Upgrading Belle II with Depleted CMOS MAPS The OBELIX innovation Alice Gabrielli on behalf of Belle II VTX collaboration

INFŃ

IFD 2025 - INFN workshop on Future Detectors Sestri Levante, March 19th 2025

Belle II experiment and upgrade motivations

- Belle II searches for new physics beyond standard model at luminosity ► frontier.
- SuperKEKB e^+e^- collider in Japan \rightarrow aims at reaching higher peak luminosity but with challenging background conditions for the current detector
- At the target luminosity, the vertex detector VXD may reach its operational limits

⇒ Need to improve tracking performance and robustness against background

Upgrade requirements:

- Hit rate up to 120 MHz/cm²
- Fast time stamping 50-100ns
- Resolution $<15\mu m \rightarrow pitch of 30-40\mu m$
- Aiming power dissipation $\leq 200 \text{ mW/cm}^2$
- **Operation simplicity and reduced services**
- Radiation levels: TID~100 Mrad, NIEL~5 $\times 10^{14}$ neq/cm²

Depleted Monolitich Active Pixel Sensors (DMAPS)

The new VTX and OBELIX

Baseline VTX layout with 5 straight layers with DMAPS pixel sensors

iVTX (L1 & L2): all-silicon, self-supported, air/water cooled \rightarrow 0.2-0.3 % X_0 /layer

oVTX (L3 to L5): carbon fiber frame, water cooled $\rightarrow 0.3 - 0.8\% X_0$ /layer

 \rightarrow Total material budget reduced to 2.4% X_0 w.r.t. 3.5% X₀ of VXD

 \Rightarrow Identical pixel sensor on all layers: **Optimized BELle II pIXel (OBELIX) chip**

Vertex detector (VTX) upgrade is under evaluation for LS2 (~2032)

	L1	L2	L3	L4	L5	U
Radius	14.1	22.1	39.1	89.5	140.0	m
# Ladders	6	10	17	40	31	
# Sensors	4	4	7	16	2 × 24	per la
Expected hitrate*	19.6	7.5	5.1	1.2	0.7	MHz
Material budget	0.2	0.2	0.3	0.5	0.8	%

*Large uncertainty on BG extrapolation/possible changes in IR region

OBELIX innovation **OBELIX** specifications

		n-well collection
Pitch	33 <i>µ</i> m	P-well n-well p-well deep p-well deep p-well
Signal ToT	7 bits	E low dose n'implant p'epitaxial layer
Time stamping	50 to 100 ns	↓ p ⁺ substrate
Fine time *	~5 ns	OBELIX-1
stamping	for hit rate <10 MHz/cm ²	matrix: 896x464 pixels
Hit rate max for 100% eff.	120 MHz/cm ²	overall size 30.2x18.8 r
Trigger handling	30 kHZ with 10 μ s delay	analogue periphery
Trigger *	~10 ns resolution	digital perioberu
output	with low granularity	periphery
Power	200 to 300 mW/cm ²	
(with hit rate)	(1 to 120 MHz /cm ²)	
Bandwidth	1 output 320 MHz	Matrix inherit from TJ-Mond → Values obtained from po

* optional features

- Track Trigger capability and finer time-stamping for outer layer hits (low rate)
- First full scale prototype OBELIX-1sensor ready submission in summer 2025

OBELIX sensor design

NMOS

opix2, size adjusted

st-layout simulations

Analog:

- Column drain architecture from TJ-Monopix2
- Monitoring ADC
- Temperature sensors

Power pads:

On-chip LDOs voltage regulators

Digital periphery:

- Two new modules adapted for Belle II trigger:
 - \Rightarrow TRU: Pixel readout, trigger processing
 - \Rightarrow TTT: Fast transmission in parallel

OBELIX design with new digital periphery with trigger logic for Belle II and optional features to allow

TJ-Monopix2 - The Forerunner of OBELIX

DMAPS Tower Semiconductor 180 nm CMOS process but modified process to improve rad-hardness & faster readout

- $33x33 \ \mu m^2$ pitch, 25 ns integration, large matrix 512×512 pixels (2×2 cm²)
- Column drain readout capable to handle >> 120 MHz/cm² triggerless
- 7 bit ToT information, 3 bit in-pixel threshold tuning

Characterisation of TJ-Monopix2 for OBELIX

- Lab measurements vs. simulations to validate key performance
- Stable operation down to **THR** ~250 e^- , THR dispersion~17 e^- , noise ~8*e*⁻
- Multiple beam tests @ DESY (3–5 GeV e⁻) on irradiated & non-irradiated samples: TestBeam 2023: High efficiency post-irradiation (NIEL $5 \times 10^{14} n_{ea}/cm^2$, Troom) by increasing bias

TestBeam 2024: Higher temperature after p-irradiation (NIEL $5 \times 10^{14} n_{ea}/cm^2$) leads to increased THR & noise, causing an efficiency drop

TestBeam in March 2025 with improved temperature control will verify this behavior

Conclusions & Future Prospects

- ► performance.
- OBELIX development: Based on TJ-Monopix2 matrix with an optimized digital periphery
- Next steps: First full-scale OBELIX-1 prototype submission in summer 2025

IGFAE, Santiago University of Bergamo IUniversity of Bonn University of Dortmund University of Göttingen Jilin University IJCLab, Orsay KIT, Karlsruhe RAL, Oxford IPMU, Kashiwa **INFN & University of Pavia** Queen Mary University of London **INFN & University of Pisa** CPPM, Marseille IFCA (CSIC-UC), Santander

Belle II upgrade: At target SuperKEKB luminosity, the current VXD may reach its limits, showing excellent performance but a limited safety margin at high background levels. A DMAPS-based vertex detector (VTX) upgrade is under evaluation for LS2 (~2032) to enhance robustness and tracking

• Performance validation: Extensive lab testing & beam tests confirm key parameters critical for OBELIX

OBELIX is an important step forward in the development of next-generation vertex detectors.

VTX collaboration

IPHC, Strasbourg University of Tokyo KEK, Tsukuba IFIC (CSIC-UV), Valencia HEPHY, Vienna

