

IFD 2025 INFN WORKSHOP ON FUTURE DETECTORS

Eco-friendly RPCs for future HEP applications: an insight into signal shape and rate studies

Luca Quaglia¹ on behalf of the RPC EcoGas@GIF++ collaboration

¹INFN Torino

IFD 2025 - INFN Workshop on Future Detectors

18/03/2025

RPCs in HEP and their gas mixture

- Resistive Plate Chambers (RPCs)
 - Gaseous particle detectors with fast response + low-cost per unit area = ideal detectors for muon triggering and identification at LHC and future experiments
- Currently employed gas mixture in HEP: > 90% $C_2H_2F_4$ + i- C_4H_{10} (5-10%) + SF₆ (< 1%)
 - C₂H₂F₄ and SF₆ are fluorinated greenhouse gases (F-gases) with a high GWP and are being phased out by the EU

 \rightarrow Need to find an alternative RPC gas mixture in view of the future (HL-LHC and possibly FCC)

 \rightarrow Possible solution explored: replace C₂H₂F₄ with C₃H₂F₄ (HFO) + CO₂

The RPC EcoGas@GIF++ collaboration

Cross-experiment collaboration

 \rightarrow It includes CMS, <u>ALICE</u>, ATLAS, ShiP/LHCb and the EP-DT group of CERN

- Focus the effort for eco-friendly gas mixture studies
 - \rightarrow One RPC prototype per group (only results from ALICE and EP-DT in the following)
 - \rightarrow Experimental setup loacted @ GIF++ (CERN):
 - 1) High activitiy ¹³⁷Cs source for aging tests + μ beam for performance studies
 - 2) Several mixtures beam-tested and one selected for aging studies

, instare		III O //			016 /	01
STD	95.2	0	0	4.5	0.3	1488
MIX0	0	0	95	4	1	730
MIX1	0	10	85	4	1	640
MIX2	0	20	75	4	1	560
MIX3	0	25	69	5	1	529
MIX4	0	30	65	4	1	503
MIX5	0	35	60	4	1	482
MIX6	0	40	55	4	1	457

Mixture C H F & HFO & CO & i-C H & SF & CWP

Baseline performance

- Efficiency curves fitted with logistic function to extract **Working Point** (WP) = knee (voltage where efficiency is 95% of its maximum) + 150 V
- Increasing value of maximum efficiency as the HFO concentration increases (denser mixture)
- Increase of WP by ~1 kV for every 10% HFO added to the mixture

Baseline performance

- For HFO-based mixtures, small signal (avalanche) peak shifted towards higher values wrt STD
 → Higher absorbed current
- Large-signals peak generally more populated than with STD
 → # of streamers decreases as CO₂ concentration decreases (quenching effect of more HFO)

Baseline performance

- Large-signal contamination at WP improves with increasing HFO content
- At WP values are similar to STD
- Steeper rise of the curve for voltages above the WP wrt STD

- Aging test ongoing since July 2022 (RPCs powered ON and exposed to y's from the ¹³⁷Cs source)
- Periodic beam-test campaigns to monitor performance evolution. Example from a 2 mm single gap RPC after integrating ~115 mC/cm²

- Aging test ongoing since July 2022 (RPCs powered ON and exposed to γ's from the ¹³⁷Cs source)
- Periodic beam-test campaigns to monitor performance evolution. Example from a 2 mm single gap RPC after integrating ~115 mC/cm²
- Currents under irradiation slightly higher in 2024 wrt 2023
 - \rightarrow Visible for all mixtures
 - \rightarrow Ohmic current increase potentially related to electrode degradation

- Aging test ongoing since July 2022 (RPCs powered ON and exposed to y's from the ¹³⁷Cs source)
- Periodic beam-test campaigns to monitor performance evolution. Example from a 2 mm single gap RPC after integrating ~115 mC/cm²
- Maximum efficiency under irradiation for same background reduced in 2024 vs 2023 for all mixtures
 - ~2% for all mixtures

- Aging test ongoing since July 2022 (RPCs powered ON and exposed to y's from the ¹³⁷Cs source)
- Periodic beam-test campaigns to monitor performance evolution. Example from EP-DT after ~115 mC/cm²
- Maximum efficiency under irradiation for same background reduced in 2024 vs 2023 for all mixtures ~2% for all mixtures

No significant performance degradation observed so far

Aging studies are still ongoing and results from all detectors are being analyzed and compared for similar aging conditions

Paper summarizing the main results is in the pipeline

Thanks for your attention!!!

Backup

RPCs in High Energy Physics

- Resistive Plate Chambers (RPCs)

 → Widely employed in HEP
 - For muon detection
 - Relatively cheap
 - \rightarrow Large area coverage
 - Fast response

 \rightarrow Used for muon triggering and identification

Issues with current gas mixture

• Currently employed gas mixture in HEP (standard gas mixture/**STD** in the following)

 \rightarrow Combination of C₂H₂F₄, i-C₄H₁₀ and SF₆ in different concentrations with ~ 90% C₂H₂F₄

- Operated in avalanche mode
 - \rightarrow Time resolution ~ 1 ns and space resolution ~ mm </
 - \rightarrow C₂H₂F₄ and SF₆ are **fluorintated greenhouse gases** (F-gases) with a high GWP¹ X

The need for an eco-friendly gas mixture

- EU regulations imposed a progressive phase down in the production and use of F-gases • \rightarrow Phase down of the production and consumption of such gases Increase in cost
 - \rightarrow Ban of the gases if a more eco-friendly alternative is available
 - \rightarrow Reduction of emissions from existing equipment

in availability 300 120000 GHG emission in Run2 [tCO2e] 250 LHC Leaks at detector level 90000 **Reparation during LS2** Run 2 200 LHC LHC 150 60000 Run 3 Run 4 95% R134a - 4.5% iC4H10 - 0.3% SF6 30000 50 0 RPC RICH CSC MWPC GEM F-gases placing on the market (POM) plan, from B. Mandelli VCI 2022 ETC CM Report 2023/04

- RPCs are the main source of F-gases emissions at CERN (mainly due to gas leaks)
 - \rightarrow Need to find a more eco-friendly gas mixture

Placing on the market of HFCs [Mt CO2e]

- Many laboratory studies using new gases have been carried out with cosmics ۰
 - \rightarrow Now: beam test studies and long-term performance evolution under irradiation(aging tests)

and reduction

Experimental approach

- First efforts of LHC RPC groups focused on R134a replacement
- Industrial use: from R134a to hydro-fluoro-olefine (HFO) family of gases
 - → Similar chemical structure as R134a but lower Global Warming Potential
 - \rightarrow Among all HFOs, HFO-1234yf and HFO-1234ze are currently used

- 1:1 replacement of R134a with HFO not possible
 - \rightarrow Lower effective first Townsend coefficient
 - $\rightarrow\,$ Working voltage of the detectors moves to over 15 kV
- HFO has to be diluted with other gases
 - → Studies with cosmic muons by different LHC RPC groups [1-4]
 - \rightarrow CO₂ found to be the most promising candidate for dilution
 - \rightarrow In-depth studies on RPCs long-term behavior with eco-friendly alternatives needed

The RPC EcoGas@GIF++ collaboration

Cross-experiment collaboration

 \rightarrow It includes CMS, <u>ALICE</u>, ATLAS, ShiP/LHCb and the EP-DT group of CERN

- Studies carried out at the CERN Gamma Irradiation Facility (GIF++)
 - \rightarrow Experimental facility located at the CERN North Area

- 12.5 TBq ¹³⁷Cs source, high activity allows one to simulate long operating periods in much shorter time spans (aging studies) – irradiation can be modulated by means of attenuation filters

- **High energy** (100 GeV/c) **muon beam** in dedicated beam time periods

 \rightarrow Combination of muon beam with source: rate capability studies

Experimental setup

Each group provided an RPC prototype to be tested with eco-friendly gas mixtures \rightarrow Installed on two setups, one at 3 m from the source and one at 6 m

Group	Dimension (cm ²)	# of gaps	Gap/electrodes Thickness (mm)	Readout	# of strips
ATLAS	500	1	2 / 1.8	Digitizer	1
CMS	4350	2	2/2	TDC	128
CMS Upgrade	7000	2	1.4/1.4	TDC	32
EP-DT	7000	1	2/2	Digitizer1	7
ALICE	2500	1	2/2	Digitizer ²	7
ShiP/LHCb	7000	1	1.6 / 1.6	TDC	64

Summary table of all the RPCs of the collaboration

Two different readout methods for the different RPCs 1) Front-end electronics + TDCs

Subject of this presentation*

*Results from other detectors in M. Abbrescia's talk today @ 11:50 am

¹CAEN model V1730, 14-bit at 500 Ms/s, $V_{DD} = 1 V$ ²CAEN model DT5742, 12-bit at 1-5 Gs/s, $V_{nn}^{\nu\nu}$ = 1 V

2) Digitizer

Experimental setup - 2

Timeline of collaboration activites

Marcello Abbrescia's talk today @ 11:50 am

Beam test measurements

- Mixtures with different ratios of HFO/CO₂ have been tested (from 0 up to 40% HFO)
- Study the interplay between these two gases and comparison to current gas mixture

Mixture	C ₂ H ₂ F ₄ %	% HFO %	CO ₂ %	i-C ₄ H ₁₀ %	SF ₆ %	GWP
STD	95.2	0	0	4.5	0.3	1488
MIX0	0	0	95	4	1	730
MIX1	0	10	85	4	1	640
MIX2	0	20	75	4	1	560
CO3) MIX3	0	25	69	5	1	529
MIX4	0	30	65	4	1	503
CO2) MIX5	0	35	60	4	1	482
MIX6	0	40	55	4	1	457

CO₂ concentration decreases HFO concentration increases

Two readout methods employed:
 1) Detectors front-end electronics + TDCs
 → Realistic measurements of efficiency and cluster size

2) Digitizer

- → Waveform/charge studies
- Goal of beam tests: measure RPC performance (using a muon beam) in terms of efficiency, cluster size, prompt charge, large-signal contamination and rate capability
 9/20

Digitizer data analysis - 1

• Access to the waveform of each signal enables in depth characterization of RPC response

Example of RPC response when readout with digitizer – ALICE RPC

• Analysis procedure developed to

1) Identify "efficient" strips for further processing ALICE: threshold = 5*RMS of the noise window. EP-DT: threshold = 2 mV

- \rightarrow Reflection signals are identified and discarded (see backup)
- **2)** Find integration interval for prompt-charge calculation
- 3) Compute large-signal probability
- 4) Compute time-over-threshold
- 5) Analyze run globally (efficiency, streamer probability... vs high voltage)

Digitizer data analysis - 2

Prompt charge distribution at max efficiency - STD – ALICE RPC 11/20

Efficiency vs HV at source off

• Trigger provided by coincidence of 4 scintillators coupled with PMTs

ALICE FP-DT

- Efficiency curves fitted with logistic function to extract Working Point (WP) = knee (voltage where efficiency is 95% of its maximum) + 150 V
- Increasing value of maximum efficiency as the HFO concentration increases (denser mixture)
- Increase of WP by ~1 kV for every 10% HFO added to the mixture is observed in both detectors
- Differences between ALICE and EP-DT can be explained by the different threshold

100 😴

Stre

60

40

20

Source off efficiency - EPDT unaged RPC

ALICE Source-off prompt charge distribution

• Spectra shown correspond to the HV closest to the estimated WP

 For all HFO-based mixtures, avalanche peak shifted towards higher values wrt STD → Higher absorbed current

• large-signals peak generally more populated than with STD

 \rightarrow # of streamers decreases as CO₂ concentration decreases (quenching effect of more HFO)

- \rightarrow Same observations for ALICE and EP-DT RPCs
- Small differences between ALICE and EPDT can be explained by the different threshold

ALICE Source-off large-signals contamination

- Streamer contamination at source off, as a function of (HV WP) for each mixture
- STD gas mixture:
 1) Streamer probability < 5% at WP
 2) Still < 10% 500 V above WP

- Large-signal contamination at WP improves with increasing HFO content
- MIX5 (35% HFO) has similar contamination as STD at WP
- Steep rise of the curve for voltages above the WP (35% contamination 500 V above WP for MIX5)

ALICE

Efficiency under irradiation

RPC response to the muon beam was studied in combination with the ¹³⁷Cs source (source on) to study the rate capability

 \rightarrow Results shown in terms of gamma cluster rate measured using a random trigger to periodically sample the RPC response

Unaged ALICE RPC response with source on and MIX2 (HFO/CO₂20/75)

- MIX2 (HFO/CO₂ 20/75) shown as an example but similar results with all mixtures
- Three effects under irradiation: 1) Efficiency curves shift to higher voltages
 - 2) Maximum value of efficiency reaches lower values
 - 3) Reduction of large signal contamination
- They can be explained with a model considering voltage drop across resistive electrodes (more details in backup)

ALICE EP-DT

Efficiency under irradiation

RPC response to the muon beam was studied in combination with the ¹³⁷Cs source (source on) to study the rate capability

→ Results shown in terms of gamma cluster rate measured using a random trigger to periodically sample the RPC response

Unaged ALICE RPC response with source on and MIX2 (HFO/CO₂ 20/75)

- MIX2 (HFO/CO₂ 20/75) shown as an example but similar results with all mixtures
- Three effects under irradiation:
 1) Efficiency curves shift to higher voltages
 - 2) Maximum value of efficiency reaches lower values
 - 3) Reduction of large signal contamination
- They can be explained with a model considering voltage drop across resistive electrodes (more details in backup)

Average charge per gamma cluster

- Total charge per hit = total charge released by ionizing particle in the gas
- If RPC exposed to photon flux
 - \rightarrow Absorbed current (minus its dark component) is proportional to the rate of detected photons
 - \rightarrow Proportionality factor is the average charge per hit

- Current at given rate is 1.6/1.7 times higher for all the eco-friendly alternatives wrt STD gas mixture
- Same result obtained for the average charge per hit

ALICE

- Aging test with ECO2 (35/60 HFO/CO2) gas mixture ongoing since 2022¹
- Periodic beam test campaigns performed during the aging campaign allow one to measure RPC performance evolution as a function of the integrated charge

• Aging test with ECO2 (35/60 HFO/CO2) gas mixture ongoing since 2022

Example for STD gas mixture (ECO2 under investigation)

• Periodic beam test campaigns performed during the aging campaign allow one to measure RPC performance evolution as a function of the integrated charge

• Aging test with ECO2 (35/60 HFO/CO2) gas mixture ongoing since 2022

Example for STD gas mixture (ECO2 under investigation)

• Periodic beam test campaigns performed during the aging campaign allow one to measure RPC performance evolution as a function of the integrated charge

- Threshold is comparable between 2022 and 2024
- Slightly larger prompt charge in 2024
 → Similar large-signal fraction
- Can be explained by larger average signal amplitude
- Slightly lower average time over threshold

 Large current drift observed only in ALICE, shift of WP

 \rightarrow Effects can partly be explained by preexisting issues with the ALICE RPC (under investigation) \$17/20\$

• Comparison of performance for EPDT RPC before and after the aging studies with ECO2

EP-DT RPC source off efficiency vs HV curves. Comparison between 2023 and 2024

July 2023 - STD, EffMax: 98.64%, SP: 0.50%, WP: 9473V, Bate: 0Hz/cm²

EP-DT RPC maximum efficiency vs background rate. Comparison between 2023 and 2024

- Integrated charge ~115 mC/cm²
- WP increased in 2024 wrt 2023, yet (~+100 V for STD, ~+200 V for ECO2 and ~+150 V for ECO3)
- Max **source off efficiency** decreases maximum by ~2% (could be due to alignment)
- Source off large-signal **probability reduced** for all the mixtures
- Max efficiency under irradiation for same background reduced in 2024 vs 2023 for all mixtures (~2% for all mixtures)

- Currents under irradiation slightly higher in 2024 wrt 2023 → Visible for all mixtures
- Increase of dark current

 → Could be related to electrode degradation
 → Chemical analyses needed
- Ratio between current and rate
 - \rightarrow Estimation of total charge per gamma hit
 - \rightarrow Higher in 2024 wrt 2023
 - \rightarrow For all mixtures and for all ABS tested @ GIF++
 - \rightarrow Partly explained by higher dark current in this detector

EP-DT RPC source on current vs rate at WP. Comparison between 2023 and 2024 TB

EP-DT RPC average charge per gamma hit for different GIF++ ABS filter. Comparison between 2023 and 2024 TB

Conclusions and outlook

- RPC ECOgas@GIF++ collaboration is performing beam tests and aging studies on RPCs where the R134a is fully replaced using different concentrations of HFO and CO₂
- **RPC response** studied using a **digitizer** with ALICE and EPDT RPCs:
 - In general:
 - \rightarrow More HFO in the mixture, better performance (but higher WP)
 - Average charge per gamma cluster increases by 1.6/1.7 times wrt R134a-based mixtures
- Following the **aging** campaign:
 - ALICE RPC: integration of ~80 mC/cm²
 - \rightarrow Increase in absorbed current, muon prompt charge, and signal amplitude
 - **EPDT** RPC: integration of ~ 115 mC/cm²
 - \rightarrow Slight increase of WP and decrease of maximum effciency under irradiation

 \rightarrow No significant performance degradation but higher current and charge per gamma hit to be monitored

• Aging campaign continuing for the **other detectors** of the collaboration. ALICE RPC removed from irradiation and dedicated studies ongoing to further investigate the observations

On the HFO ecology - 1 B. Mandelli https://indico.cern.ch/event/1263322/

But not only detector performance...

- HFO dissociation in atmosphere might leas to the creation of TFA (toxic chemical for humans)
- Deposition on land following rain fall and consequent exposure to humans
- Studies on the matter (such as those reported in [5-7]) are not yet conclusive
- Research work on this direction is ongoing and we are studying these gases since for now they are not deemed as pollutants

On the HFO ecology - 2 B. Mandelli https://indico.cern.ch/event/1263322/

- PFAs: Per- and polyfluoroalkalyl substances:
 - Group of synthetic substances consisting of carbon chain + fluorine
 - Widely used in the industry and can leak into water/air/soil
 - Prolonged exposure harmful for humans
 - More than 15k PFAs identified
- Possible new regulations to ban PFAs

- Not yet clear if HFO will be included + not clear if the ban will be immediate or if derogations are foreseen

A possible new regulation?

PFAS: Per- and polyfluoroalkyl substances

- PFAS are a large class of synthetic chemicals considered environmental pollutants with links to harmful health effects.
- They all contain carbon-fluorine bonds: they resist degradation when used and also in the environment.
- Concern is growing on their use as they pollute the environment: PFAS have been frequently observed to contaminate groundwater, surface water and soil.

PFAS Regulation

- On February 7, 2023, the European Chemicals Agency (ECHA) released a proposal regarding PFAS restrictions:
 - It aims to be biggest chemical ban out of health considerations.
 - The proposal sets concentration limits below which the presence of PFAS would not be restricted: but which products?
 - None of the proposed restrictions will occur immediately: but when? Possible derogations?

Efficiency/charge calculation with digitizer

Example of signals from RPC when readout with the digitizer. Left: STD gas mixture; right: MIXO gas mixture

- RPC response when readout with the digitizer
- Algorithm developed to discriminate efficient strips
- Would tag strips 3 and 4 in the left case
- Would tag strip 4 in the right case because other signals would be classified as reflections (see next slide)

How to find "real signals" with digitizer? - 1

- All the strips which have a signal above 5*RMS in the muon window (arbitary window defined by looking at the muon time of arrival distribution) are deemed as potentially efficient
- The algorithm goes through all the data of the waveform (amplitude vs time with a sample every 1 or 0.4 ns (according to digitizer sampling frequency)) and it finds all the "peaks" (i.e. portions of signal above the threshold)
- If more than one peak is found, they are divided into peak-groups (if time difference between two peaks is < 40 samples)
- With eco-friendly mixtures with low HFO content, often more than one peak and many times they are due to cross-talk effects

 \rightarrow These peaks are characterized by two opposite-polarity peaks with same absolute value of amplitude

Comparison of RPC response between 2022 and 2024
 → Taken at 90% efficiency (different HV but same gas gain)

- Threshold is similar between 2022 and 2024
- Larger prompt charge in 2024
 - \rightarrow Together with larger fraction of streamers
- Can be explained by larger average signal amplitude and time over threshold

Aging campaign results - EPDT

Aging campaign results - ALICE

×10⁶

٠

160

140

Evolution of the absorbed current as a function of the integrated charge during the aging test

Efficiency under irradiation

• When gamma rate increases, current also increases

ALICE

• Current flowing through the Bakelite electrodes leads to a voltage drop ($\Delta V_{electrode}$) \rightarrow Can be calculated as the product of electrode resistance and current

N.B. This works only up to rates

250/300 Hz/cm²

Beam test results – under irradiation

• Evolution of the efficiency and streamer probability estimated at the working point (recalculated for each value of gamma cluster rate) as a function of the gamma cluster rate

- Open markers in the plot refer to the quantities measured at the source-off working point
- Efficiency drop at recalculated WP and ~ 100 Hz/cm² cluster rate (RUN3/4 ALICE)

 STD ~ 1 percentage points (pp)
 Eco-friendly alternatives: from ~ 8 pp (lowest HFO concentration) to ~ 3 pp (highest HFO concentration)
- Observed also in EP-DT:

ALICE

EP-DT

- Aging test with ECO2 gas mixture ongoing since 2022¹
- Periodic beam test campaigns performed during the aging campaign allow one to measure RPC performance evolution as a function of the integrated charge

- Comparison at source OFF with STD and ECO2 (ECO3 missing in 2024)
- Shift of the WP by ≈ 400 V with STD and 700 V with ECO2

 \rightarrow Readout on the same RPC region, same signal polarity and same data analysis

- Increase in absorbed current with both mixtures
- Slight decrease in maximum efficiency
- Effects can partly be explained by pre-existing issues with the ALICE RPC

Efficiency calculation with FEERIC

- TDC data format:
 - Two vectors, filled everytime a trigger is issued
 - One vector contains the strips that fired while the other one the time of the signal
 - Muon events are tagged as 0 while gamma events with a 1
- TDC time profile:
 - Contains the time of all hits
 - Peak corresponds to muons (since their arrival time is fixed wrt trigger arrival time)
 - Located via Gaussian fit, muon window = mean $\pm 3\sigma$ (obtained from the fit)
- RPC is efficient in a given trigger if at least one hit in both strip planes inside the muon window

Selecting only the signals in the muon widnow allows one to remove background created by gamma source

Considerations on efficiency fit

• Example of RPC response to the muon beam, wen operated with the STD gas mixture to highlight the main features

Typical efficiency(HV) curve with main response parameter highlighted

- Working point (WP) = operational voltage with given mixture = knee (HV where efficiency is 95% of the maximum) + 150 V
- Important value when studying a new gas mixture

Clustering algorithm - 1

- We have 2 information on each hit, time and strip
- Need to find clusters (i.e. adjacent strips in a given trigger) while keeping in mind also time informaton (clustering time)
- Developed clustering algorithm and tested it for different clustering times
- For clustreing times > 7 ns
 - \rightarrow Cluster size and multiplicity are constant
 - \rightarrow Clustering time set to 15 ns to be on the safe side

Clustering algorithm - 2

Efficiency under irradiation – FEE data

- Efficiency(HV) curves under irradiation, when FEE is used
- Streamer probability cannot be calculated in this case but higher maximum rate reached wrt digitizer case

RPC response with source on and MIX5 (HFO/CO₂35/60)

- Same shift effects shown when analyzing digitizer response
- "Correction" of the applied voltage for the drop on the Bakelite aligns the curves
- Not true for the highest rate
 → Might be due to secondary
 effects not easily measurable
- Similar behavior observed in all the eco-friendly mixtures studied with FEERIC