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this is event generation
CaloChallenge

see Claudius’ talk 
(Tuesday afternoon)
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3The devil is in the details

Pythia8 Manual [2203.11601]
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(*: incoming lines are crossed)
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FeynRules

Model files: UFO

LHAPDF

MadSpin

Tree level: Madgraph, Amegic/
Comix (Sherpa), Matchbox 

(Herwig), Pepper, Powheg-Box
Loop amplitudes: 
OpenLoops, Recola, GoSam, 
MadLoop

LHE files
dipole/Vincia (Pythia), Alaric/CSS 
(Sherpa), angular ordering/dipole 
(Herwig), PanScales

FastJet

Cluster model  
(Sherpa, Herwig), 
Lund string model  

(Pythia)

HepMC files

EvtGen, Tauola

Photos, Photons (Sherpa)

Rivet, MadAnalysis

Contur, PyHF,  
Professor, Apprentice

YODA, ROOT



4Computing Budget

[CERN-LHCC-2022-005]
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pT,j > 20GeV, |¥j| < 6

WTA (> 6j)

parton level

particle level

particle level

[Höche et al.,1905.05120]

https://cds.cern.ch/record/2802918
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MadNIS — Neural Importance Sampling

MadNIS [2212.06172, 2311.01548, 2408.01486] 

https://arxiv.org/abs/2212.06172
https://arxiv.org/abs/2311.01548
https://arxiv.org/abs/2408.01486


6Monte Carlo integration

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to p f

I = ⟨ f(x)
p(x) ⟩

x∼p(x)

Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x)

f(x)
pi(x) ⟩

x∼pi(x)

dσ =
1

flux
dxadxb f(xa)f(xb) dΦn ⟨ ∣Mλ,c,...(pa, pb ∣ p1, …, pn) ∣2 ⟩

Calculate (differential) cross sections



7Event generation in MadGraph

I = ∑
i ⟨αi(x)

f(x)
pi(x) ⟩

x∼pi(x)

MadGraph: build channels 
from Feynman diagrams

Sum over channels

MadGraph: αMG
i (x) ∼ ∣Mi ∣2

Channel weights

MadGraph: dσ/dx
Integrand

dσ =
1

flux
dxadxb f(xa)f(xb) dΦn ⟨ ∣Mλ,c,...(pa, pb ∣ p1, …, pn) ∣2 ⟩

Calculate (differential) cross sections

Channel mappings
MadGraph: use amplitude structure, … 
Analytic mappings + refine with VEGAS 

(factorized, histogram based 
importance sampling)



8Event generation in MadNIS

I = ∑
i ⟨αi(x)

f(x)
pθ

i (x) ⟩
x∼pθ

i (x)

MadGraph: build channels 
from Feynman diagrams

Sum over channels
MadGraph: dσ/dx

Integrand

Learned channel mappings
MadGraph: use amplitude structure, … 
Analytic mappings + refine with VEGAS

refine with NF

MadGraph: αMG
i (x) ∼ ∣Mi ∣2

Channel weights

dσ =
1

flux
dxadxb f(xa)f(xb) dΦn ⟨ ∣Mλ,c,...(pa, pb ∣ p1, …, pn) ∣2 ⟩

Calculate (differential) cross sections
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I = ∑
i ⟨αξ

i (x)
f(x)

pθ
i (x) ⟩

x∼pθ
i (x)

MadGraph: build channels 
from Feynman diagrams

Sum over channels
MadGraph: dσ/dx

Integrand

Learned channel mappings
MadGraph: use amplitude structure, … 
Analytic mappings + refine with VEGAS

MadGraph: αMG
i (x) ∼ ∣Mi ∣2

Learned channel weights

dσ =
1

flux
dxadxb f(xa)f(xb) dΦn ⟨ ∣Mλ,c,...(pa, pb ∣ p1, …, pn) ∣2 ⟩

Calculate (differential) cross sections

αi(x) → αξ
i (x) = αMG

i (x) ⋅ Kξ
i (x)

parametrize with NN

Event generation in MadNIS

refine with NF



10Building MadNIS into MadGraph

Survey

(VEGAS)

Combine

channels,


write events

Refine VEGAS grids

Generate events

MadNIS

training

Generate

events

Simplify

multi-


channel

Standard MadEvent pipeline

MadNIS pipeline
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ϵMadNIS/ϵMG5 ≈ 25

gg → tt̄ ggg
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12Training time and amortization 
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13Standalone Python module

• MadNIS as a Python package 
→ apply to your own integration tasks


• From simple single-channel integrals 
to complex multi-channel setups 

• Easy-to-use implementation of 
normalizing flows

https://madnis.ai/

pip install madnis

https://madnis.ai/
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FASTColor — Full-color surrogates

FASTColor [2509.07068]

https://arxiv.org/abs/2509.07068


15Setting the stage

What we do
Use ML to accelerate event generation at Full-Color (FC) accuracy in QCD

How we do it
We build on a Leading-Color (LC) based, two-step unweighting approach

Full-color Amplitude Surrogate Toolkit for QCD



16LC-based unweighting

generate PS point x

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)

calculate single-  
FC event weight 

h

|M(x, h) |2

construct 

r(x, h) =
|M(x, h) |2

|MLC(x, h) |2

r > z2 ⋅ rmax
no yes

accept x

1. generate LC events for a single color flow  
with weight 


2. assign a helicity  with probability 


3. unweight to FC

i
wi

LC

h pi(h |x)



16LC-based unweighting

generate PS point x

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)

calculate single-  
FC event weight 

h

|M(x, h) |2

construct 

r(x, h) =
|M(x, h) |2

|MLC(x, h) |2

r > z2 ⋅ rmax
no yes

accept x

1. generate LC events for a single color flow  
with weight 


2. assign a helicity  with probability 


3. unweight to FC

i
wi

LC

h pi(h |x)

Unbiased result  
Generated events follow FC density 

σFC = ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨r(x, h)⟩h∼pi(h|x)



17Surrogate-based unweighting

Introduce additional unweighting step against ML surrogate 

rsurr(x, h) ≈ r(x, h)

‣ Faster to evaluate: e.g.  s/event


‣ Much better scaling with particle multiplicity than approximating 

𝒪FC(1) vs 𝒪surr(10−5)

|Msurr(x, h) |2 ≈ |M(x, h) |2



18Surrogate-based unweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)

calculate single-  
FC event weight 

h

|M(x, h) |2

construct 

r(x, h) =
|M(x, h) |2

|MLC(x, h) |2

r > z2 ⋅ rmax
no yes

accept x

generate PS point x



19Surrogate-based unweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)

calculate single-  
FC event weight 

h

|M(x, h) |2

construct 

   AND  r(x, h) =
|M(x, h) |2

|MLC(x, h) |2 t =
r

rsurr

t > z3 ⋅ tmax
no yes

accept x

generate PS point x
evaluate surrogate 

rsurr(x, h)

rsurr > z2 ⋅ rsurr,maxyes no



19Surrogate-based unweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)

calculate single-  
FC event weight 

h

|M(x, h) |2

construct 

   AND  r(x, h) =
|M(x, h) |2

|MLC(x, h) |2 t =
r

rsurr

t > z3 ⋅ tmax
no yes

accept x

generate PS point x
evaluate surrogate 

rsurr(x, h)

rsurr > z2 ⋅ rsurr,maxyes no

Also unbiased!  
Generated events follow FC density 

 ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨rsurr(x, h) ⋅ t⟩h∼pi(h|x)

= σFC



20Surrogate-based unweighting

Effective gain factor:

f eff ≡
TLC

Tsurr

‣   takes into account evaluation time, efficiency, and statistical power of the generated sampleT

How to quantify 

gains in performance?



21Results - Gain factors

Gains across all processes, 
from x1.1 to x2 in the 
all-gluons  casen = 7

n = 4 n = 5 n = 6 n = 7
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gg ! ng

MLP GNN Transformer L-GATr



What if we ignore the FC reweighting?



23Ignoring the FC reweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)

calculate single-  
FC event weight 

h

|M(x, h) |2

construct 

   AND  r(x, h) =
|M(x, h) |2

|MLC(x, h) |2 t =
r

rsurr

t > z3 ⋅ tmax
no yes

accept x

generate PS point x
evaluate surrogate 

rsurr(x, h)

rsurr > z2 ⋅ rsurr,maxyes no

Also unbiased!  
Generated events follow FC density 

 ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨rsurr(x, h) ⋅ t⟩h∼pi(h|x)

= σFC



Also unbiased!  
Generated events follow FC density 

 ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨rsurr(x, h) ⋅ t⟩h∼pi(h|x)

= σFC

24Ignoring the FC reweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)generate PS point x

evaluate surrogate 
rsurr(x, h)

rsurr > z2 ⋅ rsurr,maxyes no
accept x



Also unbiased!  
Generated events follow FC density 

 ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨rsurr(x, h) ⋅ t⟩h∼pi(h|x)

= σFC

24Ignoring the FC reweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)generate PS point x

evaluate surrogate 
rsurr(x, h)

rsurr > z2 ⋅ rsurr,maxyes no
accept x



25Ignoring the FC reweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)generate PS point x

evaluate surrogate 
rsurr(x, h)

rsurr > z2 ⋅ rsurr,maxyes no
accept x

Generated events now follow density 

 ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨rsurr(x, h)⟩h∼pi(h|x)

≡ σsurr,FC ≈ σFC



25Ignoring the FC reweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)generate PS point x

evaluate surrogate 
rsurr(x, h)

rsurr > z2 ⋅ rsurr,maxyes no
accept x

Generated events now follow density 

 ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨rsurr(x, h)⟩h∼pi(h|x)

≡ σsurr,FC ≈ σFC

‣ Requires control over surrogate uncertainties


‣ But very feasible!



25Ignoring the FC reweighting

calculate LC event 
weight 

wi
LC = |Mi

LC(x) |2

wi
LC > z1 ⋅ wi

LC,max yesno

sample helicity 
h ∼ pi(h |x)generate PS point x

evaluate surrogate 
rsurr(x, h)

rsurr > z2 ⋅ rsurr,maxyes no
accept x

Generated events now follow density 

 ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨rsurr(x, h)⟩h∼pi(h|x)

≡ σsurr,FC ≈ σFC

‣ Requires control over surrogate uncertainties


‣ But very feasible!�4 �2 0 2 4
tsyst
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Det-I
Det
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Bahl, Elmer, RW, et al. [2412.12069, 2509.00155]

https://arxiv.org/abs/2412.12069
https://arxiv.org/abs/2509.00155


26Results - Gain factors w/o FC rew.

Further improvements  
compared three-step method 
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27Upcoming MadGraph7

Release planned  
for early 2026!

MadNIS@LO 
• neural importance sampling  

for better uw. efficiency

• as easy as VEGAS

• Default for many processes

MadEvent7 
• new flexible and modular 

phase space generator

• GPU- and ML-enabled

• usable beyond MadGraph

Matrix element on GPU 
• huge speed-up from GPUs

• improved CPU performance 

from SIMD vectorization 
MG4GPU [2303.18244, 2312.02898] 

Faster multi-jet events 
• Recursion relations for 

higher multiplicities

• Improved efficiency through 

2(3)-stage unweighting
Frederix, Vitos [2409.12128] Heimel, Mattelaer, RW [2512.XXXX] 

Beccatini, Heimel, Mattelaer, RW [2601.XXXX] 

https://arxiv.org/abs/2303.18244
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28Towards MadGraph7@NLO

MadNIS@NLO 
• neural importance sampling  

for better uw. efficiency

• as easy as VEGAS

• Default for many processes

MadEvent7@NLO 
• new flexible and modular 

phase space generator

• GPU- and ML-enabled

• usable beyond MadGraph

Matrix element on GPU 
• huge speed-up from GPUs

• improved CPU performance 

from SIMD vectorization 

Faster multi-jet events 
• Recursion relations for 

higher multiplicities

• Improved efficiency through 

2(3)-stage unweighting
Frederix, Vitos [2409.12128]

Beccatini, Heimel, Mattelaer, RW [2601.XXXX] 

NLO-phase  
~2026++

Fast surrogates@NLO 
• ML surrogates for  
virtual MEs

ML-improved 
subtractions

MG4GPU@NLO 
• port real-emission ME 

onto GPU [2503.07439] 

MG4GPU [2303.18244, 2312.02898] 

Heimel, Mattelaer, RW [2512.XXXX] 

https://arxiv.org/abs/2303.18244


?! …

Open Discussion



30The Leading-Color approximation

|M(x, h) |2 = ∑
i,j

Ai,h(x) Cij A*j,h(x)

1. Introduce the elicity-dependent squared matrix elements at FC accuracy and LC accuracyh

|MLC(x, h) |2 = ∑
i

Cii | Ai,h(x) |2

2. We also define the color-dependent ( -summed) LC matrix element and its relative -contributionsh h

|Mi
LC(x) |2 = ∑

h

Cii | Ai,h(x) |2 pi(h | x) =
Cii |Ai,h(x) |2

|Mi
LC(x) |2

σFC = ∑
i

∫ dΦ |Mi
LC(x) |2 ⟨ |M(x, h) |2

|MLC(x, h) |2 ⟩
h∼pi(h|x)

3. The FC cross section can thus be calculated as:

rLC→FC(x, h)


