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The Backstory
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Phenomenology and High-Precision Physics at LHC
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Proton-proton collisions at particle colliders are predicted using the factorisation theorem 
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PDFs are essential for LHC predictions 

They can be viewed as the p.d.f. of a parton entering 
a collision with a momentum fraction  

They cannot be determined in perturbative QCD 

Their shape must be inferred from data

x
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Current landscape of PDF determination
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Harland-Lang et al. EPJC 85 (2025) 316Dulat et al. CPC 233 (2018) 243Chiefa et al. JHEP 07 (2025) 067

Many collaborations aim at extracting PDFs from data, performing uniformly well 

Caution is needed though — PDF uncertainty is often dominant in the total error budget 
Remember: The goal is to provide reliable uncertainties! 

Differences between various methodologies — can we understand their origins? 
Again, we don’t want to provide the best PDF set ever  

existed, but rather spell out our assumptions and understand their implications

https://arxiv.org/abs/2407.07944
https://arxiv.org/abs/1802.00827
https://arxiv.org/abs/2501.10359
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The inverse problem of PDF determination
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Determine  in the space of continuous functions  from a finite set of 
data 

P( f |D) f : [0,1] → ℝ
D

yI = ∫ dx C(x)I f(x)

Consider the simple case of DIS data with one PDF flavour (this work)

 This is a classic example of an ill-defined inverse problem to find f

Uncertainty quantification on the PDF requires to estimate P( f |D)
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Parametric regression: NNPDF
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yI = ∫ dx CI(x) f(x) ⇒ y =
Ngrid

∑
α

(FK) f, y ∈ ℝNdat, f ∈ ℝNgrid, (FK) ∈ ℝNdat×Ngrid

The problem is discretised on a grid in  x ∈ ℝNgrid

Neural Network parameterisation   with prior distribution for the parameters f(x, θ) P(θ)

Probability distributions represented in terms of Monte Carlo replicas {f (k)}

Train each replica using MAP with Monte Carlo sampling of experimental uncertainties

E [O] = ∫ P( f |D)O[ f ] ≈
1

Nrep

Nrep

∑
k=1

𝒪 [ f (k)] Var [O] ≈
1

Nrep ∑
k

(O [ f (k)] − E [O])
2

{f (k) |D(k)} ⟶ P( f |D)

P(θ |D) ⟶ P( f |D)
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Opening the black box: the learning process

Shedding light on the dark corners: the training process 
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The NNPDF methodology has been rigorously validated through closure tests, 
future and generalisation tests 

HOWEVER 

Lacking a one-to-one dictionary map between our methodology and others 

Some aspects of our methodology remain not yet understood…

Taking first steps towards explainable training dynamics 

Can we decode how and what the NN learns during training?

In this work



The training process
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Training as Gradient Flow
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We consider a quadratic loss function ( ) and the continuous version of Gradient Descentχ2

ℒt =
1
2 (Y − (FK) ft)T C−1

Y (Y − (FK) ft)
d
dt

θt = − ∇θℒt

Express training from parameter-space to functional-space

d
dt

ft = (∇θ ft)
dθt

dt
= Θt(FK)TC−1

Y (Y − (FK) ft) = − Θt (M ft + b)

where we have defined the Neural Tangent Kernel (NTK)

Jacot et al. [arXiv:1806.07572] Θt = (∇θ ft)(∇θ ft)T ∈ ℝNgrid×Ngrid

M = (FK)TC−1
Y (FK) , b = (FK)TC−1

Y y

https://arxiv.org/abs/1806.07572
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What does the NTK tell us?
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The NTK spectrum at initialisation is heavily hierarchical — few eigenvalues are non-zero 

Will this picture change during training? 

Initialise  and generate synthetic data using a known underlying law 

Train each replica and monitor the evolution of the NTK

{f (k)}

Level 0: y(k)
L0 = (FK)f (in)

Level 1: y(k)
L1 = y(k)

L0 + η, η ∼ 𝒩

Level 2: y(k)
L2 = y(k)

L1 + ξ(k), ξ(k) ∼ 𝒩

Model: MPL [1,25, 20,1] with tanh
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NTK during training
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New “physical” directions

The NTK changes during training — we are not in the infinite-width regime 

Two distinct training phases — rich and lazy regime 

The hierarchy of the spectrum is preserved even during training… 

…although new directions are discovered!
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Loss Function and NTK

12

102 103 104

Epochs

103

6 £ 102

2 £ 103

L
os

s
Fu

nc
ti

on

10°5

10°4

10°3

10°2

10°1

100

101

102

∏

Loss Function and Top 5 NTK Eigenvalues vs Epochs (Replica 4)

Loss Function

∏1

∏2

∏3

∏4

∏5

The NN is adapting its internal representation with the NTK eigenvalues 

This allows the process to minimise the loss function, at the cost of local instability
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Alignment of the NTK with FK tables
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d
dt

ft = − Θt (M ft + b)
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Alignment of the NTK with the input function
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A similar study can be done with the input function 

How do the modes of the NTK align with the input function?
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Increasing complexity of the representation
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The output of the NN is a superposition of the modes dictated by the NTK 

As training proceeds, the modes gain in complexity 

When the NTK enters the lazy regime, the modes stop changing…
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The lazy-training regime
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Lazy gradient flow
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d
dt

ft = − Θt (M ft + b)

d
dt

f KerΘ
t = 0 ⇒ f KerΘ

t = f KerΘ
init

Can we solve the equation in the lazy regime where  for  ?Θt ≈ ΘTref
t > Tref

We immediately see that the components in  do not evolveKerΘ

There is an irreducible noise dictated by the functional initial condition

In this regime, the NTK provides a natural basis for projecting the equation

Θ ∼ (Λ⊥ 0
0 0) KerΘ

Θ⊥

To what extent does this contribution affect the final result?
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Solution of the gradient flow
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fTref

Tref

ft = U(t) finit + V(t) y

Solving the flow in the orthogonal space  and collecting all terms yieldsΘ⊥

The solution factorises into two terms representing data and model dependence 

Setting  we can reconstruct the numerical integration at finit = fTref
t > Tref
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The onset of the lazy regime
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The analytic solution can be used with 
a different initial condition  

We can study the onset of lazy regime 
by probing different frozen NTKs 

If the NTK is too premature, the 
analytic solution cannot provide an 

accurate answer 

However, a properly informed NTK 
speeds up the analytic solution 
compared to the numerical one

finit = f0
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Interplay between data and model error
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We can compute the covariance of 
the analytic solution 

 
 

The covariance breaks down into 
model and data error plus a cross-

correlation term 

The interplay between these two 
depends on the NTK and on the 

training time

Cov [ft, fT
t ] = C(00)

t + C(0Y) + C(YY)
t
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Concluding — what did we learn? 
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Laying the groundwork to understand methodological differences 

The NTK is a valuable tool to unravel the training process 

Starting from a suitable training time, we have analytic control of the training process 

The road ahead: from proof-of-concept to full complexity 
These results hold in a simplified framework – extending to NNPDF remains open 

What insights can we learn from applying these tools to other methodologies?
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Concluding — what did we learn? 
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Thank you!

Laying the groundwork to understand methodological differences 

The NTK is a valuable tool to unravel the training process 

Starting from a suitable training time, we have analytic control of the training process 

The road ahead: from proof-of-concept to full complexity 
These results hold in a simplified framework – extending to NNPDF remains open 

What insights can we learn from applying these tools to other methodologies?



Backup slides
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Spectrum of the NTK
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The eigenvalues of the NTK evolve during training, but preserve the hierarchy
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Dependence on the architecture
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• Changing the size of the architecture has little impact 

• The onset of lazy training is slower for larger networks 

• Larger networks cover a wider functional space 

• The identification of the physical feature takes more epochs
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NTK at initialisation for NNs: 1/n scaling

25

[1
0,

10
]

[2
5,

20
]

[1
00

, 1
00

]

[1
00

0,
10

00
]

Architecture

160

180

200

220

240

260

280

300

320

N
T

K
N

or
m

Neural Tangent Kernel Norm

101 102 103

Architecture

10°1

R
el

at
iv

e
U

n
ce

rt
ai

nt
y

Uncertainty vs. Architecture Size

• NTK fluctuations are proportional to the inverse of the width (see e.g.[arXiv:1806.07572]
[arXiv:2106.10165]) 

• The NTK at initialisation remains constant over the ensemble of replicas

https://arxiv.org/abs/1806.07572
https://arxiv.org/abs/2106.10165

