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The Backstory



Phenomenology and High-Precision Physics at LHC

Proton-proton collisions at particle colliders are predicted using the factorisation theorem

1
dxAJ dxg fi/HA(xB) ]j'/HB(xB) g ij(xA9 Xp)
0

10- NNPDF4.0 NNLO Q= 3.2 GeV

PDFs are essential for LHC predictions - 3/10
0.8 -
They can be viewed as the p.d.f. of a parton entering e L S
a collision with a momentum fraction x o il
They cannot be determined in perturbative QCD 02-
Their shape must be inferred from data R T Rt
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Current landscape of PDF determination

Many collaborations aim at extracting PDFs from data, performing uniformly well

Caution is needed though — PDF uncertainty is often dominant in the total error budget
Remember: The goal is to provide reliable uncertainties!
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Differences between various methodologies — can we understand their origins?

Again, we don't want to provide the best PDF set ever
existed, but rather spell out our assumptions and understand their implications
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https://arxiv.org/abs/2407.07944
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The inverse problem of PDF determination

Consider the simple case ot DIS data with one PDF flavour (this work)

NNPDF4.0 NNLO Q= 3.2 GeV
71 g/10

Vi = [dx C(x); f(x) V

0.2 1

0.0 S ——— e AN
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This is a classic example of an ill-defined inverse problem to find f

Uncertainty quantification on the PDF requires to estimate P(f| D)

Determine P(f| D) in the space of continuous functions f: [0,1] = R from a finite set of
data D
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Parametric regression: NNPDF

The problem is discretised on a grid in x € R™erc

grld
) = de Cx) f(x) = y = Z (FK) f,  y € RV, f& RN, (FK) € RN Pus

Neural Network parameterisation f(x, @) with prior distribution for the parameters P(0)
P@|D) — P(f|D)

Probability distributions represented in terms of Monte Carlo replicas {f\¥}

E[0] = JP(f\D)O[f] Z o1 varfo] s (0[] - E[0] )

r CP k=1 rep

Train each replica using MAP with Monte Carlo sampling of experimental uncertainties

{(f®| DWW} — P(f|D)
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Shedding light on the dark corners: the training process

The NNPDF methodology has been rigorously validated through closure tests,
future and generalisation tests

HOWEVER

Lacking a one-to-one dictionary map between our methodology and others

Some aspects of our methodology remain not yet understood...

In this work

Opening the black box: the learning process

Taking ftirst steps towards explainable training dynamics

Can we decode how and what the NN learns during training?
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The training process



Training as Gradient Flow
We consider a quadratic loss function (y%) and the continuous version of Gradient Descent

d 1
_th_vﬂgt ‘gt:

— > (Y- (FK) f) C;' (Y - (FK) f)

Express training from parameter-space to functional-space

d do,
—f, = (Vof) — = OFK)'Cy' (Y - (FK) f}) = —©,(M f,+b)

M = (FK)'C;Y(FK), b= (FK)'C;y

where we have defined the Neural Tangent Kernel (NTK)

Jacot et al. [arXiv:1806.07572] O, = (Vo f)(Vof)! € RVerieXNeria
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https://arxiv.org/abs/1806.07572

What does the NTK tell us?

The NTK spectrum at initialisation is heavily hierarchical — few eigenvalues are non-zero

Will this picture change during training?

Initialise {f®} and generate synthetic data using a known underlying law

Train each replica and monitor the evolution of the NTK

NTK with different architectures
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NTK during training
The NTK changes during training — we are not in the infinite-width regime
Two distinct training phases — rich and regime

The hierarchy of the spectrum is preserved even during training...

...although new directions are discovered!
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Loss Function and NTK

The NN is adapting its internal representation with the NTK eigenvalues

This allows the process to minimise the loss function, at the cost of local instability

Loss Function and Top 5 NTK Eigenvalues vs Epochs (Replica 4)
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Alignment of the NTK with FK tables

Interplay between the spectrum of the NTK and the FK tables (time-independent)

Only components in both orthogonal spaces are “learned” by the network

- 0.050

Eigenvectors of the NTK

(Ker ()-), M J_) Eigenvectors of the M matrix

Epochs
L —————————————
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Alignment of the NTK with the input function

A similar study can be done with the input function

How do the modes of the NTK align with the input function?
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A. Chiefa

Increasing complexity of the representation

The output of the NN is a superposition of the modes dictated by the NTK

As training proceeds, the modes gain in complexity

When the NTK enters the lazy regime, the modes stop changing...
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The lazy-training regime



Lazy gradient flow

Can we solve the equation in the lazy regime where ©. ~x ©, fort> T .?

Lretl

In this regime, the NTK provides a natural basis for projecting the equation

®J_
d A, O
dtft t( [ ) © (O ()) Ker®

We immediately see that the components in Ker® do not evolve

i ft Ker® __ 0 = ft Ker® _ £Ker®

dt 1nit
There is an irreducible noise dictated by the functional initial condition

To what extent does this contribution affect the final result?
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Solution of the gradient flow

Solving the flow in the orthogonal space ®, and collecting all terms yields
Ji= U@ finye + V()

The solution factorises into two terms representing data and model dependence

Setting f,ni; = fr_ we can reconstruct the numerical integration at 7 > T
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The onset of the lazy regime

Training time
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The analytic soluti
a different initia

We can study the onset of lazy regime

. \ by probing different frozen NTKs

f the NTK is too premature, the
analytic solution cannot provide an
accurate answer

However, a properly informed NTK
% speeds up the analytic solution
¢ compared to the numerical one
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Frozen NTK at T ¢

Interplay between data and model error

Training time
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We can compute the covariance of
the analytic solution

Cov [f,, fT] = CO0 4 COV) 4 /cOM

The covariance breaks down into
model and data error plus a cross-
correlation term

The interplay between these two
depends on the NTK and on the
training time
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Concluding — what did we learn?

Laying the groundwork to understand methodological differences

The NTK is a valuable tool to unravel the training process
Starting from a suitable training time, we have analytic control of the training process

The road ahead: from proof-of-concept to full complexity
These results hold in a simplitied framework — extending to NNPDF remains open

What insights can we learn from applying these tools to other methodologies?
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Backup slides



The eigenvalues of the NTK evolve during training, but preserve the hierarchy

Spectrum of the NTK

A. Chiefa
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Dependence on the architecture
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® Changing the size of the architecture has little impact
® The onset of lazy training is slower for larger networks
® |arger networks cover a wider functional space

® The identification of the physical feature takes more epochs
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NTK at initialisation for NNs: 1/n scaling

Neural Tangent Kernel Norm

Uncertainty vs. Architecture Size

Relative Uncertainty

Architecture

Architecture

e NTK fluctuations are proportional to the inverse of the width (see e.g.[arXiv:1806.07572]
[arXiv:2106.10165])

® The NTK at initialisation remains constant over the ensemble of replicas
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