Fast amplifier for SiPM characterization in a wide temperature range for the next RICH experiments

Paolo Carniti, Claudio Gotti, Gianluigi Ezio Pessina, Davide Trotta

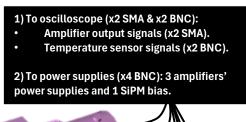
INFN and University of Milano-Bicocca

IFD 2025 - INFN Workshop on Future Detectors
18th March 2025

SiPM characterization amplifier

- The next generation of RICH (Ring Imaging Cherenkov) detectors may use SiPMs (Silicon PhotoMultipliers) as photodetectors.
- SiPMs need to be characterized with good timing resolution (tens of picoseconds) at different temperatures to study the effects of radiation damage as a function of operating temperature (between ~ 80 K and ~ 300 K).
- Fast transimpedance signal amplifier for **SiPM characterization**.
- Low power consumption, adequate for cryogenic operation: 175 mW @ ~ 300 K and 100 mW at @ ~ 80 K per amplifier.
- Very low noise $\left(<1\frac{\text{nV}}{\sqrt{\text{Hz}}}\right)$ and very fast response (<500 ps) result in very low jitter (high time resolution).

Electronics' jitter

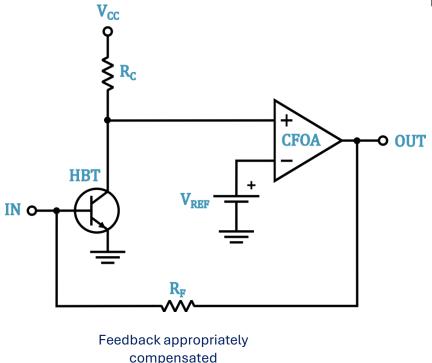

$$\sigma_t = \frac{C}{Q_S} \sqrt{\frac{\overline{e_{amp}^2}}{f_{BW}}}$$


- e_{amp}^2 : input referred amplifier noise.
- f_{BW}: amplifier bandwith frequency.
 Q_S: charge produced by the source.
- C: constant.

The complete setup

- Cold electronics (left): SiPM amplification (x2 channels), test signal and temperature sensor. It can work between 80 K and 300 K.
- Ambient temperature electronics (right): 2nd amplifying stage and power supply control. It operates at 300 K.

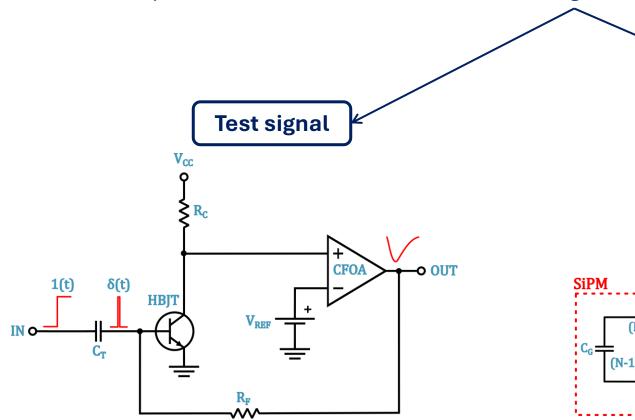
Simplified amplifier schematic



Amplifier summary (cold electronics):

- Low noise HBT (Heterojunction Bipolar Transistor).
- The transistor current is provided through resistor R_c.
- Fast CFOA (Current Feedback Operational Amplifier) that can also operate at cryogenic temperatures.
- The feedback path is closed by a feedback resistor R_F .
- Output signal:
 - Gain: 7500 Ω = 77.5 dB (Ω/Ω).
 - Bandwidth: \sim 1 GHz @ 300 K and \sim 700 MHz @ 80 K.
 - Input referred noise: $\sim 0.9 \frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$ @ 300 K and $\sim 0.5 \frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$ @ 80 K.

- The output signal is sent to the ambient temperature board.
- This output signal can be amplified by the 2nd stage amplifier:
 - Large bandwidth: 3 GHz.
 - Gain: 3.5 V/V using a 50 Ω transmission line terminated on both ends.
- This second amplifying stage can be bypassed.

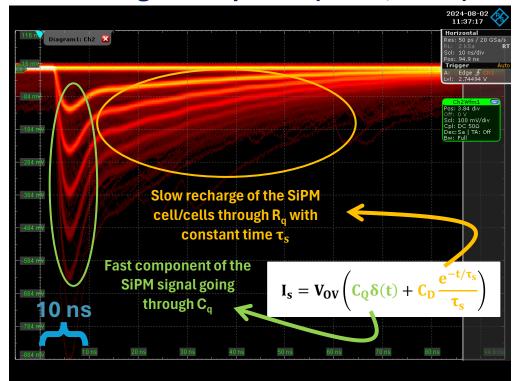


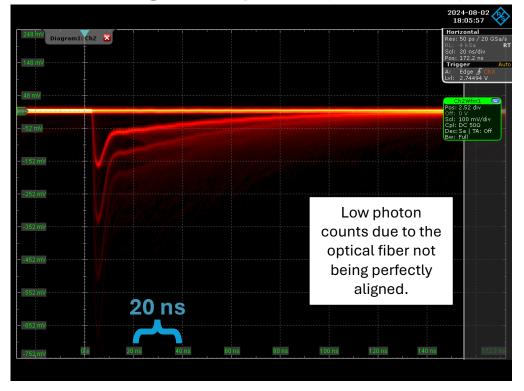
Performed tests

Tests were performed with both the test and SiPM signals.

- Step voltage charges a test capacitor C_T.
- **Dirac delta-like current signal** into the amplifier to test the amplifier capabilities.
- Measurement of <u>rise time</u>, <u>fall time</u> and amplifier's contribution to the <u>iitter</u>.

- SiPM signal fed into the amplifier through $R_s = 50 \Omega$.
- Measurement of parameters such as <u>rise time</u>, <u>fall time</u> and <u>jitter</u> due to both the SiPM and amplifier (amplifier's jitter and fall time are negligible).

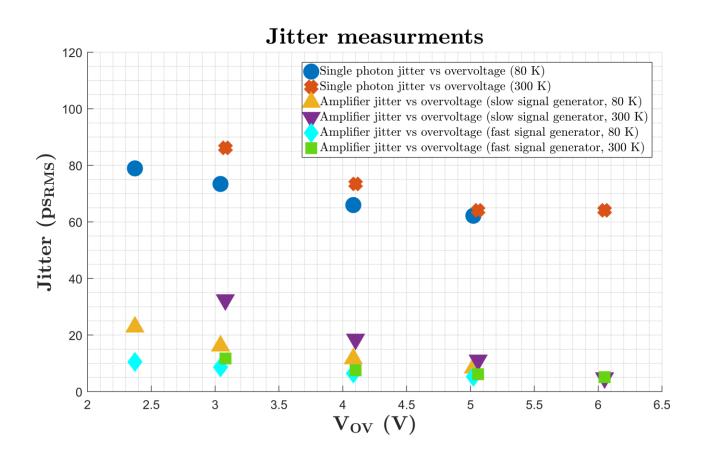

Amplifier response to a SiPM signal



- The SiPM signal can be written as $I_s = V_{OV} \left(C_Q \delta(t) + C_D \frac{e^{-t/\tau_s}}{\tau_s} \right)$.
- The amplifier was tested with a 1.3mm x 1.3mm Hamamatus SiPM (S13360-1350).
- The photons were produced by a 405 nm laser controlled by the Hamamatsu PLP-10 pulser (70 ps FWHM pulses).
- Here are shown the oscilloscope screenshots of **photon counting measurements** with the SiPMs operated at 3 $V_{\rm OV}$.

SiPM signal response (300 K, 3 Vov)

SiPM signal response (80 K, 3 Vov)



Jitter measurements summary

- Measurement of the amplifier (amplifier jitter) and SiPM+amplifier (single photon jitter) jitter contributions.
- Jitter contributions from the signal generator, oscilloscope and laser pulses have been subtracted.
- This plot summarizes all the results for the SiPM and amplifier jitter measurements

- The amplifier jitter was measured with:
 - **1. Fast signal generator** to simulate an ideal input signal with negligible rise time.
 - Slow signal generator simulates the real rise time of a SiPM input signal → slower signal means higher jitter.
- Amplifier jitter measured with an input step voltage amplitude equal to the amplitude of single-photon SiPM signals at different V_{OV} → more amplitude (higher V_{OV}) means less jitter.

Thanks for the attention!