Perspectives from CSN1

Roberto Tenchini INFN Pisa 3–4 Apr 2024 LNL Quarta Giornata Acceleratori

SEZIONE DI PISA

Linee di ricerca CSN1

- ATLAS+CMS con upgrades HL-LHC
- Flavour physics
- Neutrino experiments
- Preparing the future
- Charged Lepton physics, Proton Structure, Dark Sector

CSN1 Sector 2025	FTE	Budget
Physics at hadron colliders (LHC)	48,20	47,05
Neutrino Physics	13,30	19,80
Flavor Physics (including LHCb)	24,40	20,50
Charged Lepton Physics	5 <i>,</i> 35	5,95
Proton Structure	2,15	2,16
R&D for Future Accelerators	5,77	4,26
Dark Sector	0,83	0,28
	1	
	2	
	4	
	5	
	6	
	■ 7	

(*) 2025 CSN1 Budget 27 M€, does not include the external fund complementing HL-LHC and DUNE detector construction, Tier2 computing

CSN1 PERSONNEL

Frazione FTE con CSN1: ≈ 6	5-70% costante neg	gli anr	ni	850		• •			~		
ANAGRAFICA ATTUALE (Apri 1019 FTE ,	le 2025) : 1531 Ricercatori + Te	ecnolo	ogi	725							
	1299	232	•	600							
	SNI			2014	*20 ¹⁵ 20	10 20 ¹ 2	,01° 2019	2020 202	2022	S ²³ 2 ⁰²⁴ ,	2025
, CA	Pubblicazioni CSN1	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
NTIFIC	Numero pubblicazioni (PUBS)	535	543	603	573	642	682	568	454	322	637
SCIEI	IF Medio	5,03	4,7	4,4	4.5	5,2	4,14	4,33	5,49	5,55	4,46
ione	FTE (*)	759,98	753,03	784,19	797,86	822,38	825,86	834,62	813,69	820,27	848,71
duzie	PUBS / FTE	0,71	0,72	0,76	0,71	0,77	0,81	0,71	0,56	0,39	0,75
proz	% autori INFN	28	29	29	29	29	25	Non disponib	26,2	22,4	19,6

FTE totali

-- FTE totali – DUNE, ICAR_US, HYPERK

1100

975

LHC 2024 Performance: Integrated Luminosity

Month of the year

2025 and 2026 LHC schedule

е

	Jan		0		EHC ha	and-over e BE-OP	LHC, TI2. TI8 a experiments clos all valves op	nd ed Start Be en Commission	^{am Firs}	t Stable eams	Collisi 1200	ons with bunches	
Wk	1	2	3	4	5	6	7	8	9	10	11	12	13
Мо	29	5	12	19	26	2	9	16	* 23	* 2	9	↓ 16	2
Tu	Annual						Hardy	are	70				
We	Closure						re-commi	ssioning	wit	Corubbing			
Th	New Year		YE	TS		¥ l			nmissi h bea	. Scrubbing			
Fr						DSO test		¥	oning	Interle	eaved		
Sa								Machine checkout		commis 8	sioning k		
Su										intensity	ramp up		

Oct 2024: revised schedule for LHC and the CERN accelerators complex

"The LHC will now enter LS3 in July 2026, seven and a half months later than planned, with the start of the High-Luminosity LHC (Run 4) beginning in June 2030. The injectors will run until the end of August 2026."

Long Term Schedule for CERN Accelerator complex

ATLAS and CMS upgraded detectors (phase 2)

Nuove schedule di costruzione Fase 2 (esempio da ATLAS)

Schedule Installazione LS3

Shortest contingency for ITk, +6.8 months Anyway schedules remain tight and

ATLAS Phase 2 at INFN

- ITK Pixel all components in pre-production
- Lar trigger electronic prototype ready
- Tilecal ready for preproduction
- RPC electronic testing prototypes

Electronics LAr, prototype

Tile Calorimeter: Integrating sphere + DC LED matrix in Pisa

16 green LED array

heat sink and fan

RPC electronics

Service integration test

CMS Phase 2 at INFN

CROC Chip Readout Chip / Pixel Inner Tracker

Beam test tracker final modules

- Tracker OT sensors, ASIC produced, IT sensor, ASIC prod ongoing
- ECAL "enformeur" ready, chip production ongoing
- MTD BTL Lyso, SiPM, ASIC procured, testing assembly
- MUON DT electronic prod started, iRPC components procured

Timing layer BTL tray

ECAL new "enforneur"

MUON GEM module test

CORE funds for construction spent todate (Extracosts in orange)

Final extra-costs still under evaluation by the experiments, expect ≈ 25% extracost

Notevole impatto sul budget CSN1 fino al 2028 (incluso)

LHCb proposing Upgrade 2

VErtex LOcator (VELO)

Timeline

Run 3			LS3				Ru	n 4		L	54			Ru	n 5		
2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
TD	R pha	phase Construction phase						Instal	lation			Explo	itatio	n			

LHCb Upgrade 2

CSN1 review of possible INFN participation started

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN

LHCb

CERN-LHCC-2024-010 LHCb-TDR-026 September 2, 2024

LHCb Upgrade II Scoping Document

LHCb collaboration

Abstract

A second major upgrade of the LHCb detector is necessary to allow full exploitation of the LHC for flavour physics. The new detector will be installed during long shutdown 4 (LS4), and will operate at a maximum luminosity of 1.5×10^{14} cm $^{-2}$ s⁻¹. By upgrading all subdetectors and adding new detection capability it will be possible to accumulate a sample of 300 h⁻¹ of high energy pp collision data, giving unprecdented and unique discovery potential in heavy flavour physics and other areas. The baseline LHCb Upgrade II detector has been presented in a Framework Technical Design Report that was approved in 2022. Here, updates are presented alongside scoping options with reduced detection capability and operational luminosity. The costs and physics performance of each scenario are discussed, and an overview of the project management plans is presented.

© 2024 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence,

The U2 objective is to integrate≈300 fb-1 at Run 5 and 6

NEW :Scoping document ready Simulazioni with three scenarios

ALSO NEW: Detector enhancement at LS3, anticipate some upgrades

Two examples of scenarios for tracking and particle id

	Baseline	Middle	Low
${\cal L}_{ m peak}~(10^{34}{ m cm}^{-2}{ m s}$	$^{-1}$) 1.5	1.0	1.0
	(kCHF)	(kCHF)	(kCHF)
VELO	16672	15906	13753
UP	8077	7719	6887
Magnet Stations	2592	2234	0
Mighty-SciFi	21767	21273	17388
Mighty-Pixel	15994	11641	11061
RICH	21450	18415	14794
TORCH	12508	8756	0
PicoCal	27607	27607	21584
Muon	9785	8266	8266
RTA	18800	11700	9500
Online	11800	9467	8993
Infrastructure	14463	13284	12430
Total	181515	156268	124656
	101010	100200	121000
Baseline	Middle	Low	
$1.5 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$1.0 imes 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	$1.0 imes10^{34}\mathrm{c}$	${ m cm^{-2}s^{-1}}$
	VELO		
32 stations, $\eta < 4.8$	32 stations, $\eta < 4.8$	28 stations	, $\eta < 4.7$
module $0.8\% X_0$	module $0.8\% X_0$	module 1.6	$5\% X_0$
RF foil 75 μm	RF foil 75 μm	RF foil 150) µm
	TORCH		
18 quartz bars	12 quartz bars	removed	
225.000 channels	158.000 channels	_	

MIDDLE: $1.0x10^{34}cm^{-2}s^{-1} \rightarrow 260 \text{ fb}^{-1}$, all sub-detectors included

- reduce granularity (to account for lower lumi), detector features as in Baseline LOW: $1.0 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 260 \text{ fb}^{-1}$, no TORCH and Magnet Stations
 - VELO: reduced acceptance, heavier sensors, Mighty Tracker: minimal area of pixels and reduced outer acceptance of fibers, PicoCal: no long. segmentation on outer part

Belle 2 at Super KEKB : restarted after LS1

- Jan 29th operation resumed, Feb 20th first run collisions
 Unfortunately running plagued by sudden beam losses
- Pixel detector suffered (small) damaged, kept off for most of the 2024 run
- Injection problems, beam current limitations
- The Belle 2 apparatus is generally in good shape, in particular the detectors of INFN responsibility
- Published interesting papers with the current statistics
 - e.g. best UL for $B \rightarrow K^* \tau \tau$
- Proposal for detector upgrades during LS2
- CSN1 is going to review the proposal, for the moment funded limited R&D for tracking and PID

- Belle 2 completed Long Shutdown 1 (LS1)
- Data taking restarted in February 2024, ended in December 2024, 10 months shutdown in 2025
- Accelerator consolidation at LS1 should have allowed the machine to reach 2.5 X 10³⁵ cm⁻² s⁻¹ luminosity
- More work and ideas needed to reach the design luminosity of 6 X 10³⁵ cm⁻² s⁻¹

Three layers of new BES III GEM tracker, designed and constructed in Italy, are now ready in Beijing. There were commissioned collecting cosmics, insertion in BES III took place in October 2024.

Neutrini in CSN1

- SND@LHC (from 2021)
- DUNE (from 2024)
- Icarus (from 2024)
- Hyperk + T2K (from 2025)
- ENUBET (*) (from 2025)

(*) measurement of the positrons produced in the decay tunnel of conventional neutrino beams: these particles signal uniquely the generation of an electron neutrino at source.

DUNE and Hyper-K: different detectors, different strategy

• DUNE:

- Very long baseline \rightarrow large matter effect
- Broadband neutrino beam \rightarrow high statistics over full oscillation period
- LArTPC \rightarrow imaging + calorimetry for v-Ar interactions at ~2.5 GeV
- Highly-capable near detector to constrain systematic uncertainties
- Hyper-K:
 - Shorter baseline \rightarrow small matter effect
 - Off-axis location creates narrow beam → very, very high statistics at oscillation maximum, less feed-down
 - Water Cherenkov \rightarrow kinematic measurement of E_{ν} from v-O interactions at ~0.6 GeV
 - Highly-capable near detector to constrain systematic uncertainties

The Deep Underground Neutrino Experiment (DUNE)

INFN plays a significant role in both the Far and Near Detectors

- FD: important commitments in the realisation of the Photon Detection System (PDS)
 - the first two modules of the Far Detector passed the Production Readiness Review and are under construction, the PDS is the largest spending driver of DUNE-INFN in 2023-25.
 - on crytical path to start science end of 2028
- ND: major responsibility in SAND, based on the KLOE MAGNET and ECAL, plus additional liquid argon target with imaging capabilities (GRAIN) and CH₂/C-target TRACKER (straw-tube or drift chamber)
 - SAND aims at being in-line for first beam in 2031

DUNE FD PDS (photon detection system) @ INFN

INFN postdoc installing a PDS module in ProtoDUNE-HD

PDS electronics installation at ProtoDUNE-HD

Vertical Drift: test of x-arapuca photon readout in Napoli Caverna a Sanford in completamento, consegnata agli utenti a inizio 2026

Critical Path to start of science – end of 2028

Start of beam operations – early 2031

LAB integration of PDS module

DUNE SAND

			Data 07/08/24
	SAND Review Panel Report	,	
Autori	Verificato da		Approvato da
Autori Patriza De Simone Mirco Dorigo Mirco Dorigo Stefano Lacguran Giovanel Mazzitelli Alesandro Paoloni Maura Pavan Maura Pavan Matrio Pelicecioni Hirobias Tanaka Roberto Tenchini	Verificato da Roberto Tenchini		Approvato da CSNI

MAGNET – KLOE 0.6T superconductive coil + Fe Yoke

ECAL - KLOE Lead Scintillating Fibers calorimeter (Barrell-23 ton Pb- + EndCaps)

STT – 5 ton Straw-Tube tracker with "solid-H" target CH_2 and C interleaved slabs

GRAIN – 1 ton liquid Argon target with VUV imaging system (fully optical readout)

YOKE

SC CON

SAND, a multipurpose detector with an high-performant ECAL, light-targeted tracker, LAr target, <u>all of them in a</u> <u>magnetic field</u>

"Hyper-K": Hyper-Kamiokande, T2K, Super-K

Run/Analysis	Upgrade	Construction
 T2K/SK running experiments 	• T2K-II assembly and installation	 Hyper-K design and construction
 Analysis: OA, new samples, xsects SK-GD: 0.03% Gd 	 Beam upgrade ND280 upgrade Nuove HATPC 	 mPMTs FEB 20", timing computing
Data taking Analysis Run until 2027	Upgrade May 2024	Final Design Review Excavation Procurement Run 2027-

INFN commitments

TPC	Sum	Krakow	RWTH	CERN	INFN	IN2P3	Saclay	Warsaw	IFAE
Field Cage	555				549				6
Micromegas	278			248			30		
TPC mechanics	193	39				24	130		
Electronics	380					170	170	21	19
Gas system	276			276					
HV, LV	134		74			20	40		
GMC	34		34						
Shipment from CERN to J-PARC	50			50					
Total	1900	39	108	574	549	214	370	21	25

Italian contribution in Hyper-K

• Multi-PMT

- 300 mPMTs, out of 808 mPMTs in total. Initially proposed by the Italian group
- Elettronica
 - Front-end digitizer 20" PMTs (+OD 3" PMTs digitizer design, in collaboration with UK)
 - Timing distribution (in collaboration with LPNHE and IRFU/CEA)
- Computing
 - ~25% of Hyper-K computing 2023-27 at CNAF. Development of WAS, collaborative tools, database. Preparation of analysis tools
- Near Detector
 - Construction of two new TPCs for near detector upgrade di T2K (it will be part of the Hyper-K near detector). In collaboration with France, CERN, Spain, ...

- Hyper-K INFN funded 5.3 Meur + installation costs
- PMT 3" tender completed
- mPMT mechanics and other components (cables, connectors, etc.) currently in preparation
- FE electronic tender currently in preparation
- Mass production 2025-26

"Piccoli" esperimenti in CSN1

Vari esperimenti di "piccole dimensioni" sono stati <u>finanziati o considerati per finanziamento</u> in CSN1 Due esempi recenti :

The muEDM experiment at PSI Sigla aperta Feb. 2025 Muons enter the uniform magnetic field region via SC injection lines. Correction coils are used to increased the storag efficiency A radial magnetic field pulse stops them within a weakly focusing where they are stored Radial electric field "freezes" the spin so that the precession due to the magnetic dipole moment is cancelled Front View Top View Scintillating fibers (mirrored, zoomed) Correction Decay positron PSC solenoid Ground shell Cryo shield (50K) Cryocooler (5K) SC shield Scintillating fibers Muon end Magnetic pulse Entrance trigge Muon monitor detector coil HV electrode and start detector

First direct measurements of Λ_c^+ , Ξ_c^+ magnetic (MDM, μ) and electric (EDM, δ) dipole moments. No measurements to date

Vedi anche UA9 nelle slides addizionali

Preparing the future at CSN1: FCC @ INFN, Detector R&D

IDEA detector for FCC-ee

Example: developed a detailed design of the vertex detector region, with MAPs based silicon sensors. Integration takes into account crossing angle and other accelerator constraints

to rovs (1, 3, ..., 19) of scintiliation channels (fibres non-illuminated)

Prototype of µRWELL detector for muon chambers , tested with new TIGER low noise electronics

INFN MEG II Drift Chamber as a prototype for FCC Tracking

Collaboration with FBK for Digital SiPM CMOS dedicated to fiber calorimeter

Detector R&D towards a Mucol experiment @ 10 TeV

Tracker silicon sensors + electronics: DRD3/DRD7 LGAD-4D tracking new thin sensors – also ERC COMPLEX TO MAPS to face higher occupancies @ vertex inner layers PD **e.m. calorimeter:** DRD6/PRIN CRILIN: crystal calorimeter with longitudinal information Full size prototype: 5x5 crystals and 5 layers - 21 X₀ and 1 M_R LNF + PD + RM3 + TO + ENEA + YALE **hadron calorimeter:** DRD6/PRIN MPGD-based HCAL: prototype with 20x20 cm^2 detectors – BA

timing muon layer: DRD1 - WP7 MPGD Timing Detectors picosec – PV

TPC atmospheric pressure @ demonstrator: DRD1 prototype detector – sinergy with neutrino physics – BA

Radiation damage in detector @ 10 TeV

Per year of operation (140d)	Ionizing dose	Si 1 MeV neutron-equiv. fluence
Vertex detector	200 kGy	$3 \times 10_{14} n/cm_2$
Inner tracker	10 kGy	1×1015 n/cm2
ECAL	2 kGy	1×1014 n/cm2

Accelerator projects for particle physics @ CSN1

LHC long-term schedule and OTHER main CSN1 projects

HL-LHC : Run 4, Run 5, Run 6 at least 3000 fb-1 for ATLAS e CMS (*ultimate lumi* 4500 fb-1) Upgrades LHCb [and ALICE] Fase 2 : Run 5 e Run 6

FCC-ee : start 204X dictated by CERN budget, anticipated start tecnically possible

Considerazioni finali su CSN1 e comunità acceleratori

- La CSN1 e' passata dall'avere un Laboratorio Nazionale di riferimento
 - LNF (ADONE, DAFNE, SuperB)
- a supporto/interazione con almeno 3 laboratori legati alla comunità nazionale acceleratori
 - LNF, LNL, LASA (e ora con DUNE anche LNS)
- Questo è legato soprattutto, ma non solo, a supporto e R&D per futuri grandi progetti di fisica delle particelle (FCC, MuCol)
- Abbiamo avuto una prima esperienza di review congiunta (CSN1 MAC) di progetti legati a sviluppo di componenti per future macchine
 - <u>questo approccio va nella direzione giusta: la CSN1 puo' fornire la spinta</u> <u>motivazionale per i futuri progetti di acceleratori, ma non possiede tutta</u> <u>l'esperienza tecnologica necessaria per una review completa e puntuale</u>

ADDITIONAL INFORMATION

LHCb Upgrade II : The detector challenge

200

z (mm)

400

Targeting same performance as in Run 3, but with pile-up ~40!

footprint, innovative technology for detector and data processing Key ingredients:

• fast timing (few tens of ps)

600

x (mm)

x (mm)

radiation hardness

The Belle II detector and INFN commitments

Summary Schedule with Critical Paths through Start of Science (FD1) and Beam-on

Notes:

- Fiscal Year display
- Early completion dates shown

8 observed events and an expected background $(7.6 \pm 3.1) \times 10^{-2}$

Background only hypothesis probability:

 $P = 1.48 \times 10^{-12}$ 7.0 σ observation

MEG 2 at PSI

Taking data from 2021: number of muons on target steadily increasing Unfortunately data taking in 2024 not started, yet, due to PSI Cryoplant problems

The MEG II dataset (so far...)

*ereditate

da MEG

(RDC)

COBRA superconducting

NA62 Beamline & Detector

JINST 12 (2017) 05, P05025

The Mu2e experiment at Fermilab

Searching for muon-to-electron conversion in a thin aluminum stopping target

The experimental hall with the recently installed Transport Solenoid (AGS Superconductors Genova)

Other exp in backup slides, but cannot avoid mentioning the Significant progress for MU2E !!

Mu2e Calorimeter (INFN)

UA9, cristalli per manipolazione fasci

Single station position might float by up to 0.5m Beamline scintillator XSCI420 as trigger