ALCOR: a mixed-signal SiPM readout ASIC for Cherenkov and cryogenic detectors

Fabio Cossio on behalf of the ALCOR group - INFN Torino

IFD 2025 - INFN Workshop on Future Detectors Sestri Levante, 18 March 2025

ALCOR (A Low Power Chip for Optical Sensor Readout)

Mixed-signal ASIC for SiPM readout with single-photon sensitivity

- 32-pixel matrix (8x4) providing signal amplification, conditioning and digitization
- Time measurement: ToA + ToT or Slew-Rate information for time walk correction
- Triggerless readout scheme with fully digital output: 32-bit event word, 4 LVDS 320 MHz DDR Tx links
- Power consumption ~10-12 mW/channel
- 0.11 μm CMOS technology

Pixel architecture

- **Dual-polarity RCG input stage** current conveyor ($Z_{in} = 10-20 \Omega$) + **TIA** with 4 gain settings
- 2 leading edge discriminators with independent (and per pixel) threshold settings (6-bit DAC)
- 4 TDCs based on analogue interpolation with 25-50 ps time-bin (at 320 MHz clock frequency)
- Pixel control logic handles TDC operation, pixel configuration, operating mode and data transmission
- TP-**Shutter** to inhibit events digitization (synchronous now, asynchronous with ns time window in next version)

Results highlights

- First version developed for the readout of SiPMs at cryogenic temperatures, in the framework of DarkSide (ALCOR v1, 2020)
- Adopted for the readout of SiPM sensors of the ePIC dRICH detector at EIC and extensively used within the dRICH Collaboration since 2021 (ALCOR v2, 2023)

dRICH ALCOR-FE-DUAL

Beam test with prototype dRICH and PDUs (CERN-PS, May 2024)

32 FE-DUAL (64 ALCOR, **2048 channels**) SiPM: HPK **S13360-3050** and **S13360-3075** (3x3 mm², T = -30/-40°C)

ALCOR for ePIC

ALCOR v3: **64-channel** ASIC (8x8 matrix) inside **BGA package** (256 balls, 17x17 mm², 1 mm pitch)

- Amplifier with increased bandwidth to improve time resolution, approaching 100 ps at low V_{bias}
- Hysteresis discriminator to avoid re-triggering on slow tail with very low thresholds
- New clock frequency: 394.08 MHz (4x EIC clock frequency)
- Digital shutter to inhibit pixel digital logic to cut out-of-time DCR signals and reduce data throughput (~10.2 ns EIC bunch spacing, 2-3 ns time window → 3x-5x data reduction before ALCOR digitization)

Tape-out on 31st March 2025

ALCOR for DUNE

DENEB (**DUNE** Integrated **E**lectronics for **Ne**utrino **B**eams): readout ASIC for the **GRAIN** Liquid Argon Detector (DUNE) → detection of Argon scintillation light with coded masks/UV lenses + **SiPMs**:

- Electronics operating from T = 300 K to T = 77 K
- ToA with a resolution of 100-150 ps with a threshold of 0.5 pe
- Photon counting in each event window (dynamic range > 100 pe)
- Limited number of cables entering the cryostat

Start from ALCOR architecture, new features:

- 1024 channels (32x32 pixel matrix, area ≈ 20x20 mm²), BGA package
- ALCOR FE with improved response at cryogenic temperatures
- Operation at 87 K → P < 15 mW/ch, power gating
- Programmable data-link sharing among pixel columns
- Time: TAC + SAR ADC → faster conversion capability and reduced pixel dead time (backward compatible with ALCOR Wilkinson ADC)
- Charge: discrete-time charge integrator with 0.25 pe resolution, 500 pe dynamic range, up to 50 simultaneous pe

Asynchronous dual Pulse DIGITAL CONTROL LOGIC

1024-channel demonstrator tape-out scheduled for the end of 2025