Superconducting
circuits for
quantum sensing:

an overview
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What i1s quantum sensing?
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Quantum sensing is the procedure of measuring
an unknown quantity of an observable

?»,, = using a quantum object as a probe bl

- i.e. an object in which quantum mechanical effects "-4
can manifest and be observed N S
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What 1s quantum sensing?

Transmon
5

 Strict approach: 3
Quantum sensing = making use of quantised energy levels $° /A
and/or entanglement of a quantum system 27 2y
1 hwo i 0)
0
— quantum circuits and qubits superconducting phase,
* Broad approach: \

Quantum sensing = making use of quantum phenomena

thermometer i i

(superconductivity is a macroscopic quantum phenomenon!)

— cryogenic detectors & sensors
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What 1s quantum sensing?
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| Superconducting quantum circuits: motivation

Superconducting quantum devices offer:

Lossless conduction Low temperature Scalability Non-linearity
(Ry. = 0) T ~ 20 mK Planar microfabrication  Element: Josephson junction
@ @ techniques @
Ultra-low dissipation Ultra-low noise @ Non-equidistant energy
kT < Aw On-chip circuits levels
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. . Talk by Marcello Faggionato
| The JOSEphSOn ju nction Amplification-Free System for High-Resolution

Josephson Junctions’ Characterization

Talk by Federico Paolucci
Next Generation Quantum Detectors for Low
Energy Astroparticle Physics (QuULEAP)
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| Superconducting qubits

H = 4E:N? + — @* H = 4EcN? — E;cosgp

Josephson
junction!
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superconducting phase, ¢ superconducting phase, ¢

—> Quantised non-equidistant energy levels
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Talk by Danilo Labranca
| Transmon q u b|t S Development and Analysis of Transmon Qubits

for Quantum Sensing applications

Talk by Caterina Braggio
Superconducting circuits in axion dark matter search:
microwave photon counting with transmon qubits
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. ) . Talk by Enrico Bogoni
Travelling Wave Parametric Amplifiers Kinetic inductance circuits

for quantum sensing

TWPA =
transmission line with embedded nonlinear TL (TWPA)
non-linear elements —0 —
signal
Josephson inductance Kinetic inductance
pump

o)

arcsin(l/I¢)
I/Ic

\ 4

Josephson junctions High-kinetic inductance
= J-TWPAs superconductor = KI-TWPAs QUANTUM-LIMITED

AMPLIFIERS
= detectors/qubits read-out

L (1) =
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MICROWAVE SQUEEZING &
ENTANGLEMENT
= quantum sensing

Rev. Sci. Instrum. 92, 034708 (2021) Nature Phys 8, 623-627 (2012)



What 1s quantum sensing?

X-ray Photon

* Broad approach: \
Quantum sensing = making use of quantum phenomena

thermometer

(superconductivity is a macroscopic quantum phenomenon!)

I’i/

temperatu

— cryogenic detectors & sensors
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| Superconducting cryogenic sensors: motivation

Superconductivity offers:

Small energy gap Small heat capacity Sharp superconducting Change of kinetic inductance
of Cooper pairs C, xT transition L, < 1/ng
Ay = 1.76kpT, Sensitive calorimeters Sensitive thermometer Detection using LC
Ao(TNPN = 16.5K) = 2.5 meV AT =E/C dR/dT resonator
fr =1/(2nVLC)
ERW l/ T2
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| Superconducting Nanowires Single Photon Detectors

Small energy gap 4 _ )
of Cooper pairs Superconducting Nanowires

Single Photon Detectors

@ (SNSPDs)

AO — 176kBTC
Ay (TNPN = 16.5K) = 2.5 meV

Talk by Leonardo Limongi
Photon Number-Resolving Detectors
for Integrated Quantum Sensing




Superconducting cryogenic sensors: motivation

Superconductivity offers:

Small heat capacity  Sharp superconducting
C, xT transition

@ v

Sensitive calorimeters  Sensitive thermometer
AT =E/C dR/dT
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| Microcalorimeters

Small heat capacity
Co xT

@

Sensitive calorimeters
AT = E/C

Credits: NASA
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Sharp superconducting

Sensitive thermometer
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Transition Edge Sensors
(TESs)

Microcalorimeters
AT = E/C
[ N
Metallic Magnetic
Calorimeters (MMCs)




| Microcalorimeters

Small heat capacity
Co xT

@

Sensitive calorimeters
AT = E/C

Credits: NASA
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Sharp superconducting
transition

Sensitive thermometer

Resistance [mOhm]
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Talk by Mario De Lucia

Microcalorimeters

i

Transition Edge Sensors
(TESs)
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Superconducting detectors
for frontier physics



Superconducting cryogenic sensors: motivation
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Superconductivity offers:

Change of kinetic inductance
Lk X 1/n5

o

Detection using LC
resonator

fr = 1/(@2nVLC)
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| Kinetic Inductance Detectors & Current Sensors

Change of kinetic inductance
Lk X 1/7’15

U

Detection using LC
resonator

fr = 1/2rVLC)
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Kinetic Inductance Kinetic Inductance Current

Detectors (KIDs) Sensors (KICS)
a Filter resistor _, TES in ZrO,
TES.shunt P ' ve

B
e

Talk by Enrico Bogoni
Kinetic inductance circuits
for quantum sensing




Conclusions

Quantum sensing with superconducting circuits is a broad field

Cryogenic detectors:
Response of superconducting
circuits upon energy Input

Quantum circuits:
manipulation of quantum states

Different sensing schemes exploits different properties of superconducting circuits

ENJOY THE SESSION!
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