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What is quantum sensing?

Quantum sensing is the procedure of measuring
an unknown quantity of an observable 

using a quantum object as a probe

– i.e. an object in which quantum mechanical effects 
can manifest and be observed –
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What is quantum sensing?

• Broad approach: 
Quantum sensing = making use of quantum phenomena
(superconductivity is a macroscopic quantum phenomenon!)

→ cryogenic detectors & sensors

• Strict approach: 
Quantum sensing = making use of quantised energy levels 
and/or entanglement of a quantum system

→ quantum circuits and qubits



page
04

What is quantum sensing?

• Broad approach: 
Quantum sensing = making use of quantum phenomena
(superconductivity is a macroscopic quantum phenomenon!)

→ cryogenic detectors & sensors

• Strict approach: 
Quantum sensing = making use of quantised energy levels 
and/or entanglement of a quantum system

→ quantum circuits and qubits



page
05

Superconducting quantum circuits: motivation
Superconducting quantum devices offer:

Non-linearity
Element: Josephson junction

Non-equidistant energy 
levels

Low temperature
𝑇 ~ 20 mK

Ultra-low noise
𝑘!𝑇 ≪ ℏ𝜔

Lossless conduction
(Rdc = 0)

Ultra-low dissipation

Scalability
Planar microfabrication 

techniques

On-chip circuits
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The Josephson junction

Source: Wikipedia
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𝜑 ≡ 𝜙! − 𝜙"

Josephson equations

𝐼 𝑡 = 𝐼% sin 𝜑 𝑡

𝜕𝜑
𝜕𝑡

=
2𝑒 𝑉(𝑡)
ℏ

non-linear and tunable inductance

Talk by Marcello Faggionato
Amplification-Free System for High-Resolution 

Josephson Junctions’ Characterization

Talk by Federico Paolucci
Next Generation Quantum Detectors for Low 

Energy Astroparticle Physics (QuLEAP)
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Superconducting qubits

𝐻 = 4E(𝑁) +
𝐸*
2
𝜑)

à Quantised non-equidistant energy levels

à possible to address the transitions individually

𝐻 = 4E(𝑁) − 𝐸+cos𝜑

Josephson 
junction!
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Transmon qubits
Talk by Danilo Labranca

Development and Analysis of Transmon Qubits 
for Quantum Sensing applications

Talk by Caterina Braggio
Superconducting circuits in axion dark matter search: 

microwave photon counting with transmon qubits

Josephson
junctions

Shunt 
capacitor CB

Flux line

𝐻 = 4𝐸!(𝑛 − 𝑛")# − 𝐸$ cos𝜑

Transmon regime: ⁄𝐸$ 𝐸! ≫ 1
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Travelling Wave Parametric Amplifiers
Talk by Enrico Bogoni
Kinetic inductance circuits 

for quantum sensing

Josephson inductance

𝐿! 𝐼 =
arcsin ⁄𝐼 𝐼"

𝐼/𝐼"

Kinetic inductance

𝐿# 𝐼 ≈ 𝐿$ - 1 +
𝐼%

𝐼∗%

TWPA = 
transmission line with embedded 

non-linear elements

Josephson junctions
⟹ J-TWPAs

High-kinetic inductance 
superconductor ⟹ KI-TWPAs

Rev. Sci. Instrum. 92, 034708 (2021) Nature Phys 8, 623–627 (2012)

QUANTUM-LIMITED 
AMPLIFIERS

⇒ detectors/qubits read-out

MICROWAVE SQUEEZING & 
ENTANGLEMENT
⇒ quantum sensing
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Superconducting cryogenic sensors: motivation
Superconductivity offers:

Small energy gap
of Cooper pairs

Sharp superconducting 
transition

Credits: 
Figueroa Group

Sensitive thermometer
d𝑅/d𝑇

Small heat capacity
𝐶- ∝ 𝑇

Sensitive calorimeters
Δ𝑇 = 𝐸/𝐶

Credits: NASA

Change of kinetic inductance
𝐿. ∝ 1/𝑛/

Detection using LC 
resonator

𝑓0 = ⁄1 (2𝜋 𝐿𝐶)

Credits: B. Mazin

Δ! = 1.76𝑘"𝑇#
𝜟𝟎 𝑇#%&% = 16.5 K = 𝟐. 𝟓 𝐦𝐞𝐕

Credits: 10.1088/1742-6596/664/8/082007
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Superconducting Nanowires Single Photon Detectors

Talk by Leonardo Limongi
Photon Number-Resolving Detectors 

for Integrated Quantum Sensing

Small energy gap
of Cooper pairs

Δ! = 1.76𝑘"𝑇#
𝜟𝟎 𝑇#%&% = 16.5 K = 𝟐. 𝟓 𝐦𝐞𝐕

Credits: 10.1088/1742-6596/664/8/082007

Superconducting Nanowires
Single Photon Detectors 

(SNSPDs)
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Transition Edge Sensors 
(TESs)

Microcalorimeters
Δ𝑇 = 𝐸/𝐶

Metallic Magnetic 
Calorimeters (MMCs)

Microcalorimeters

Small heat capacity
𝐶- ∝ 𝑇

Sensitive calorimeters
Δ𝑇 = 𝐸/𝐶

Credits: NASA

Sharp superconducting 
transition

Credits: 
Figueroa Group

Sensitive thermometer
d𝑅/d𝑇
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Transition Edge Sensors 
(TESs)

Microcalorimeters
Δ𝑇 = 𝐸/𝐶

Microcalorimeters

Small heat capacity
𝐶- ∝ 𝑇

Sensitive calorimeters
Δ𝑇 = 𝐸/𝐶

Credits: NASA

Sharp superconducting 
transition

Credits: 
Figueroa Group

Sensitive thermometer
d𝑅/d𝑇

Resistance of 
superconducting transition

Talk by Mario De Lucia
Superconducting detectors 

for frontier physics
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Kinetic Inductance Detectors & Current Sensors

Talk by Enrico Bogoni
Kinetic inductance circuits 

for quantum sensing

Change of kinetic inductance
𝐿. ∝ 1/𝑛/

Detection using LC 
resonator

𝑓0 = ⁄1 (2𝜋 𝐿𝐶)

Credits: B. Mazin

Kinetic Inductance 
Detectors (KIDs)

Kinetic Inductance Current 
Sensors (KICS)
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Conclusions

Quantum sensing with superconducting circuits is a broad field

Different sensing schemes exploits different properties of superconducting circuits

Quantum circuits:
manipulation of quantum states

Cryogenic detectors:
Response of superconducting 

circuits upon energy input

ENJOY THE SESSION!


