Spares

			Timepix3 (2013)	Timepix4 (2019)
Technology			130nm – 8 metal	65nm – 10 metal
Pixel Size			55 x 55 μm	55 x 55 μm
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448
Sensitive area			1.98 cm ²	6.94 cm ²
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA	
		Event Packet	48-bit	64-bit
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm²/s
TOT energy resolution			< 2KeV	< 1Kev
TOA binning resolution			1.56ns	195ps
TOA dynamic range			409.6 μs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)
Target global minimum threshold			<500 e ⁻	<500 e ⁻

Tube: timing resolution setup

Waveform generator

- input signal to digital pixels
- laser trigger

Laser:

- 405 nm •
- variable attenuator

Zaber motion setup

- 3D position regulation ٠
- Few µm precision

FMC-adaptor board

Pulse generator Active

LHCb Upgrade II

The LHCb experiment is planning a high-luminosity upgrade, targeting a luminosity of $1-2 \times 10^{34}$ cm⁻² s⁻¹

The RICH detector faces significant challenges, as it must achieve performance comparable to (or better than) that of Run 2-3 PID, but under much harsher conditions

Key Requirements:

- Single-photon sensitivity with high quantum efficiency (QE), particularly in the green/red-shifted spectrum
- Photon hit density reaching approximately 10 MHz/mm², assuming the current detector geometry and scaling with luminosity
- High granularity, ensuring channel occupancy <25%, with pixel sizes around 1×1 mm²
- Excellent time resolution, with a target of **<100 ps r.m.s. per single photon**
- Radiation hardness, requiring tolerance up to ~2 Mrad TID, ~3×10³¹ 1 MeV neq/cm², and ~1×10¹³ HEH/cm²
- No straightforward solution currently available for RICH photodetectors.

State-of-the-art photodetectors do not fully meet the requirements for long-term operation at the RICH detector plane, considering the full experiment lifetime (equivalent to 300 fb⁻¹ integrated luminosity) under the present detector geometry Upgrade I Upgrade I Upgrade II

Development and characterization of hybrid MCP-PMT with embedded Timepix4 ASIC

MCP-PMT limitations

- MCP-PMT lifetime limited by the integrated anode charge, which leads to a strong QE reduction
 - From 0.2 C/cm^2 to >30 C/cm^2 in recent years thanks to ALD
- With the expected photon hit rate (~10 MHz/mm2), assuming a 10^4 gain (very conservative), and an operation of 10 years with 25% duty cycle we have:
 - Total IAC ~120 C/cm2
 - Anode current density ~2 μ A/cm^2
- ALD coating is based on the deposition of resistive and/or secondary emissive layers (could tune MCP properties)
 - · Reported adverse effects on saturation current on some model with ALD

https://www.sciencedirect.com/science/article/pii/S016890022 3000372?via%3Dihub

Proof of concept: use of a bare ASIC inside a vacuum tube with a microchannel plate (MCP) already demonstrated

- Proc. SPIE 7021 2008 (J.Vallerga, A. Tremsin et al.)]
- JINST 9 C05055 2014 (J.Vallerga, A. Tremsin et al.)]