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Outline of the talk
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• We will discuss:

1. State-of-the art machine learning algorithm used
2. The problem of domain adaptation: calibrations
3. Set-to-Set algorithms: particle-flow reconstruction and jet identifications
4. Joining minimization all together?  Differentiable programming for end-to-end pipelines

We will NOT discuss: fast generation of events, unfolding, Simulation based inference, uncertainty quantifications and fast inference

Number of papers are exploding with great 
majority originating from proof-of-principles

ml_publication_charts

https://github.com/blaiszik/ml_publication_charts/blob/master/README.md


Introduction
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• Particle physics experiments are based on hierarchical, factorized pipelines whose goal is to allow unbiased parameters inference. 

Event generation Detector interaction Recontruction Inference



Jet identification
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Peraphs  the main example of the impact of ML for LHC experiments
This is used both for offline but also online data analysis

This is opening new doors in understanding for instance the Higgs boson
Are we saturating?

CMSOpenData

Accepted by Nature Comm. 
[2505.19689] Transforming jet flavour tagging at ATLAS

https://cms-opendata-workshop.github.io/workshop2024-lesson-physics-objects/instructor/05-btagging.html
https://arxiv.org/abs/2505.19689


Jet identification
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• Inputs are recontructed low-level object: no vertex information
• Hidden dim. h is O(100)

Input space Hidden space

Main task

Aux. Task

Total loss function
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• Aux. tasks helps both performance and intepretability

Examples from aux taks

Jet identification



The state-of-the art now
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• State of the art flavour tagging algorithm. This start looking like a foundation model (yet a selected  one)

Energy regression  to correct for jet momentum embedded into the model.
Does it still make sense to do tau- and b-tagging separately? ML helps not only performance but also to streamline workflow 



Jet identification
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Where is the limit?  Where is double-descent?  Generalization?

GN3, ATLAS plots[2509.01397] L. Henirich et al.

• We are not yet saturating yet…
• Main improvements from:

• Larger architecture and data sample
• Additional inputs (calo+soft leptons)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2025-01/
https://arxiv.org/abs/2509.01397
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• How do we know it is well modeled in data?

Domain shifts: calibrations

Calibrated performance

Better



Improving calibrations with ML
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• One way to use ML to improve calibrations is using optimal transport theory
• This is done and works on low-dimensional data [2505.13063], targeting quantities like: energy of a particle etc…
• Can be generalized  to a broader class considering a physics object in its hidden representation space h (foundation model vision)
• Typical dimension of h is around 100 -- can we calibrate a 100 dimensional space?
• Looks like we can, and downstream tasks are also calibrated

Alpegen, FDB et al 2507.08867

https://arxiv.org/abs/2505.13063
https://arxiv.org/abs/2505.13063
https://arxiv.org/pdf/2507.08867


Domain shift: calibrating ML algorithms
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A question rises naturally: if we train on simulation and correct them to look like the data, are we at the optimal performance in the data?

Clearly not in general…

lo
ss

Data

Calibration

Simulation

This is an active area of developements, still no clear strategy available. 

network parameters



Review of architectures
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• Taking a step-back on the algorithms used in exp. HEP to improve data analysis
• A very large portion of problems are related to the more complex Set-to-Set category  

Vector-to-vector Set-to-Vector Set-to-Set

Cardinality of both the input 
and the output are not fixedKnown and used since many years Cardinality of the inputs is not fixed but 

output is



On Set-to-vector and symmetries
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• From experience, nowadays set-to-vector is mostly just some variation of pure transformers.
• Embeding symmetries into the model (e.g. Lorentz) still needs some work

DeepLearning_EUCAIFCon_Amsterdam_2024_v2

https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf


Set-to-Set algorithms: R&D using particle flow as an example 
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Particle-Flow reconstruction
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Particle flow can be phrased as follows: 

 Given the set of detector outputs, reconstuct the set of particles (and their properties) that generated them. This is in inverse problem. 

Particle signatures Detector output Solving the inverse problem



Particle flow generalities
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• Particle flow algorithms can optimally account for detector redudancies (e.g. 
calorimeter vs tracker)

• Typical implementation of Pflow algorithms are based on linearity: parametrize 
single particle shower

1. Can Machine Learning help Particle Flow reconstruction? 
 A non exhaustive list:

Eur. Phys. J. C 77 (2017) 466

Comm. Physics 124 (2024) EPJC596 (2023)PRD111.09(2025)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2015-09/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2015-09/
https://www.nature.com/articles/s42005-024-01599-5
https://link.springer.com/article/10.1140/epjc/s10052-023-11677-7
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.092015
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.092015


Constructing the inputs
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• A graph is build from the detector outputs 



Machine learning for particle reconstruction
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• Some ideas in the market: MLPF EPJC(2021)

• Take as an example a simplified scenarios, two particles, 4 calo-cluster, one track

• Need to define an ordering rule to associate which target particle belongs to a given input object

Null particle (padding)

Particle 1

Particle 2
tracks

calo clusters

Input
In physical 

space

transformed input in 
hidden space

output

N.B: the definition of target particle is non trivial, requires some semi-fiducial definition

https://link.springer.com/article/10.1140/epjc/s10052-021-09158-w


Hypergraps for particle reconstruction
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• Can we include inductive bias from the simulation in an explicit form?

Learnable! 

Images from: HGPflow

https://indico.cern.ch/event/1253794/contributions/5588629/attachments/2746927/4792026/HGPflow_nilotpal.pdf


Hypergraphs 
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There are also other solutions to Set-to-Set problems, this is an active area of research.
Another open question is on the notion of locality, i.e. R(H) must only be local in order to generalize well. 

FDB et al EPJC

https://link.springer.com/article/10.1140/epjc/s10052-025-14443-z


From single jet to full event reconstruction
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Momentum resolution

EPJC Dreyer, FDB, Heinrich, Kakati et al

https://link.springer.com/article/10.1140/epjc/s10052-025-14443-z


End-to-end algorithms?

22

This is not a great idea if you ask me…

1. Dimensionality: need to probe from a space of around O(10^7) dimensions.
2. Data inherently have structures (locality) that are essential reduce the dimension of the problem as well as for generaliztion. 
3. There is a problem of domain shift: we need a way to control mis-modelling of the simulations we use to train our algorithms.

But…



End-to-end pipelines
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• Can exploit the hierarchical structure in some detail to combine algorithms into an end-to-end pipeline.
• Examples include analysis dominated by systematic uncertanties; specialized recontruction (high energy)
• NNPDF is a great example of differentiable pipelines

2203.05570 Henirich et al.

Example of a unified differentiable pipeline

https://arxiv.org/abs/2203.05570
https://arxiv.org/abs/2203.05570
https://arxiv.org/abs/2203.05570


Differentiable programming to build end-to-end pipelines
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• Differentiable programming is a way to stack together different reconstruction pipeline in a single minimization
• To make it more clear we use a simple example: tracking of a single particle in  a magnetic field. Goal: estimate the particle momentum

Traditional pipeline

pattern
reco tracking Particle properties  

Noise
Signal

L. Rambelli



Differentiable programming to build end-to-end pipelines
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• Can build an end-to-end architecture provided that pattern reco and tracking are both differentiable 
• No need to learn that a particle in a magnetic field moves as a helix. Can embed this into the model.   
 

Differentiable pipeline

Need to solve a ‘complex’ nested minimization problem 
To compute backprop. 

pattern 
reco

tracking

Single end-to-end model



Differentiable programming to build end-to-end pipelines
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• This is a more complete example of including differentiable vertexing into the training of the network

 

kagan et al 2310.12804

This kind of algorithm can be re-iterated for any hierarchical pipeline and shows improvement and major interpretability

https://arxiv.org/abs/2310.12804
https://arxiv.org/abs/2310.12804
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.052010


Conclusion
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• Machine learning is already today helping us uncovering physics. 
        Measurements of the Higgs self-coupling and Charm Yukawa among major examples

• Set-to-set problems will be tackled in the next years, relevant for a variety of tasks: tracking, particle-flow, unfolding and more

• I think many topics are still in their infancy but have the potential to bring large gains. Some (personal) selection of these 
algorithms shown today

For any discussions: fdibello@cern.ch



Results
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• Several topologies have been tested

GeneralizationMomentum resolution Locality



The simulation: COCOA
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Machine learning for particle reconstruction
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• Can we include inductive bias from the simulation in an explicit form?

• Starting point was to build a cross-attention between particles and input 
objects

• Provided reasonble results but still left some unanswered questions: 
interpretability and auxialiry information from the simulation 

Can we use this 
knowledge?



Prospects at HL-LHC
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• Can we aim to have a 3sigma evidence on kc at the HL-LHC?
• What precision can we expect on kb at the HL-LHC?
• Projections at the HL-LHC from VH analyses with improvements expected by GN2
• We contributed to the extrapolation for the EU strategy update of the c- and b-yukawa: EU Strategy update

https://cds.cern.ch/record/2928907
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