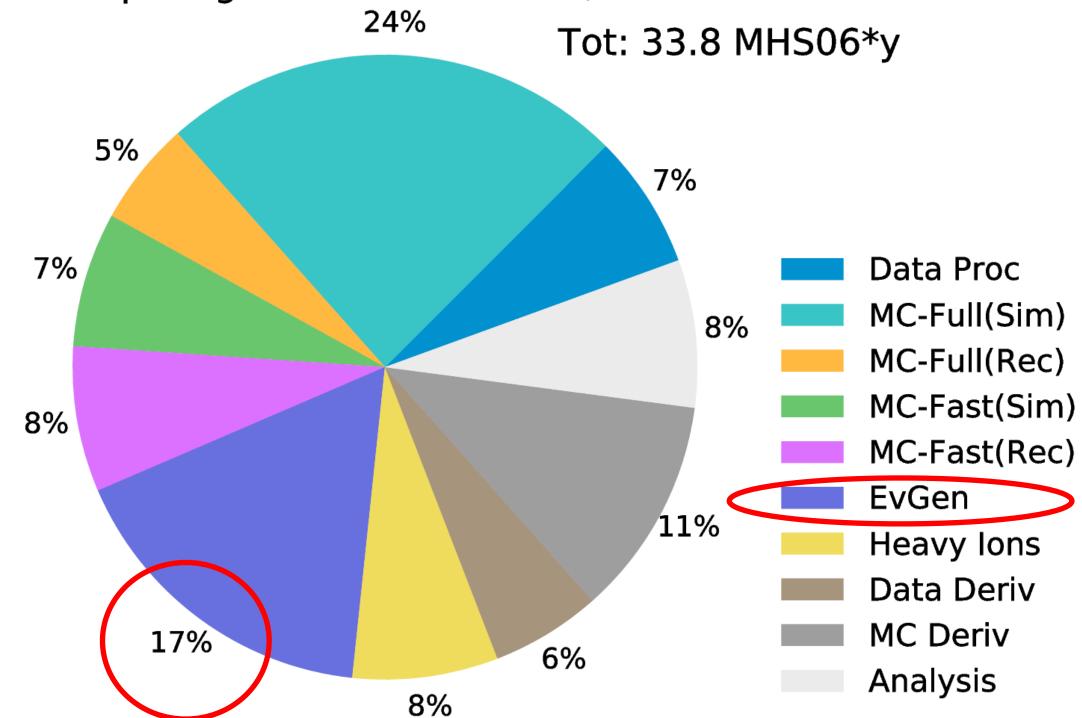
The devil is in the details



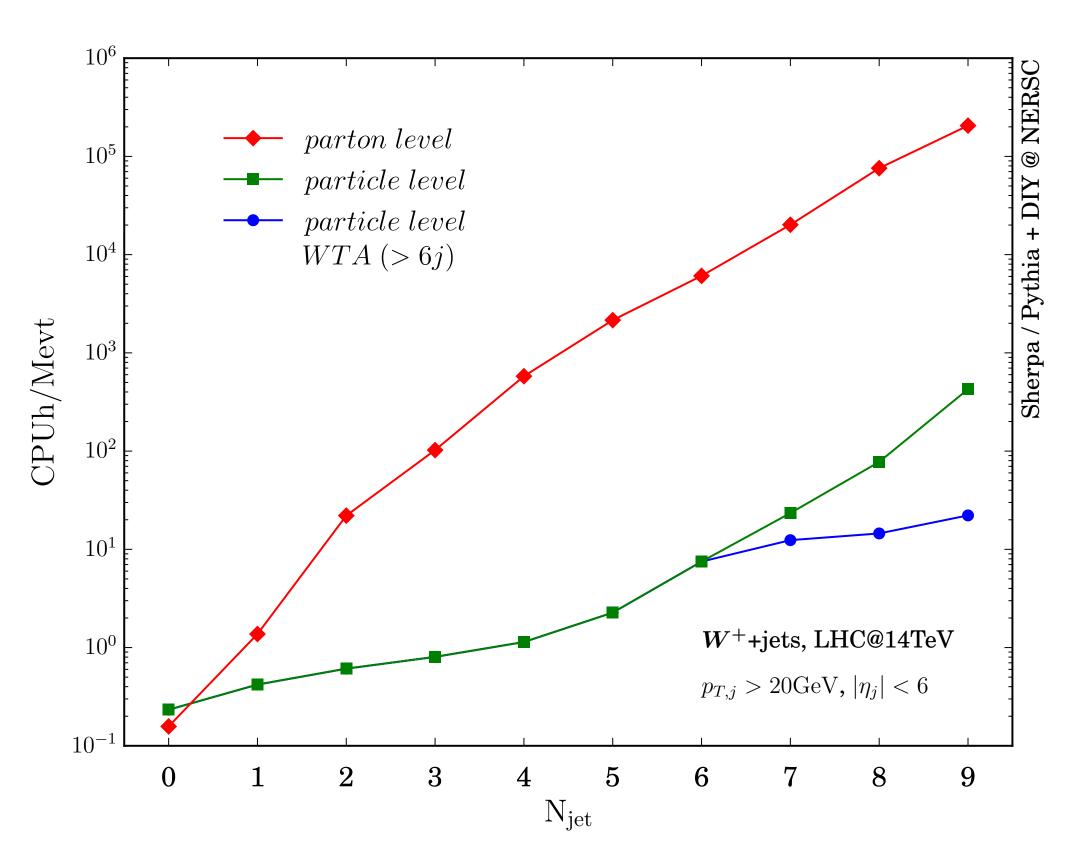
Computing Budget

ATLAS Preliminary

2022 Computing Model - CPU: 2031, Conservative R&D

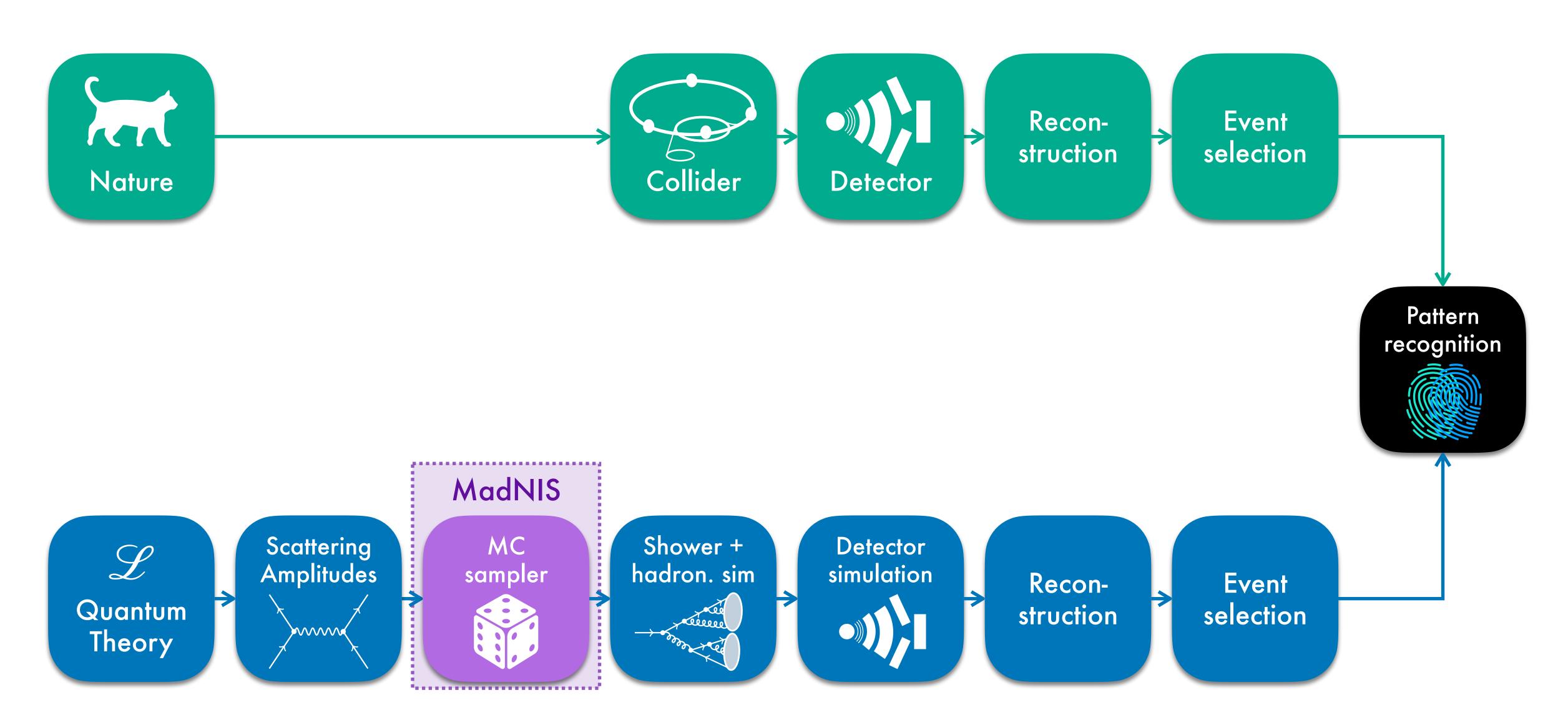


[CERN-LHCC-2022-005]



[Höche et al., 1905.05120]

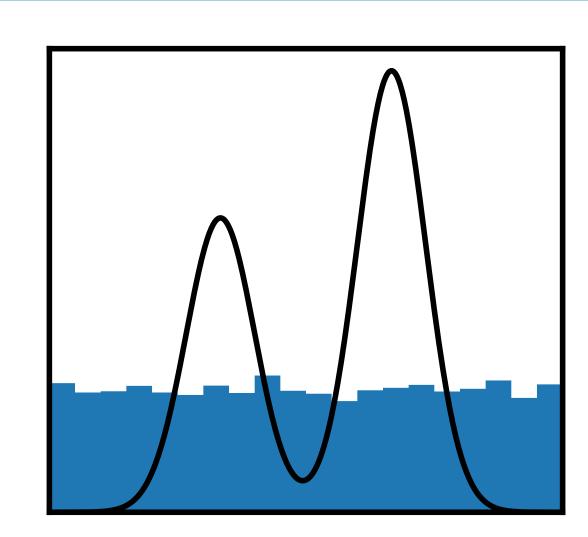
MadNIS — Neural Importance Sampling



Monte Carlo integration

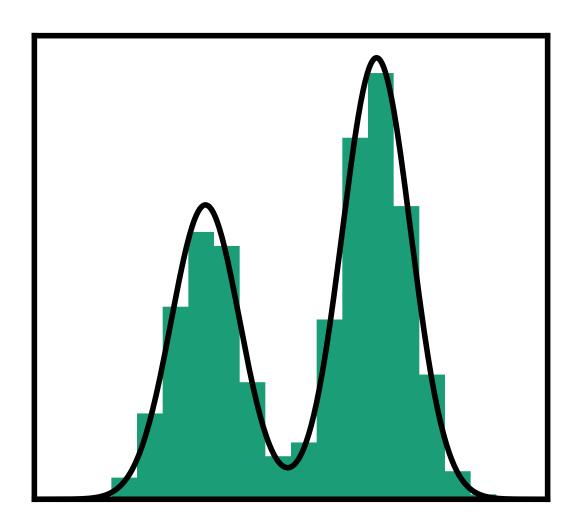
Calculate (differential) cross sections

$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \left\langle |M_{\lambda,c,...}(p_a, p_b | p_1, ..., p_n)|^2 \right\rangle$$



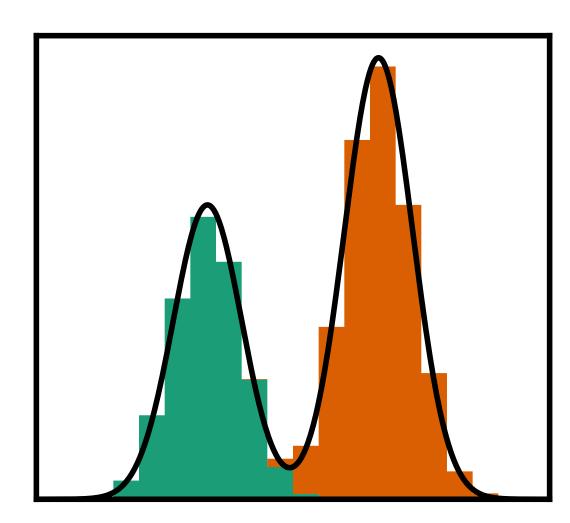
Flat sampling: inefficient

$$I = \langle f(x) \rangle_{x \sim \text{unif}}$$



Importance sampling: find p close to f

$$I = \left\langle \frac{f(x)}{p(x)} \right\rangle_{x \sim p(x)}$$



Multi-channel: one map for each channel

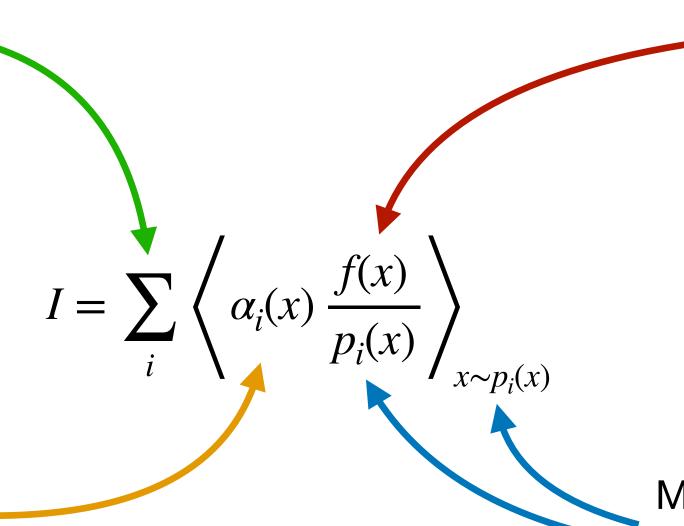
$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{p_{i}(x)} \right\rangle_{x \sim p_{i}(x)}$$

Event generation in MadGraph

Calculate (differential) cross sections
$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \left\langle |M_{\lambda,c,\dots}(p_a,p_b \mid p_1,\dots,p_n)|^2 \right\rangle$$

Sum over channels

MadGraph: build channels from Feynman diagrams



Integrand

MadGraph: $d\sigma/dx$

Channel weights

MadGraph: $\alpha_i^{\text{MG}}(x) \sim |M_i|^2$

Channel mappings

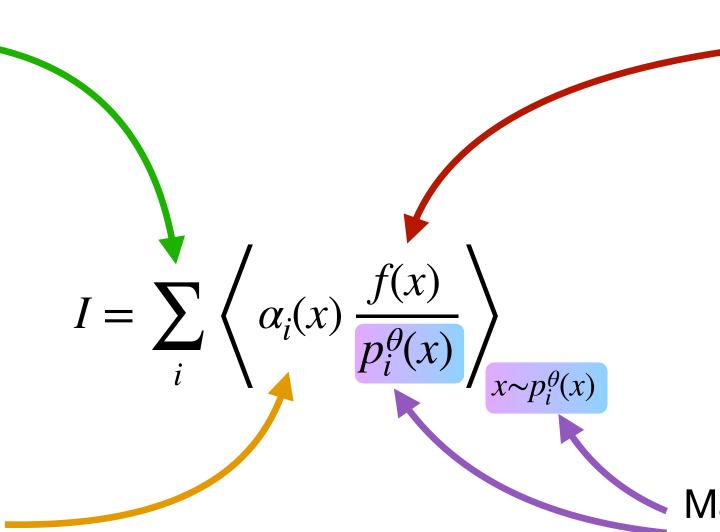
MadGraph: use amplitude structure, ... Analytic mappings + refine with **VEGAS** (factorized, histogram based importance sampling)

Event generation in MadNIS

Calculate (differential) cross sections
$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \left\langle |M_{\lambda,c,...}(p_a,p_b \mid p_1,...,p_n)|^2 \right\rangle$$

Sum over channels

MadGraph: build channels from Feynman diagrams



Integrand

MadGraph: $d\sigma/dx$

Channel weights

MadGraph: $\alpha_i^{\text{MG}}(x) \sim |M_i|^2$

Learned channel mappings

MadGraph: use amplitude structure, ... Analytic mappings + refine with VEGAS

Event generation in MadNIS

Calculate (differential) cross sections
$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \left\langle |M_{\lambda,c,...}(p_a,p_b \mid p_1,...,p_n)|^2 \right\rangle$$

Sum over channels

MadGraph: build channels from Feynman diagrams

$$I = \sum_{i} \left\langle \alpha_{i}^{\xi}(x) \frac{f(x)}{p_{i}^{\theta}(x)} \right\rangle_{x \sim 1}$$

Learned channel mappings

MadGraph: use amplitude structure, ... Analytic mappings + refine with VEGAS

refine with NF

Learned channel weights

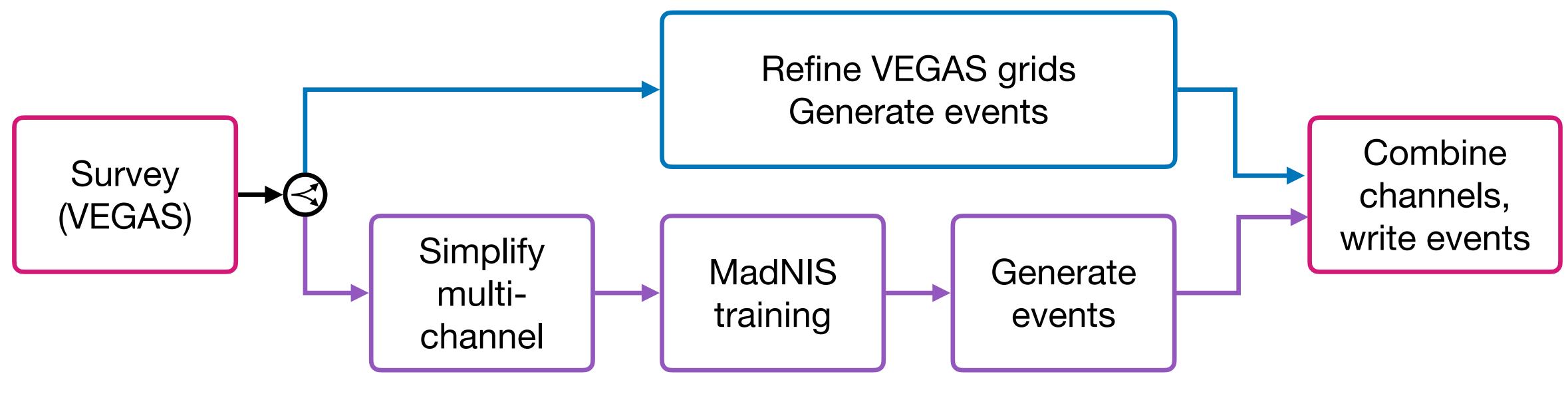
MadGraph: $\alpha_i^{\text{MG}}(x) \sim |M_i|^2$

$$\alpha_i(x) \to \alpha_i^{\xi}(x) = \alpha_i^{\text{MG}}(x) \cdot K_i^{\xi}(x)$$

parametrize with NN ———

Building MadNIS into MadGraph

Standard MadEvent pipeline

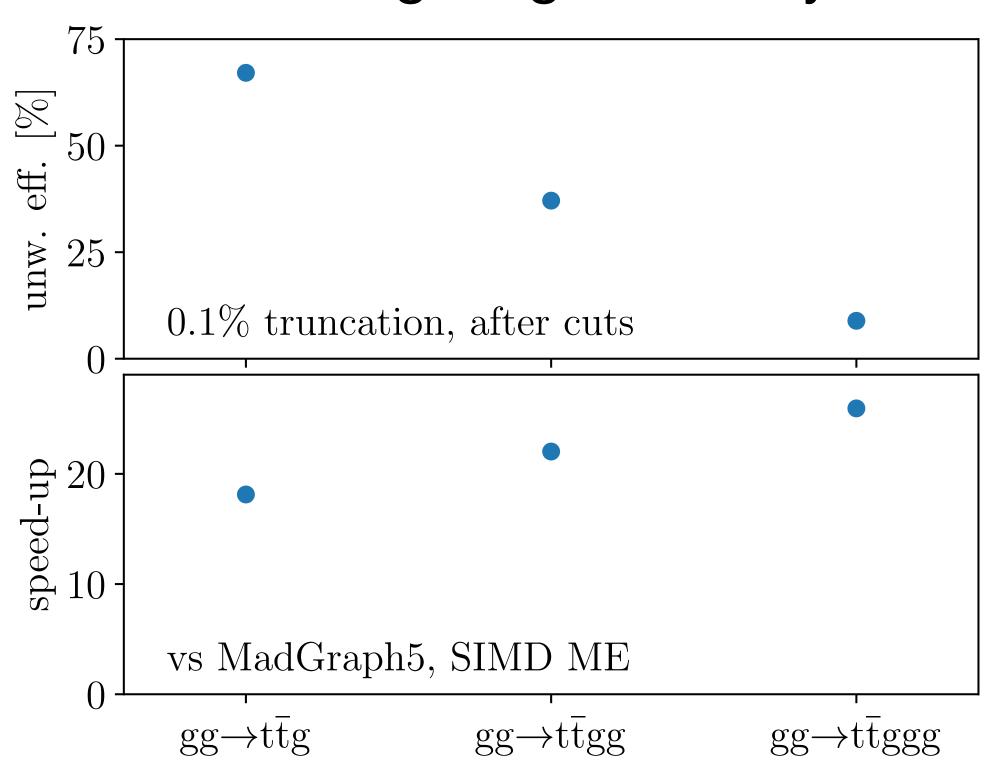


MadNIS pipeline

preliminary

Unweighting performance

Unweighting efficiency



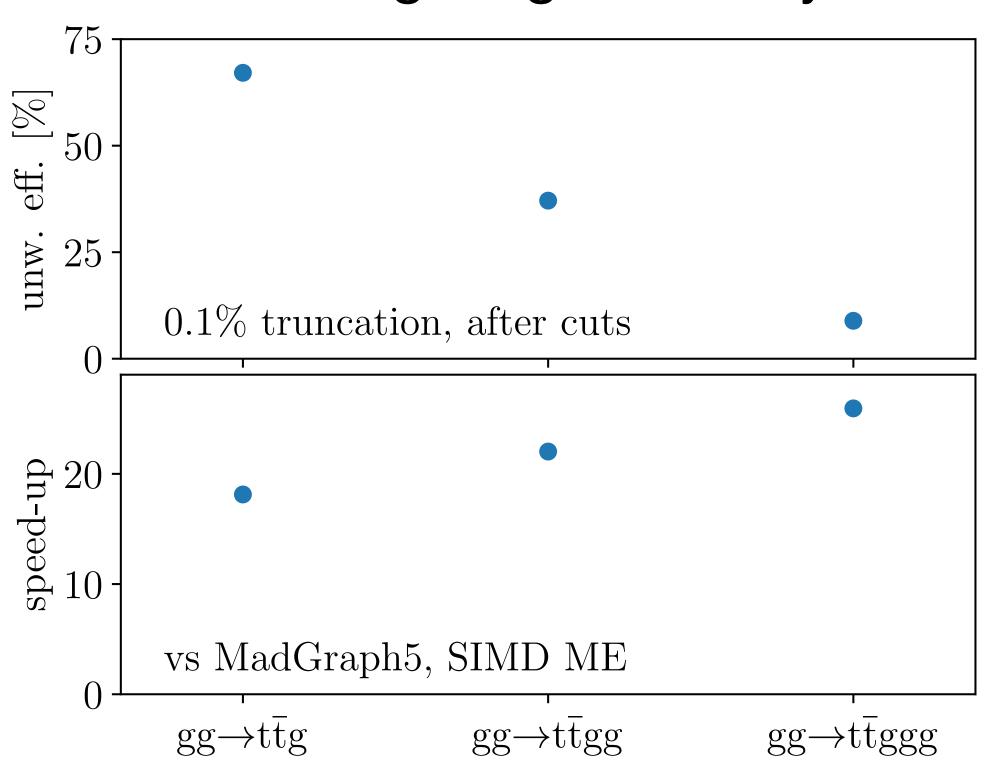
Improved unweighting efficiency

$$\epsilon^{ ext{MadNIS}} / \epsilon^{ ext{MG5}} \approx 25$$
 $e^{ ext{ggg}}$

preliminary

Unweighting performance

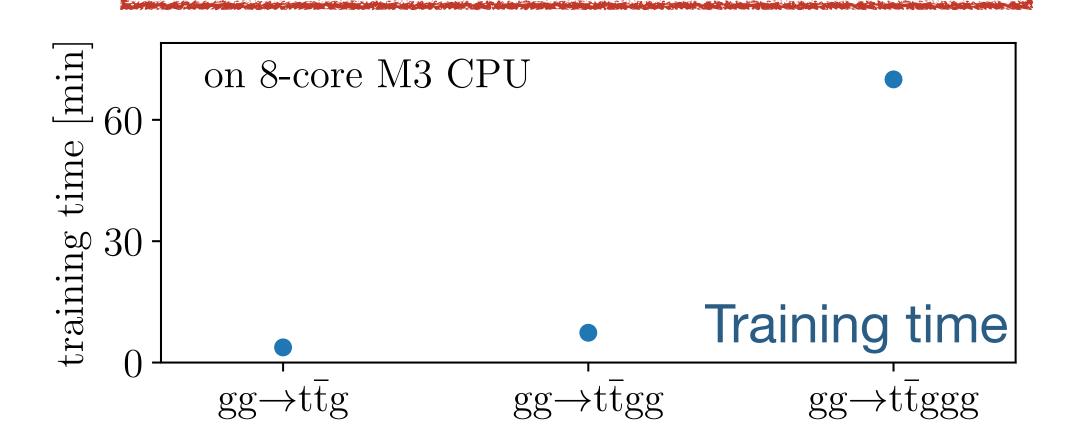
Unweighting efficiency



Improved unweighting efficiency

$$\epsilon^{\text{MadNIS}} / \epsilon^{\text{MG5}} \approx 25$$

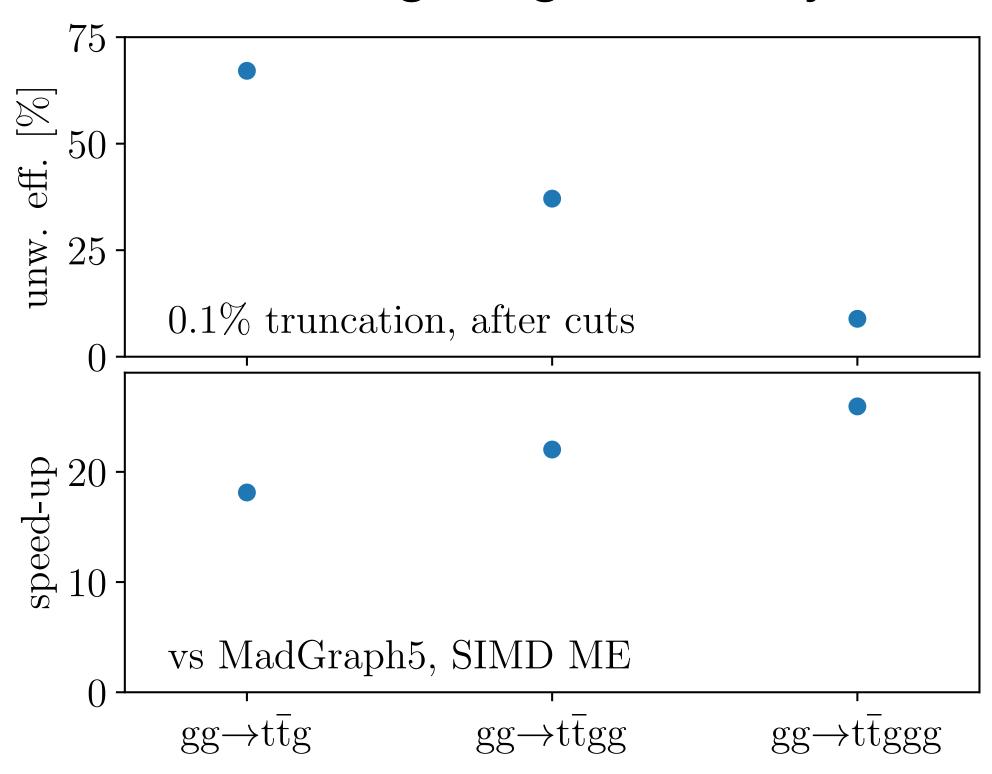
$$@gg \rightarrow t\bar{t}ggg$$

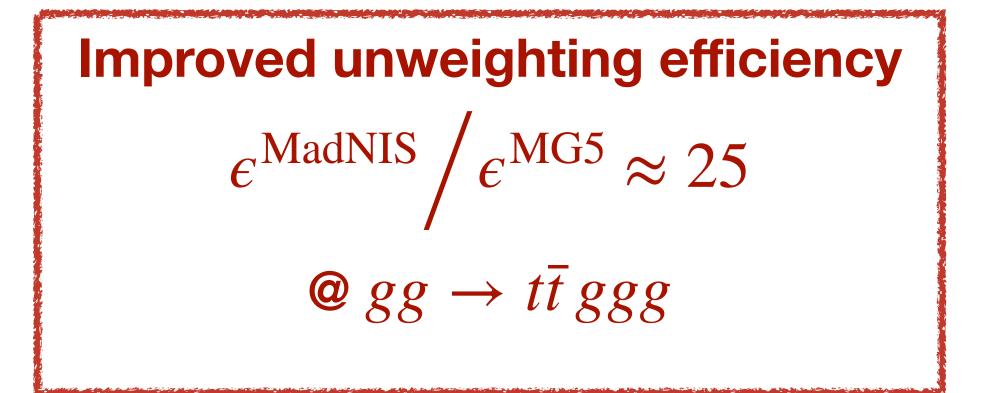


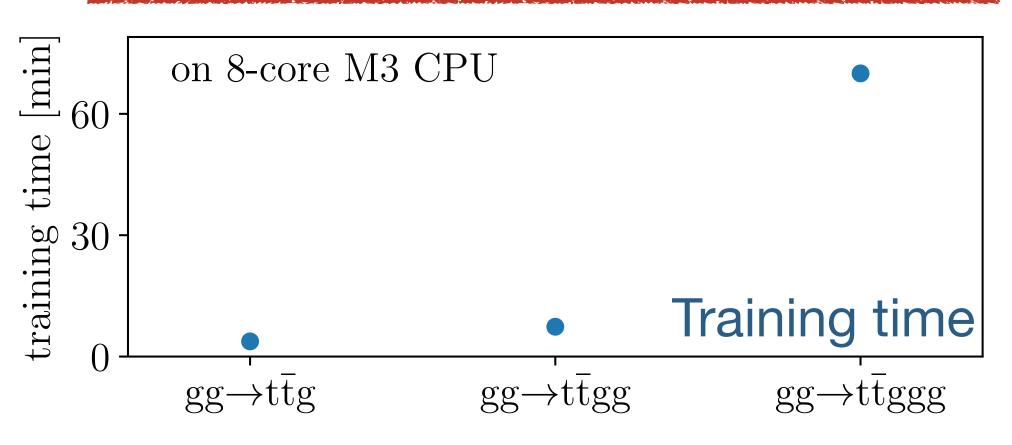
preliminary

Unweighting performance

Unweighting efficiency

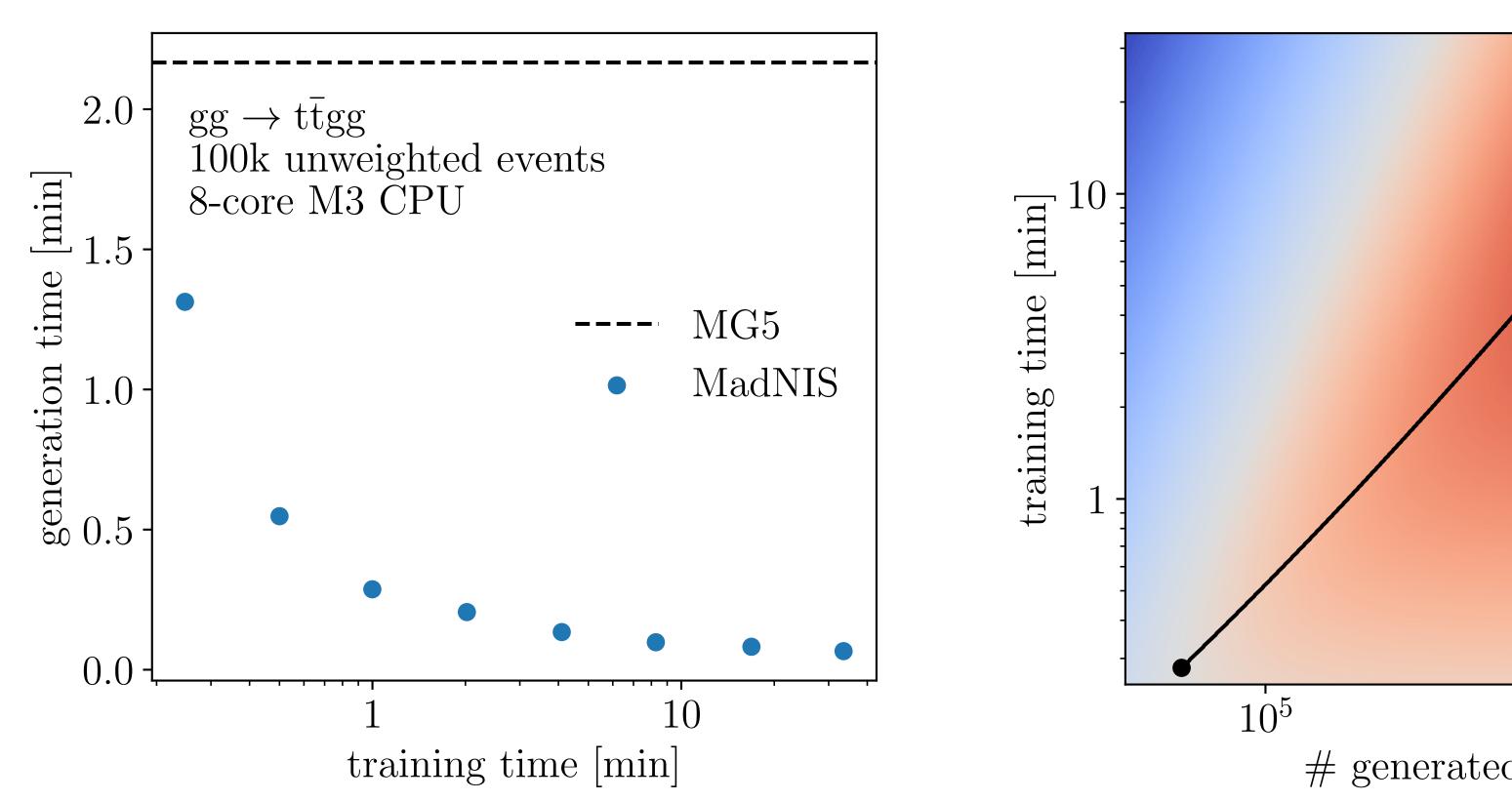


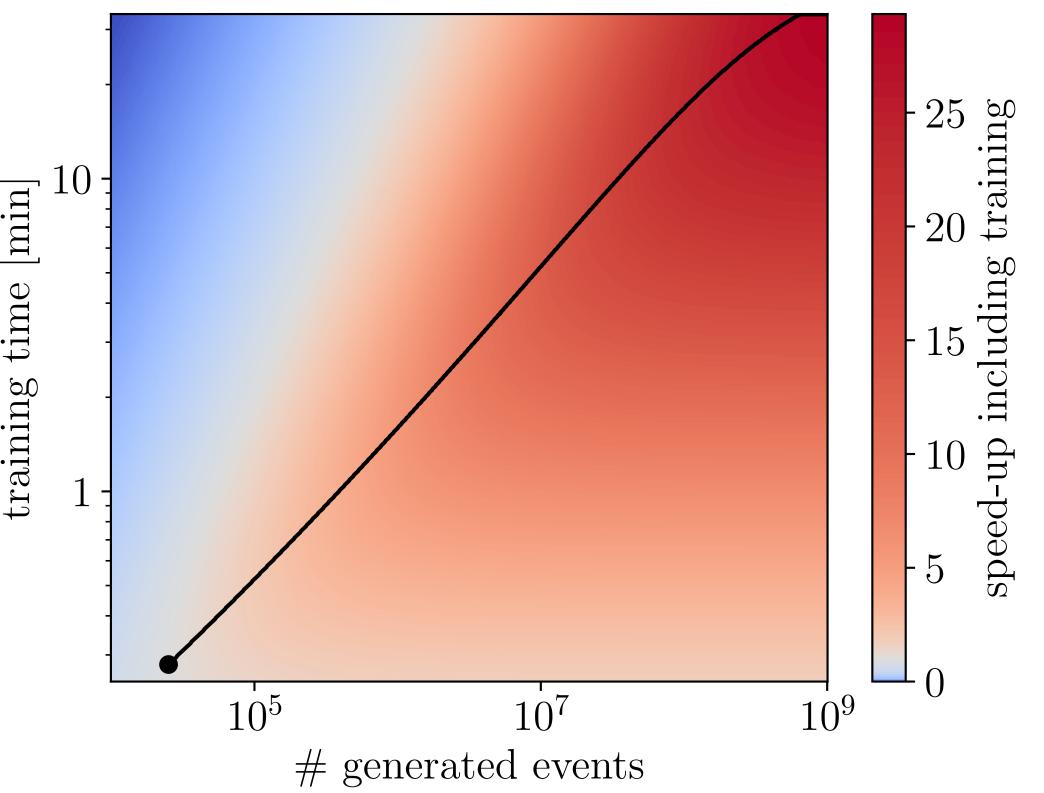




→ Does it still pay off?

Training time and amortization





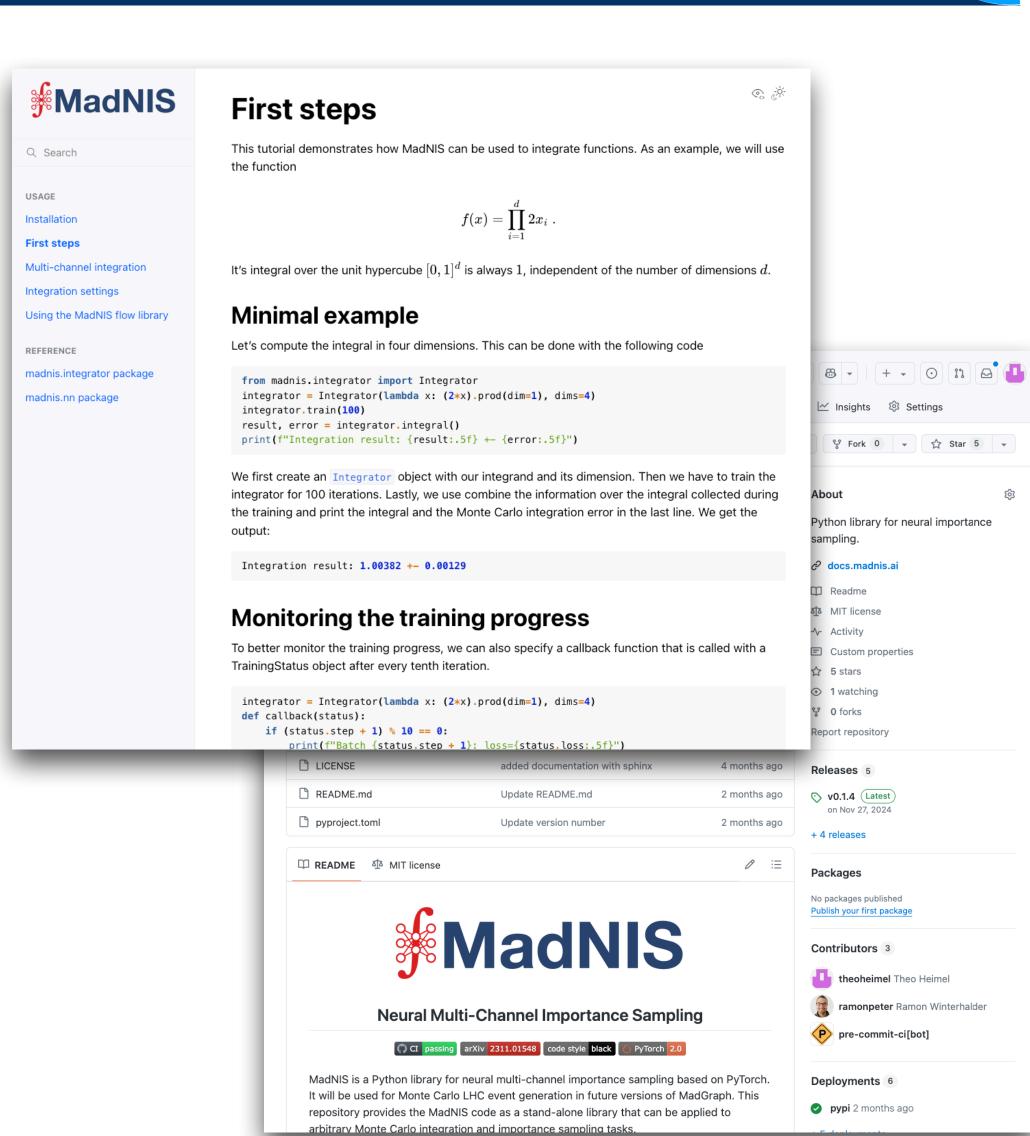
MadNIS is faster starting at 10k events!

Standalone Python module

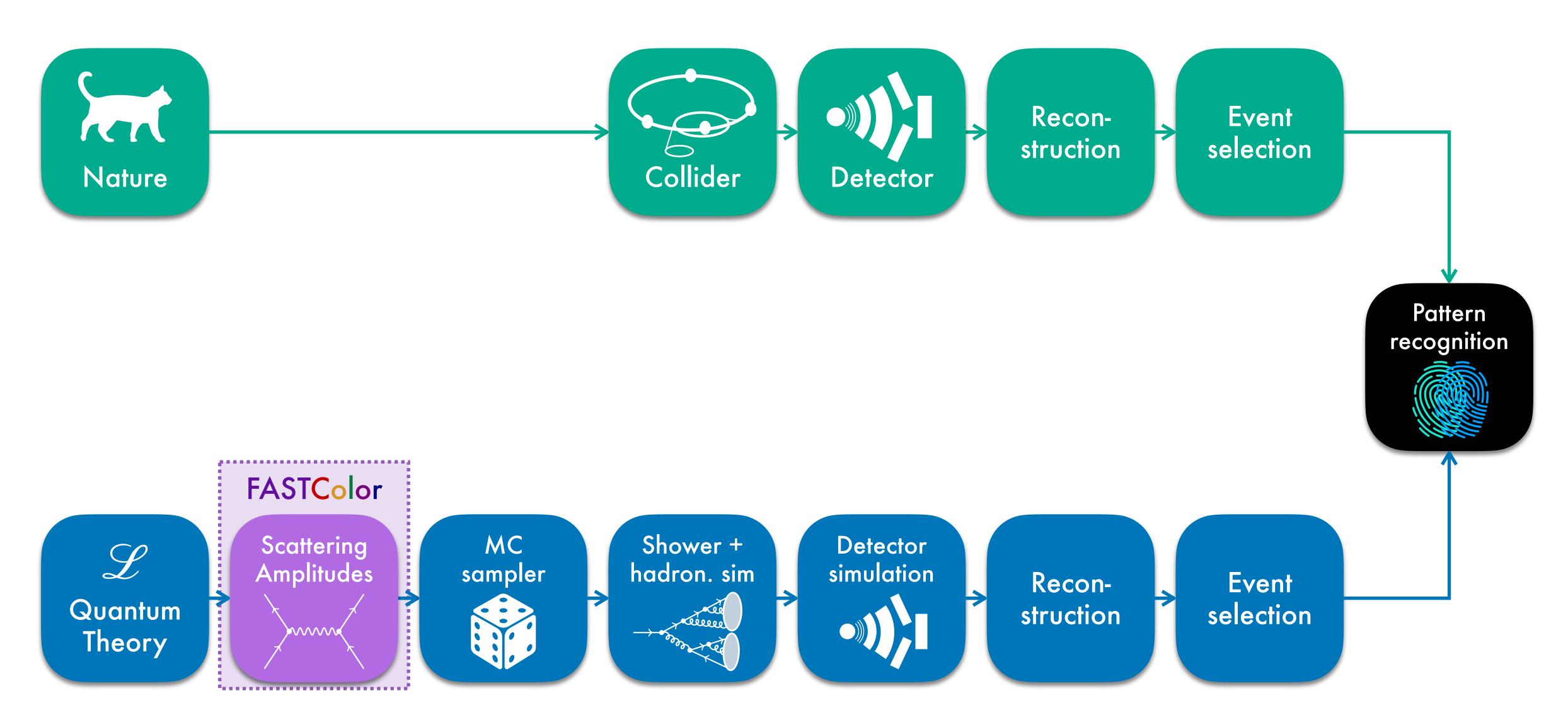
- MadNIS as a Python package
 - → apply to your own integration tasks
- From simple single-channel integrals to complex multi-channel setups
- Easy-to-use implementation of normalizing flows

https://madnis.ai/

pip install madnis



FASTColor — Full-color surrogates



Setting the stage

Full-color Amplitude Surrogate Toolkit for QCD

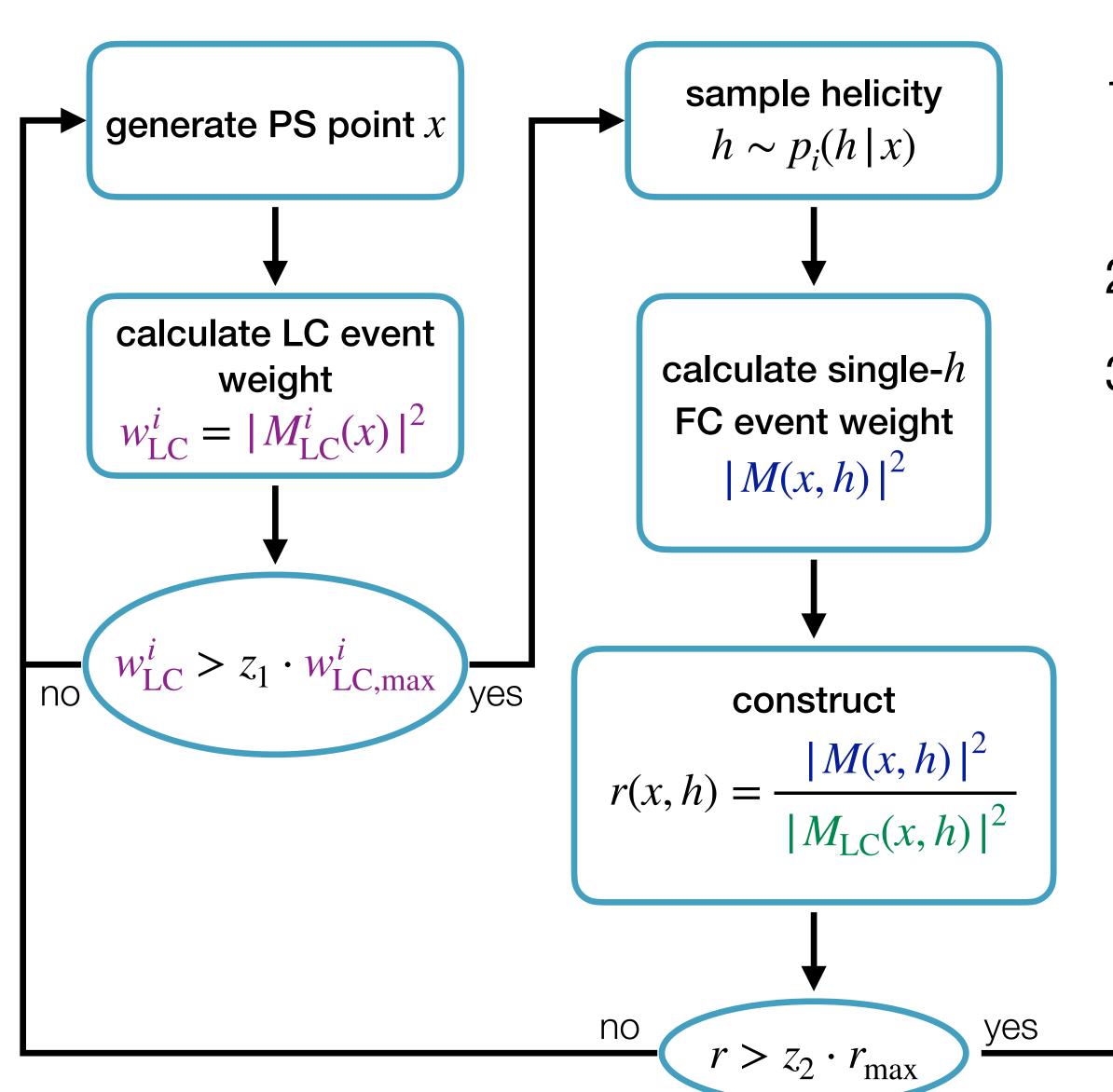
What we do

Use ML to accelerate event generation at Full-Color (FC) accuracy in QCD

How we do it

We build on a Leading-Color (LC) based, two-step unweighting approach

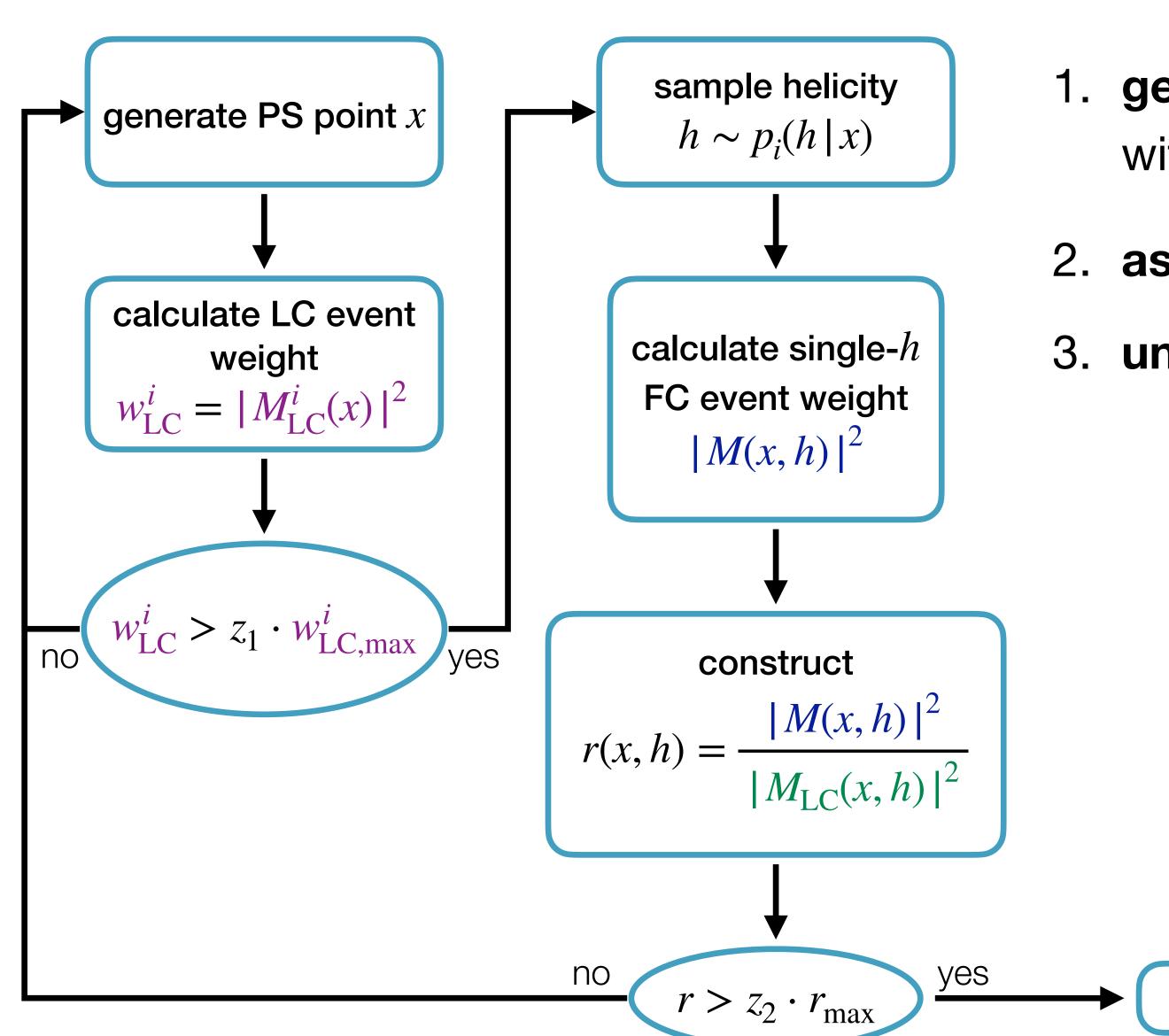
LC-based unweighting



- 1. **generate LC events** for a single color flow i with weight $w_{\rm LC}^i$
- 2. assign a helicity h with probability $p_i(h \mid x)$
- 3. unweight to FC

accept x

LC-based unweighting



- 1. **generate LC events** for a single color flow i with weight $w_{\rm LC}^i$
- 2. assign a helicity h with probability $p_i(h \mid x)$
- 3. unweight to FC

Unbiased result

Generated events follow FC density

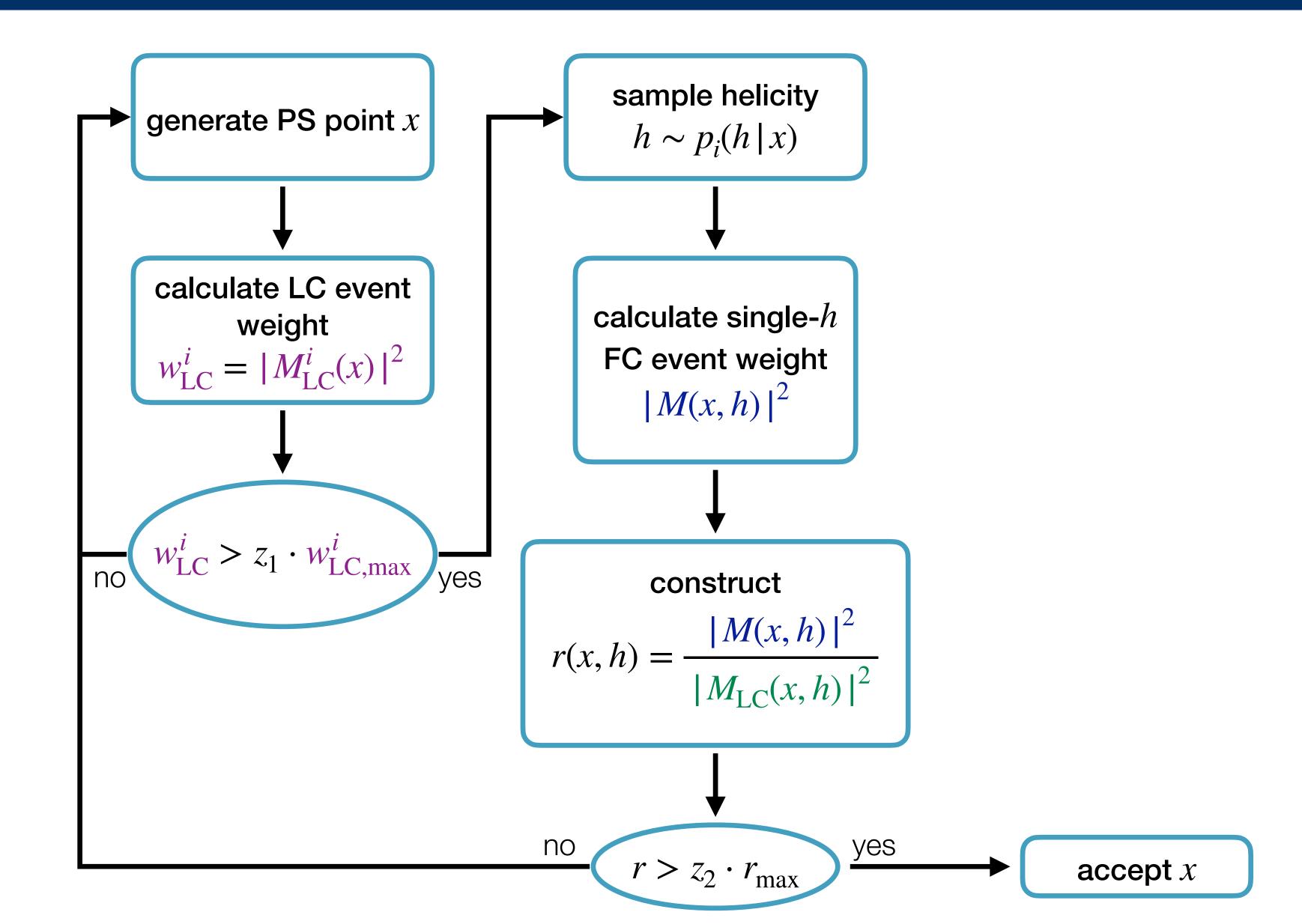
$$\sigma_{FC} = \sum_{i} \int d\Phi |M_{LC}^{i}(x)|^{2} \langle r(x,h) \rangle_{h \sim p_{i}(h|x)}$$

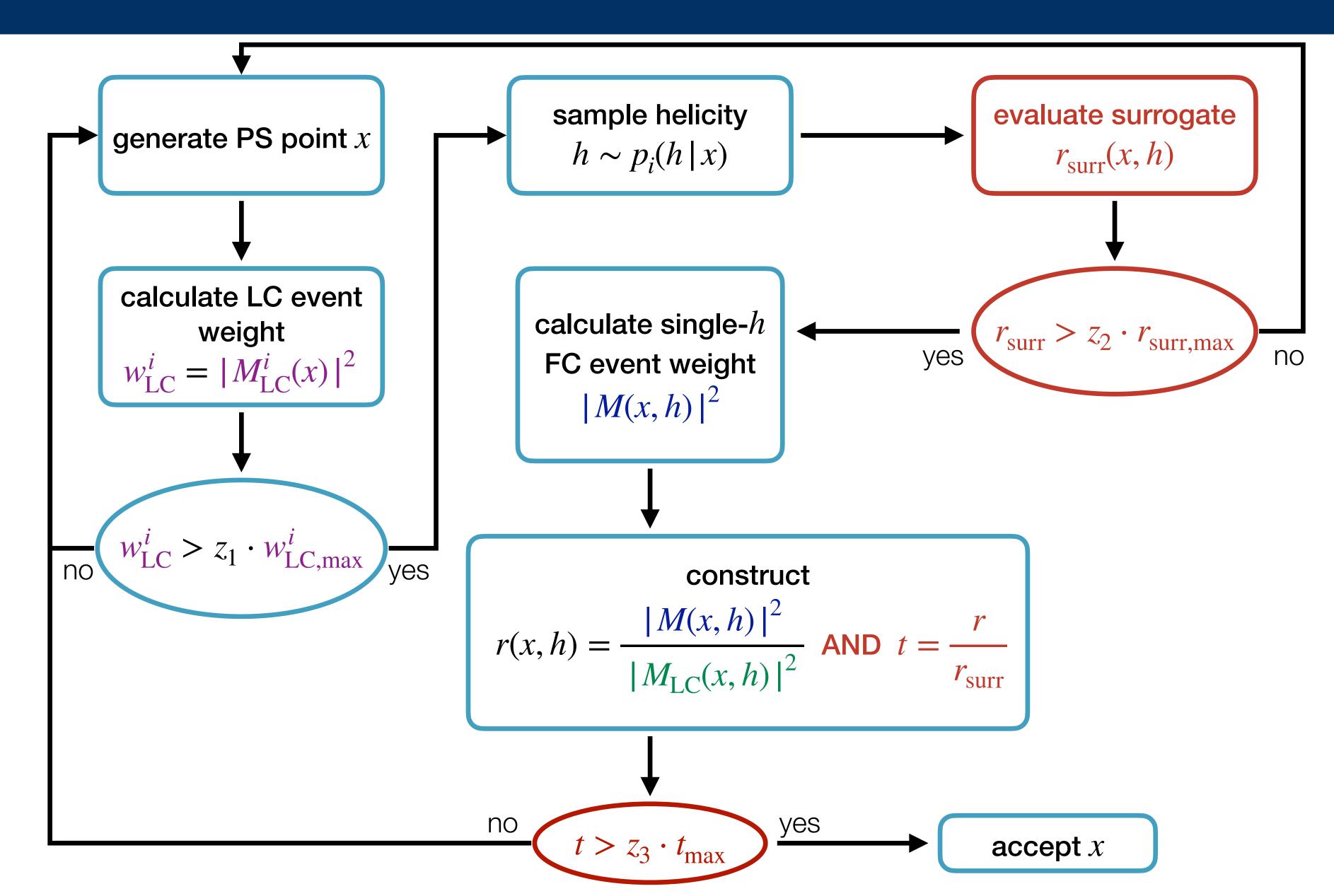
accept x

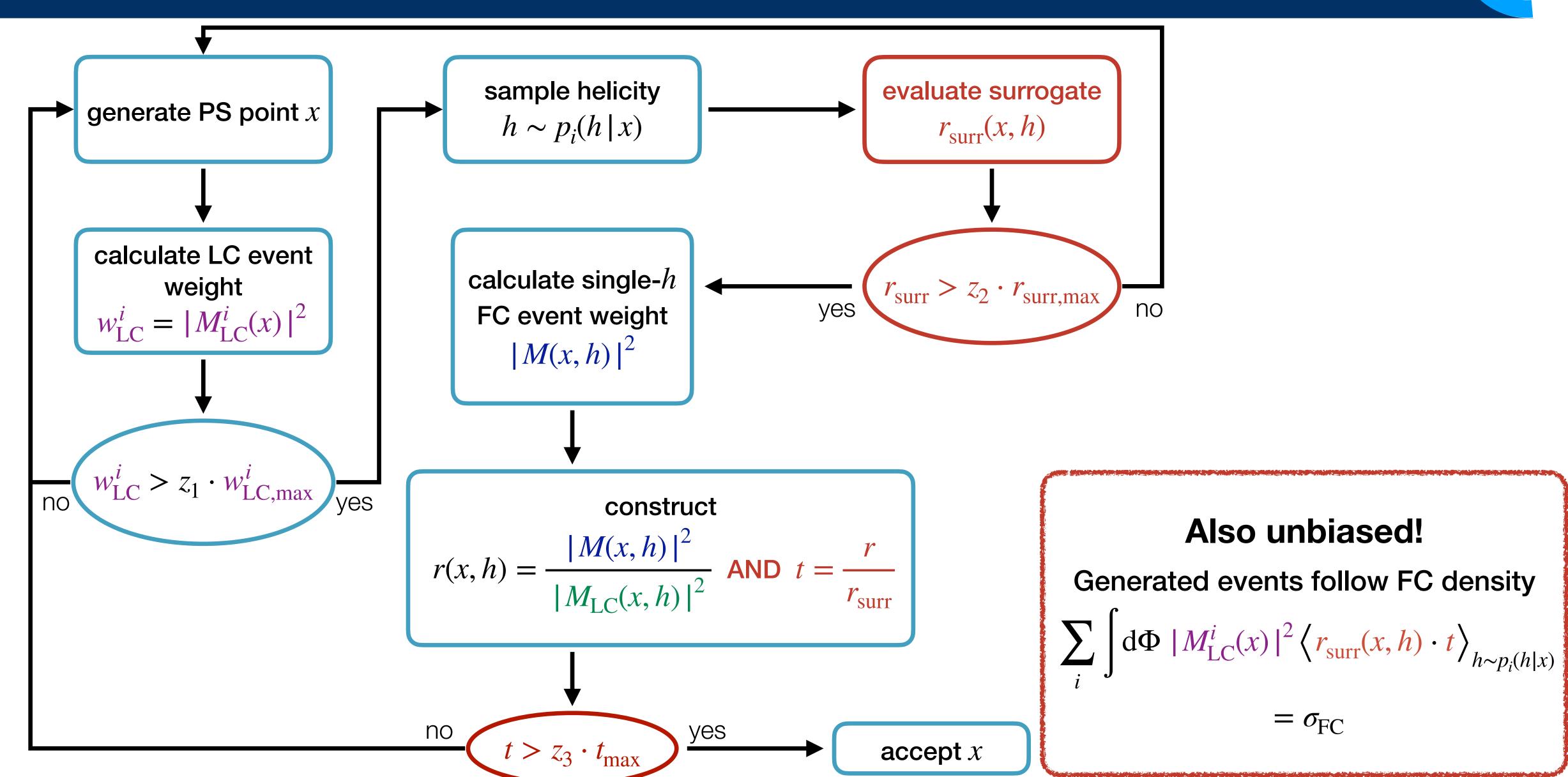
Introduce additional unweighting step against ML surrogate

$$r_{\rm surr}(x,h) \approx r(x,h)$$

- ► Faster to evaluate: e.g. $\mathcal{O}_{FC}(1)$ vs $\mathcal{O}_{surr}(10^{-5})$ s/event
- ► Much *better scaling* with particle multiplicity than approximating $|M_{\text{surr}}(x,h)|^2 \approx |M(x,h)|^2$







How to quantify

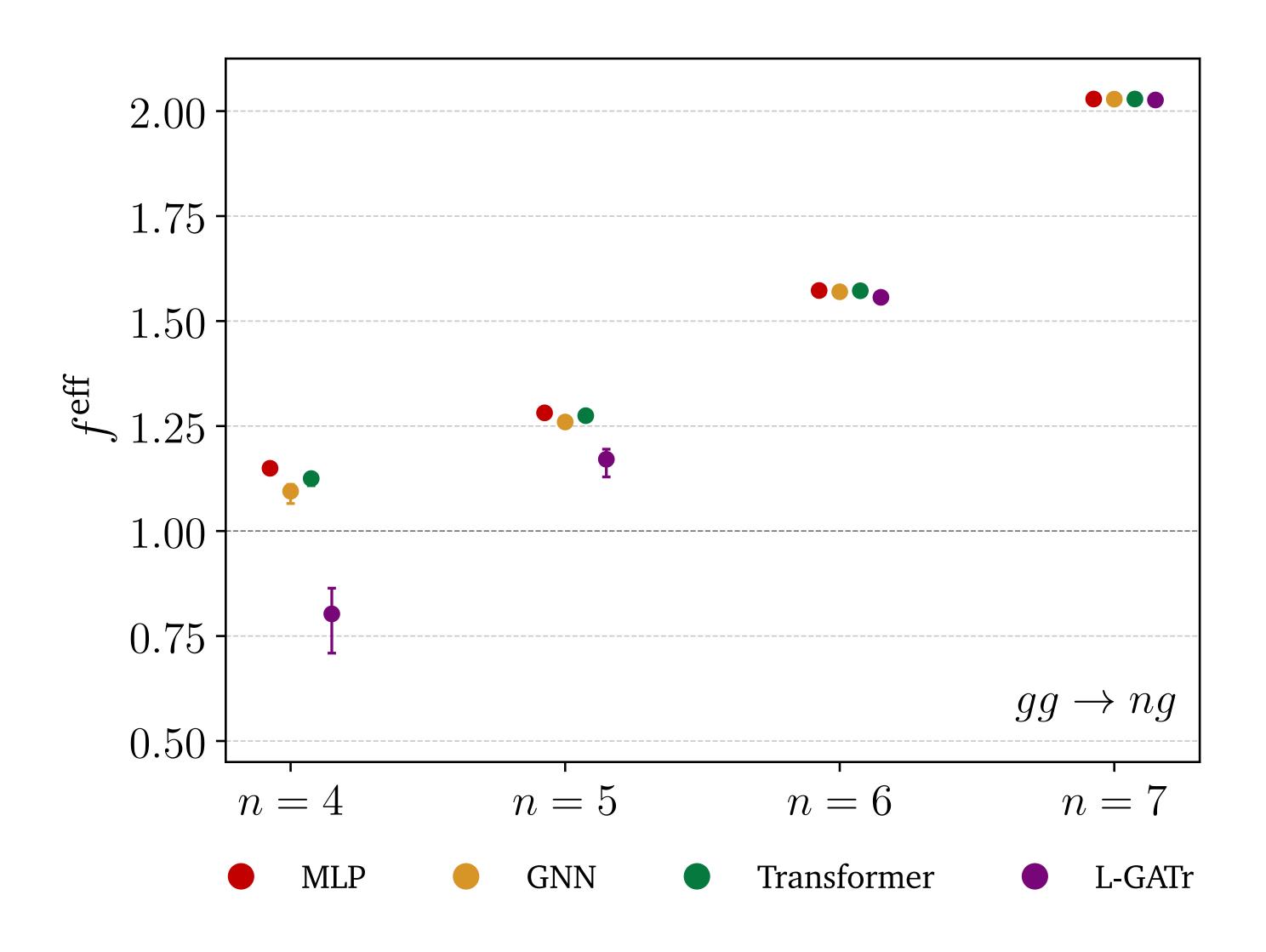
gains in performance?

Effective gain factor:

$$f^{\text{eff}} \equiv \frac{T_{\text{LC}}}{T_{\text{surr}}}$$

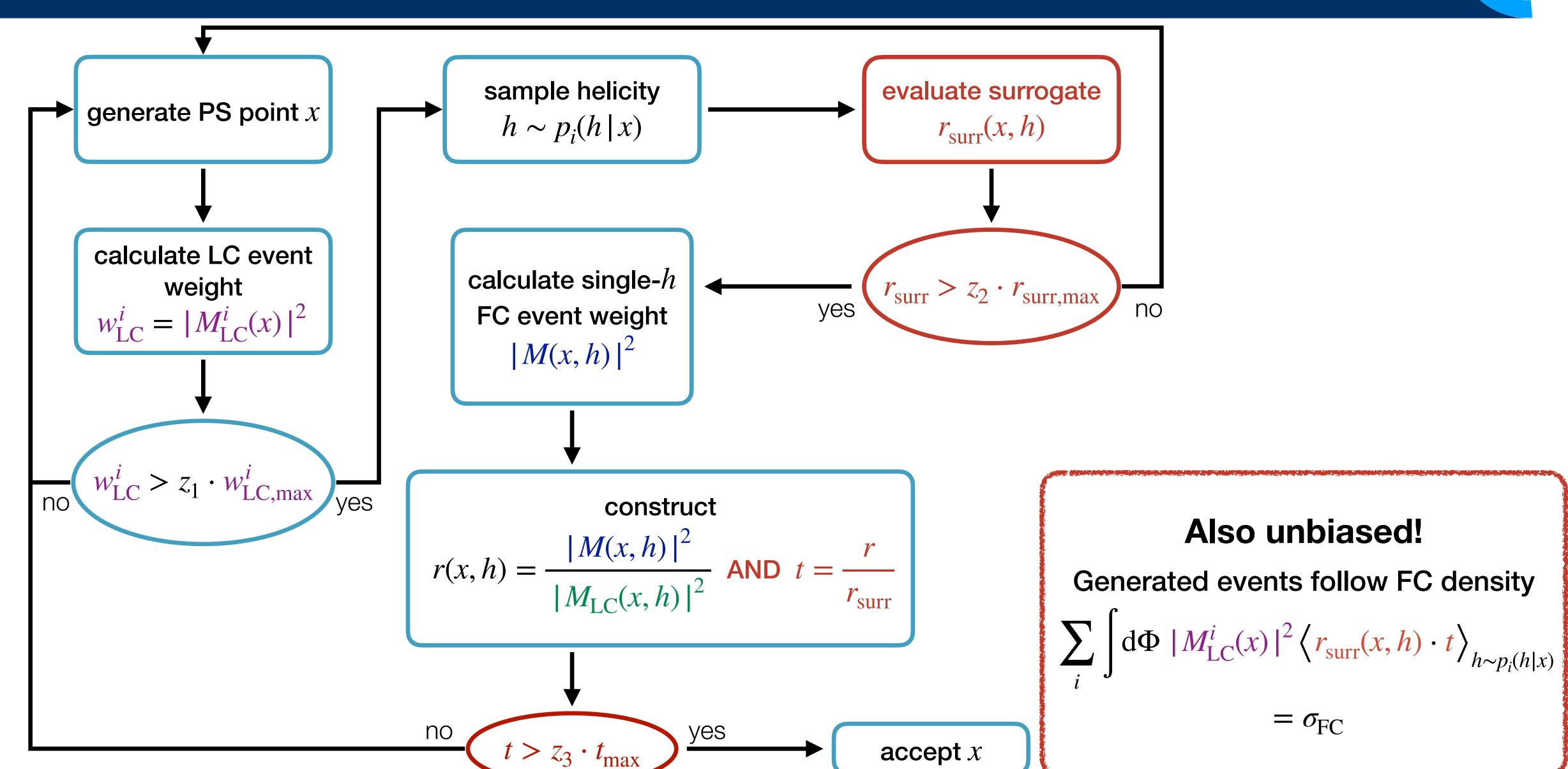
T takes into account evaluation time, efficiency, and statistical power of the generated sample

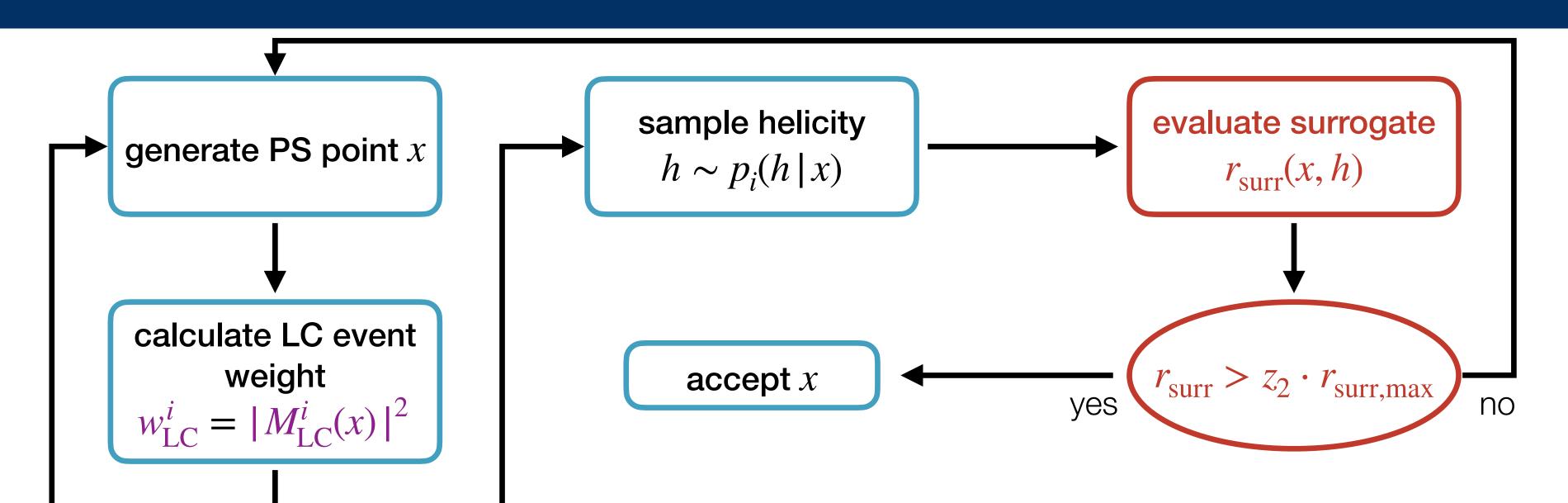
Results - Gain factors



Gains across all processes, from x1.1 to x2 in the all-gluons n=7 case

What if we ignore the FC reweighting?



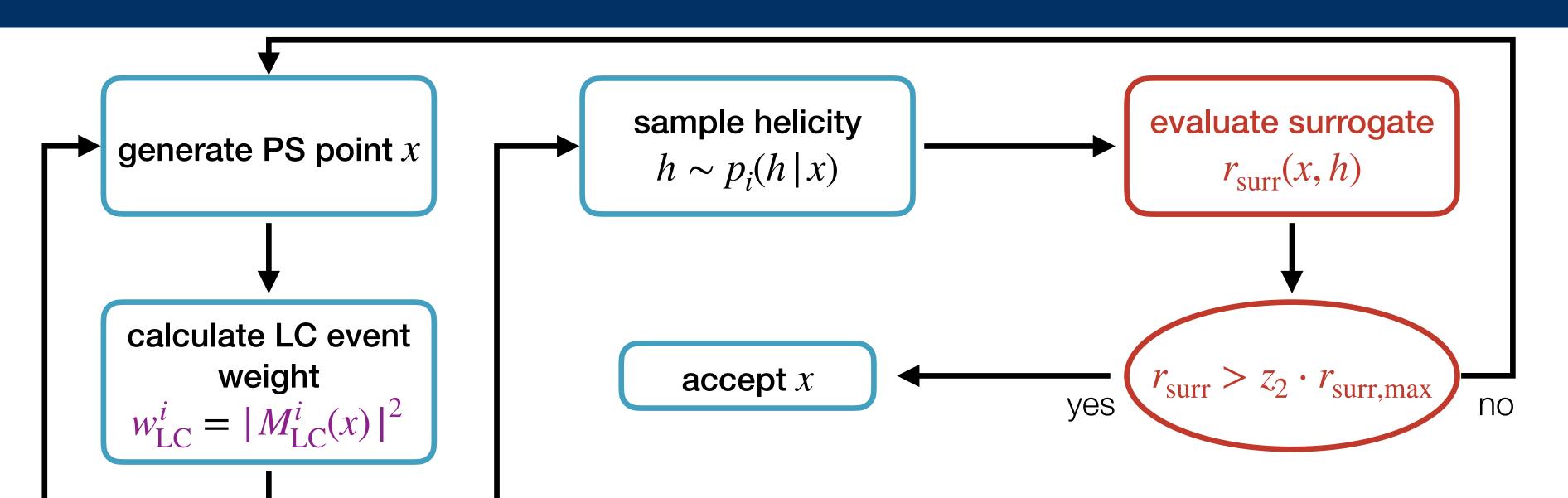


Also unbiased!

Generated events follow FC density

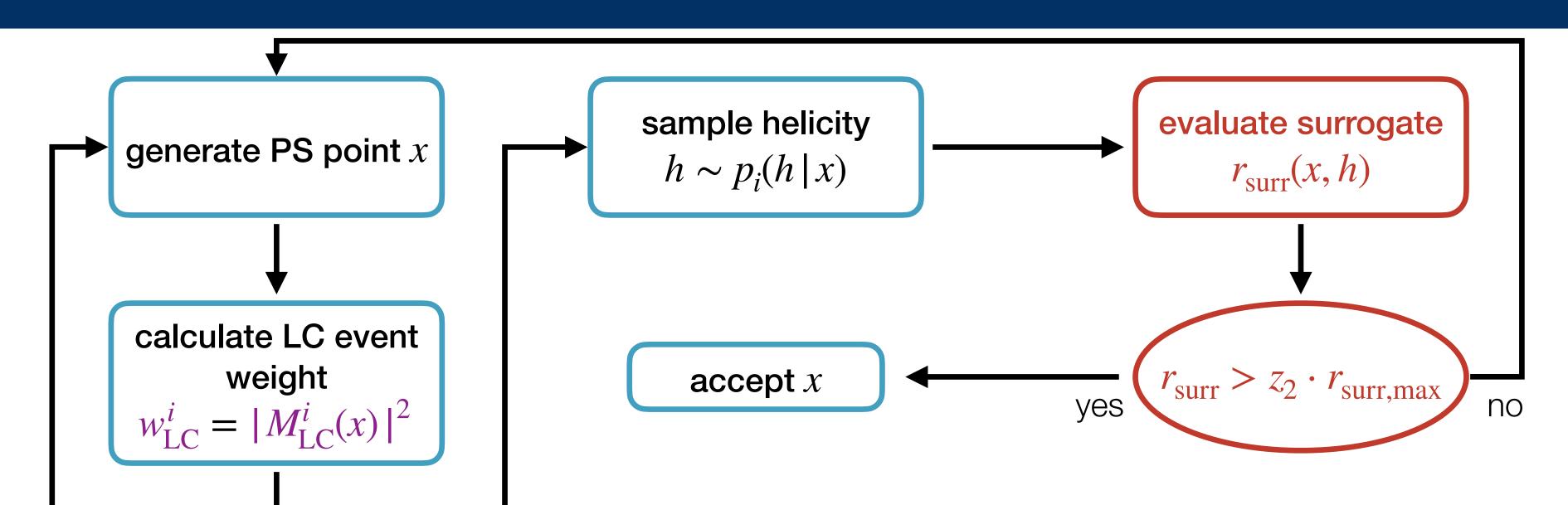
$$\sum_{i} \int d\Phi |M_{LC}^{i}(x)|^{2} \langle r_{surr}(x,h) \cdot t \rangle_{h \sim p_{i}(h|x)}$$

$$= \sigma_{FC}$$



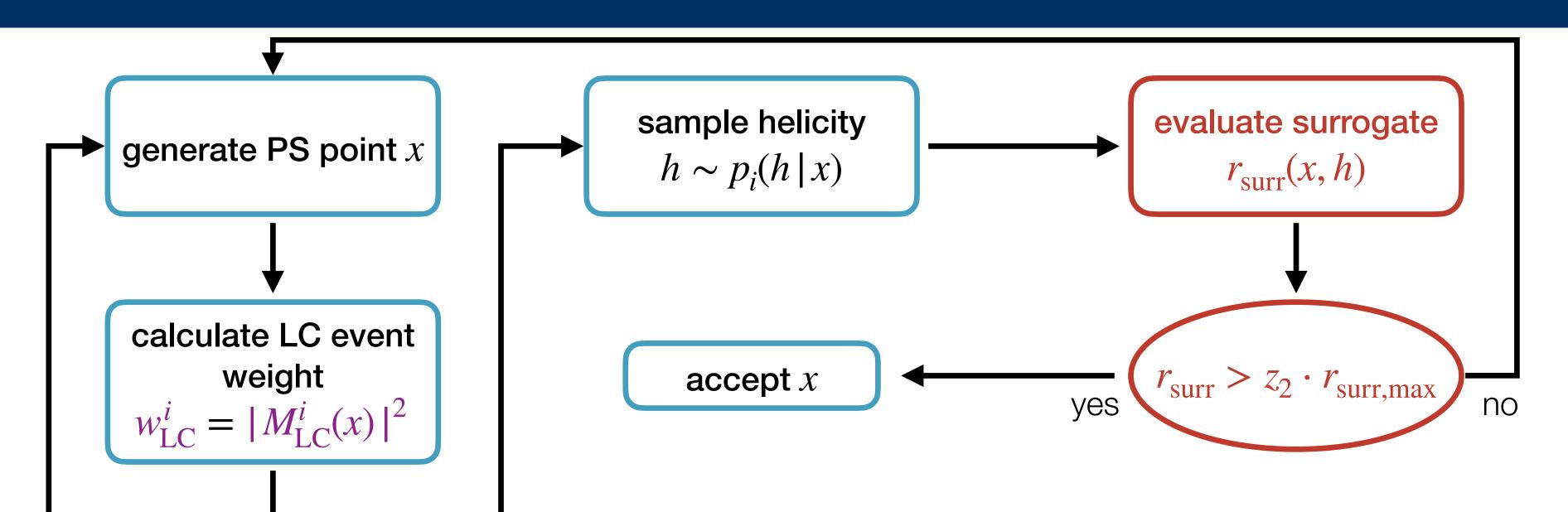
Also unbia od!

Generated every sow FC density $\sum_{i} \int \mathrm{d}\Phi \, |M_{\mathrm{LC}}^{i}(x)|_{t=0}^{t} \left(x,h\right) \cdot t \right)_{h \sim p_{i}(h|x)}$ $= \sigma_{\mathrm{FC}}$



Generated events now follow density

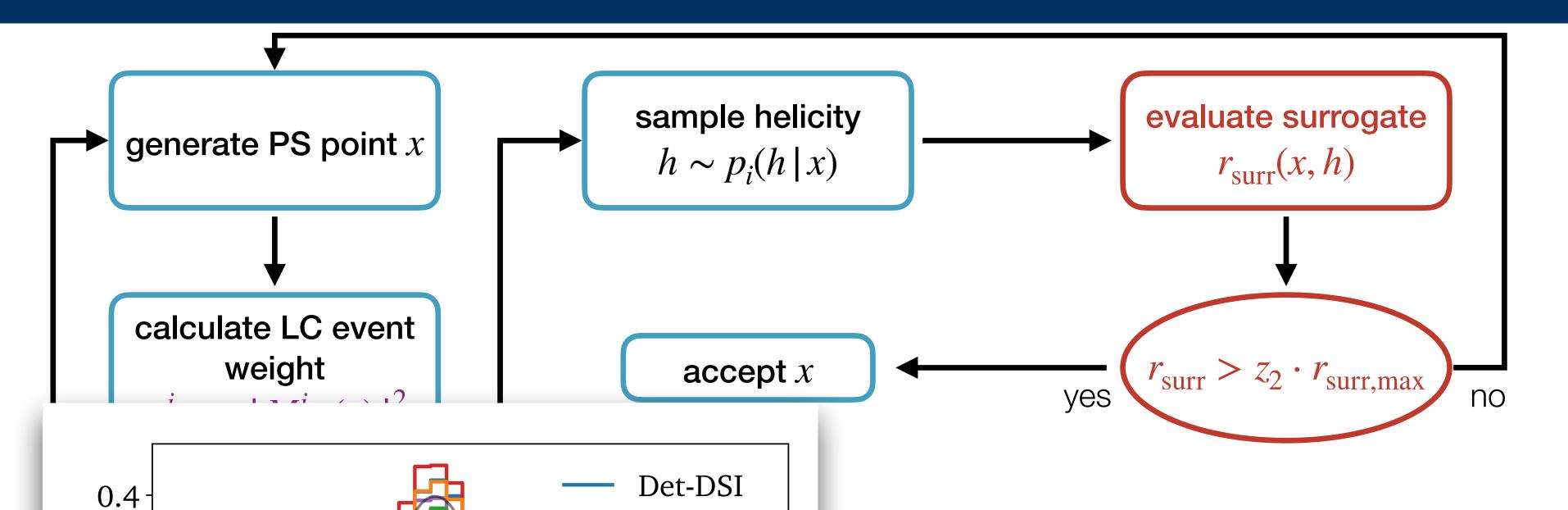
$$\sum_{i} \int d\Phi |M_{LC}^{i}(x)|^{2} \langle r_{surr}(x,h) \rangle_{h \sim p_{i}(h|x)} \equiv \sigma_{surr,FC} \approx \sigma_{FC}$$



Generated events now follow density

$$\sum_{i} \int d\Phi |M_{LC}^{i}(x)|^{2} \langle r_{surr}(x,h) \rangle_{h \sim p_{i}(h|x)} \equiv \sigma_{surr,FC} \approx \sigma_{FC}$$

- Requires control over surrogate uncertainties
- But very feasible!



BNN-DSI

L-GATr

 $\mathcal{N}(0,1)$

Det-I

Det

 $t_{\rm syst}$

0.3

0.1

0.0

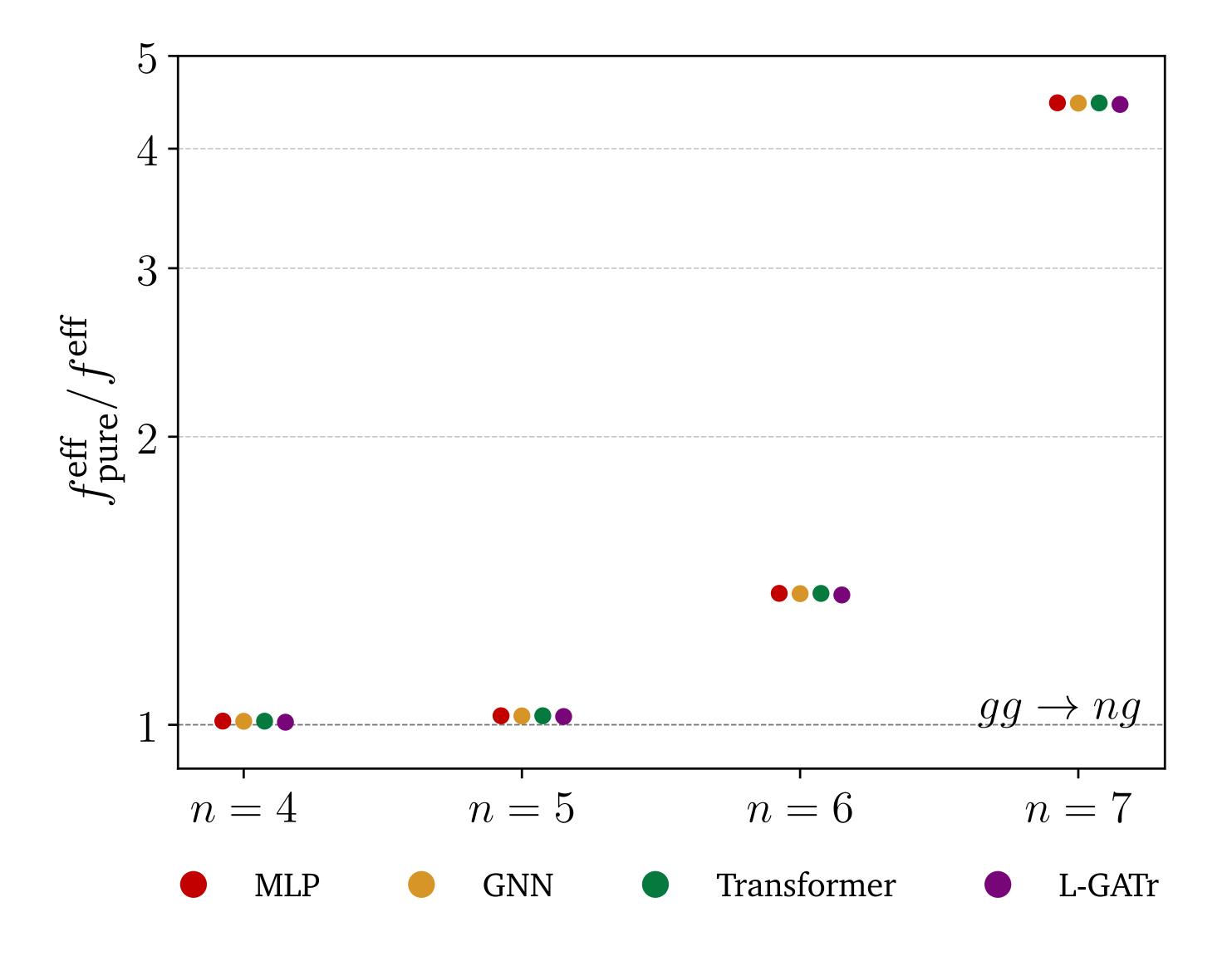
ਸ਼ ਹ.2

Generated events now follow density

$$\sum_{i} \int d\Phi |M_{LC}^{i}(x)|^{2} \langle r_{surr}(x,h) \rangle_{h \sim p_{i}(h|x)} \equiv \sigma_{surr,FC} \approx \sigma_{FC}$$

- Requires control over surrogate uncertainties
- But *very feasible!* Bahl, Elmer, RW, et al. [2412.12069, 2509.00155]

Results - Gain factors w/o FC rew.



Further improvements compared three-step method

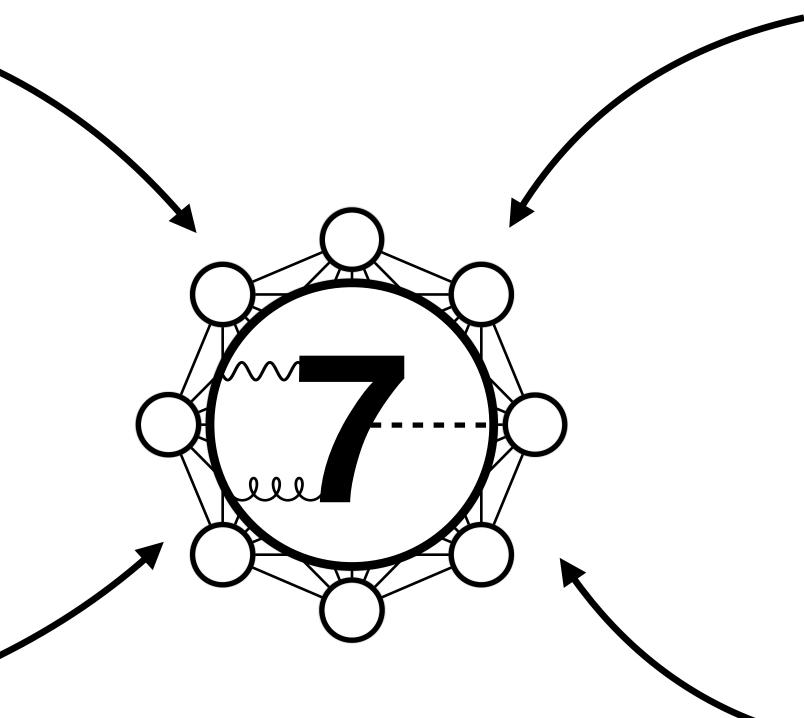
$$\mathbf{@} gg \rightarrow 7g$$

Upcoming MadGraph7

Matrix element on GPU

- huge speed-up from GPUs
- improved CPU performance from SIMD vectorization

MG4GPU [2303.18244, 2312.02898]



MadNIS@LO

- neural importance sampling for better uw. efficiency
- as easy as VEGAS
- Default for many processes
 Beccatini, Heimel, Mattelaer, RW [2601.XXXX]

Faster multi-jet events

- Recursion relations for higher multiplicities
- Improved efficiency through 2(3)-stage unweighting

Release planned for early 2026!

MadEvent7

- new flexible and modular phase space generator
- GPU- and ML-enabled
- usable beyond MadGraph
 Heimel, Mattelaer, RW [2512.XXXX]

Frederix, Vitos [2409.12128]

Towards MadGraph7@NLO

ML-improved

subtractions

Matrix element on GPU

- huge speed-up from GPUs
- improved CPU performance from SIMD vectorization

MG4GPU [2303.18244, 2312.02898]

MG4GPU@NLO

 port real-emission ME onto GPU [2503.07439]

Faster multi-jet events

- Recursion relations for higher multiplicities
- Improved efficiency through 2(3)-stage unweighting

Frederix, Vitos [2409.12128]

NLO-phase ~2026++

MadNIS@NLO

- neural importance sampling for better uw. efficiency
- as easy as VEGAS
- Default for many processes
 Beccatini, Heimel, Mattelaer, RW [2601.XXXX]

Fast surrogates@NLO

 ML surrogates for virtual MEs

MadEvent7@NLO

- new flexible and modular phase space generator
- GPU- and ML-enabled
- usable beyond MadGraph
 Heimel, Mattelaer, RW [2512.XXXX]

Open Discussion

The Leading-Color approximation

1. Introduce the helicity-dependent squared matrix elements at FC accuracy and LC accuracy

$$|M(x,h)|^2 = \sum_{i,j} A_{i,h}(x) C_{ij} A_{j,h}^*(x) \qquad |M_{LC}(x,h)|^2 = \sum_i C_{ii} |A_{i,h}(x)|^2$$

2. We also define the color-dependent (h-summed) LC matrix element and its relative h-contributions

$$|M_{LC}^{i}(x)|^{2} = \sum_{h} C_{ii} |A_{i,h}(x)|^{2}$$

$$p_{i}(h|x) = \frac{C_{ii} |A_{i,h}(x)|^{2}}{|M_{LC}^{i}(x)|^{2}}$$

3. The FC cross section can thus be calculated as:

$$\sigma_{FC} = \sum_{i} \int d\Phi |M_{LC}^{i}(x)|^{2} \left\langle \frac{|M(x,h)|^{2}}{|M_{LC}(x,h)|^{2}} \right\rangle_{h \sim p_{i}(h|x)} r_{LC \to FC}(x,h)$$