

INFN Workshop on Future Detectors

Development of a SiPM-based RICH detector for the future ALICE 3 experiment at LHC

Nicola Nicassio (CERN, University and INFN Bari) for the ALICE Collaboration IFD 2025 – March 17-19, 2025

The ALICE 3 bRICH detector

bRICH: Proximity-focusing RICH based on aerogel+SiPMs in a projective geometry

ALICE

2024 beam test set-up@PS-T10

ALICE

Aerogel radiator: 2 cm thick tile with n=1.03, $\Lambda \approx 5.5$ cm @ 400 nm Central array: 1 HPK SiPM S13361-3050AE-08 (64 3x3 mm² SiPMs) Ring arrays: 7 HPK SiPM S13361-2050AE-08 (64 2x2 mm² SiPMs) SiPM cooling: Down to -5 °C using water chiller + Peltier Cells Proximity gap: 23.4 cm between aerogel and SiPMs flushed with Ar Front-end: Custom board based on Radioroc 2 FE ASIC and picoTDC

Additional vessel equipped with 2 extra HPK SiPM S13361-2050AE-08 for charged particle timing studies \Rightarrow See contribution by <u>Bianca Sabiu</u>

DCR bkg suppression using timing

- Assuming all hits at candidate Cherenkov photon for ring reconstuction
- Signal hits fall in a few ns window wrt track on top of Rayleigh / DCR bkg
- Possibility to significantly suppress uncorrelated DCR bkg using timing

Cherenkov angle recostruction

- Single photon angular resolution at angle saturation of about 4.2 mrad
- Background level consistent with expectations @ operation T and V_{ov}
- Approximately 6 selected hits per track at saturation with 25% acceptance

Separation power vs momentum

- Comparing results with positive beam @ 8,9,10 GeV/c with $N_{HTM} \geq 10$
- Reconstructed ring angles follow the expected scaling with momentum
- Separation of π , K and p beyond 3σ , with π /K limit at 10 GeV/c as required

Stability with increasing background

Performance vs time window and DCR

- We studied the pattern recognition stability considering wider and wider windows with the nominal 23.3 kHz/mm²
- We scaled the resulting mean number of background hits in terms of the equivalent DCR bkg we would have in the target 1-2-3 ns acquisition window for the ALICE 3 RICH

Results

- \approx **0.5 mrad worsening** up up to **1 4 MHz/mm² equivalent** depending on the considered acquisition time window
- This study proves the stability of the reconstruction and physics performance up to the considered DCR levels

Measured RICH performance

- Measured photon yield, single photon angular resolution and ring angular resolution consistent with ALICE 3 target
- Excellent signal efficiency signal-to-background ratio achieved in time matching windows shorter than 5 ns
- Performance scaling vs momentum in agreement with expectations (e.g. > $3\sigma \pi/K$ separation up to ≈ 10 GeV/c)
- Stable reconstruction performance beyond MHz/mm² DCR values considering proper DAQ / time matching windows

Thank you for your attention

Nicola.Nicassio@ba.infn.it