Al for LHC experiments

A personal perspective with some

biases...

Francesco Armando Di Bello

adi Pisa. 7/10/25

Universit

INFN

TA

UNIVERSI




Outline of the talk

* Wewilldiscuss:
1. State-of-the art machine learning algorithm used
2. The problem of domain adaptation: calibrations

3. Set-to-Set algorithms: particle-flow reconstruction and jet identifications
4. Joining minimization all together? Differentiable programming for end-to-end pipelines

We will NOT discuss: fast generation of events, unfolding, Simulation based inference, uncertainty quantifications and fast inference
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https://github.com/blaiszik/ml_publication_charts/blob/master/README.md

Introduction

* Particle physics experiments are based on hierarchical, factorized pipelines whose goal is to allow unbiased parameters inference.
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Jet identification

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Peraphs the main example of the impact of ML for LHC experiments @ )’
. , . . TLAS 7
This is used both for offline but also online data analysis

27th May 2025

Transforming jet flavour tagging at ATLAS
This is opening new doors in understanding for instance the Higgs boson

Are we saturating?
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https://cms-opendata-workshop.github.io/workshop2024-lesson-physics-objects/instructor/05-btagging.html
https://arxiv.org/abs/2505.19689

Jet identification

* Inputs are recontructed low-level object: no vertex information
* Hidden dim. his O(100)
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Jet identification

Aux. tasks helps both performance and intepretability
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The state-of-the art now

» State of the art flavour tagging algorithm. This start looking like a foundation model (yet a selected one)
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Energy regression to correct for jet momentum embedded into the model.
Does it still make sense to do tau- and b-tagging separately? ML helps not only performance but also to streamline workflow



Jet identification

* We are not yet saturating yet...

* Main improvements from:
* Larger architecture and data sample
* Additional inputs (calo+soft leptons)

Where is the limit? Where is double-descent? Generalization?
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2025-01/
https://arxiv.org/abs/2509.01397

Domain shifts: calibrations

« How do we know itis well modeled in data?  Peaiib(z]0) = /dR' dRdAH dT dzd(z — Q(R'))Es(R' = T(R))]5(R(H) — R) psim (H|2)pgen(2]0) -
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Improving calibrations with ML

« One wayto use ML to improve calibrations is using optimal transport theory

* Thisis done and works on low-dimensional data [2505.13063], targeting quantities like: energy of a particle etc...

« Canbe generalized to a broader class considering a physics object in its hidden representation space h (foundation model vision)
 Typicaldimension of his around 100 -- can we calibrate a 100 dimensional space?

* Looks like we can, and downstream tasks are also calibrated
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https://arxiv.org/abs/2505.13063
https://arxiv.org/abs/2505.13063
https://arxiv.org/pdf/2507.08867

Domain shift: calibrating ML algorithms

A question rises naturally: if we train on simulation and correct them to look like the data, are we at the optimal performance in the data?

Clearly not in general...

Simulation Data

loss

Calibration

\ 4

network parameters

This is an active area of developements, still no clear strategy available.
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Review of architectures

Taking a step-back on the algorithms used in exp. HEP to improve data analysis
A very large portion of problems are related to the more complex Set-to-Set category
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On Set-to-vector and symmetries

* From experience, nowadays set-to-vector is mostly just some variation of pure transformers.

* Embeding symmetries into the model (e.g. Lorentz) still needs some work

Performance
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Deeplearning. EUCAIFCon_Amsterdam_2024_v2
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https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf

Set-to-Set algorithms: R&D using particle flow as an example

14



Particle-Flow reconstruction

Particle flow can be phrased as follows:

Given the set of detector outputs, reconstuct the set of particles (and their properties) that generated them. This is in inverse problem.
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Particle flow generalities

* Particle flow algorithms can optimally account for detector redudancies (e.g.
calorimeter vs tracker)

* Typical implementation of Pflow algorithms are based on linearity: parametrize
single particle shower

1. Can Machine Learning help Particle Flow reconstruction?
A non exhaustive list: PRD111.09(2025) Comm. Physics 124 (2024) EPJC596 (2023)

Eur. Phys. J. C 77 (2017) 466
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2015-09/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2015-09/
https://www.nature.com/articles/s42005-024-01599-5
https://link.springer.com/article/10.1140/epjc/s10052-023-11677-7
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.092015
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.092015

Constructing the inputs

 Agraphis build from the detector outputs
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Machine learning for particle reconstruction

e Someideas in the market: MLPF EPJC(2021)
 Take as an example a simplified scenarios, two particles, 4 calo-cluster, one track

* Needto define an ordering rule to associate which target particle belongs to a given input object

—_— >

() calo clusters D*D D*D O o O

*tracks D D D D ‘ ‘

Input . .
In physical transformed inputin output
space hidden space

N.B: the definition of target particle is non trivial, requires some semi-fiducial definition

@ Null particle (padding)
QO Particle 1

O Particle 2
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https://link.springer.com/article/10.1140/epjc/s10052-021-09158-w

Hypergraps for particle reconstruction

* Canweinclude inductive bias from the simulation in an explicit form?
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https://indico.cern.ch/event/1253794/contributions/5588629/attachments/2746927/4792026/HGPflow_nilotpal.pdf

Hypergraphs
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There are also other solutions to Set-to-Set problems, this is an active area of research.
Another open question is on the notion of locality, i.e. R(H) must only be local in order to generalize well.

FDB etal EPIC
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https://link.springer.com/article/10.1140/epjc/s10052-025-14443-z

From single jet to full event reconstruction

EPJC Dreyer, FDB, Heinrich, Kakati et al
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https://link.springer.com/article/10.1140/epjc/s10052-025-14443-z

End-to-end algorithms?

Hidden Layer 1 Hidden Layer N

LRelU
Activation

0101011101010101 Input Layer
0011010101010011
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1100000011111100
1010101010010101

Output Layer Is this a

'O Higgs

boson?

This is not a great idea if you ask me...

1. Dimensionality: need to probe from a space of around O(10"7) dimensions.

2. Datainherently have structures (locality) that are essential reduce the dimension of the problem as well as for generaliztion.
3. Thereis a problem of domain shift: we need a way to control mis-modelling of the simulations we use to train our algorithms.

But... 22



End-to-end pipelines

 Can exploit the hierarchical structure in some detail to combine algorithms into an end-to-end pipeline.
« Examples include analysis dominated by systematic uncertanties; specialized recontruction (high energy)

* NNPDF is a great example of differentiable pipelines

Example of a unified differentiable pipeline
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2203.05570 Henirich et al.



https://arxiv.org/abs/2203.05570
https://arxiv.org/abs/2203.05570
https://arxiv.org/abs/2203.05570

Differentiable programming to build end-to-end pipelines

* Differentiable programming is a way to stack together different reconstruction pipeline in a single minimization
* To make it more clear we use a simple example: tracking of a single particle in a magnetic field. Goal: estimate the particle momentum
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Differentiable programming to build end-to-end pipelines

 Can build an end-to-end architecture provided that pattern reco and tracking are both differentiable
* No needto learnthat a particle in a magnetic field moves as a helix. Can embed this into the model.
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Need to solve a ‘complex’ nested minimization problem
To compute backprop.
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Differentiable programming to build end-to-end pipelines

* Thisis a more complete example of including differentiable vertexing into the training of the network
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This kind of algorithm can be re-iterated for any hierarchical pipeline and shows improvement and major interpretability

kagan et al 2310.12804
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https://arxiv.org/abs/2310.12804
https://arxiv.org/abs/2310.12804
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.052010

Conclusion

 Machine learning is already today helping us uncovering physics.
Measurements of the Higgs self-coupling and Charm Yukawa among major examples

* Set-to-set problems will be tackled in the next years, relevant for a variety of tasks: tracking, particle-flow, unfolding and more

* |think many topics are still in their infancy but have the potential to bring large gains. Some (personal) selection of these
algorithms shown today

For any discussions: fdibello@cern.ch
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Results

* Several topologies have been tested
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The simulation: COCOA

Table 1 Samples used for training and performance testing

Detector  Process Statistics
Train  Val Test

COCOA p'p™ —qq 250k 10k 35k
Single 7+ - - 30k / pr bin
ppt —t1 - - 20k
ptpt - ZOVH®BL) - - 10k

CLIC eTe” — qq M Sk 20k
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Machine learning for particle reconstruction

Nodes
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Can we include inductive bias from the simulation in an explicit form? Truth particles
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Prospects at HL-LHC

« Canwe aimto have a 3sigma evidence on kc at the HL-LHC?

* What precision can we expect on kb at the HL-LHC?
* Projections at the HL-LHC from VH analyses with improvements expected by GN2
* We contributed to the extrapolation for the EU strategy update of the c- and b-yukawa: EU Strategy update
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