

Latest results on the first monolithic CMOS LGAD implemented in 110 nm

IFD 2025 – INFN Workshop on Future Detectors

Sestri Levante - 19/03/2025

Giulia Gioachin

on behalf of the ALICE Collaboration

ALICE 3: a next generation heavy ion experiment

Main driver: ALICE Time-of-Flight detectors

TOF requirements from simulations:

• Material budget < 3% of X_0

■ Time resolution $\approx 20 \text{ ps}$

See B. Sabiu talk
SiPM

LGAD

CMOS LGAD

Advantages of CMOS LGAD:

Less material and costs

Simpler and cheaper assembly

Monolithic approach

Other fields:

4D tracking
very low power pixel sensors → space
medical applications

Monolithic sensors - ARCADIA sensor concept

ARCADIA pad sensor

ARCADIA pad sensor with gain

- ARCADIA ER3 production: → See A. Zingaretti talk
 - passive and monolithic structures
- Lfoundry CMOS 110nm with 48um active thickness
- Fully depleted monolithic sensor from the bottom
- Add-on p+-gain layer below the collecting electrode
- Expected gain from detailed simulations:

□ 5-20

MADPix

Monolithic CMOS **A**valanche **D**etector **PIX**elated Prototype

First prototype with integrated electronics and gain layer

Active thickness: 48 μm

• Backside HV: allow <u>full depletion</u> \rightarrow -20 V to -40 v

• Topside HV: manage the gain \rightarrow 35 V to 65 V

>>> 8 matrices of 64 pixels each >>> 64 x 2 analogue outputs

>>> 4 flavours

>>> Pixels of 250 μm x 100 μm

New production: higher gain

MADPix new short loop 3.2

Short loop: same mask set with different implant dose → optimization of sensor at low price New sensor production with higher gain arrived last September 2024

Expected gain range: 5-20 W613 W1512 Fist gain 11 a no collimated radiation source of 55Fe 8 40 50 5560 65 V_{top} [V] Peak[V/e]From electronics simulations matched

with data

estimation using

Time resolution sensor + front end (@0.18mW/ch): 88 ps Time resolution sensor $\approx 75 \text{ ps}$ 5

MADPix Layout

Where we are and what's next...

Signals observed in last test beam, MadPix with gain - 48um thick Oct 2024

Time resolution sensor $\approx 75 \text{ ps}$

Need to implement new pixels design to mitigate edge effects and distortion term

→ new engineering run

Summary

- → Prototype for timing application in 110nm technology design in the ARCADIA project: **MADPix**
- Laboratory characterization of structure from the short loop 3.2

 Gain of the sensor between 5 and 13
- ➤ Total time resolution below 90ps (@ 0.18mW/ch) <u>Sensor time resolution ≈ 75ps</u>

What's next?

- ▶ Position time resolution correlation of MadPix soon
 - → thanks to a test beam @ DESY
- ► Irradiation campaign soon
- Simulation activities to match test beam results
- New short loop with lower active thicknesses will be submitted soon

Thank you for the attention!

Backup slides

Monolithic sensors - ARCADIA sensor concept

- Different sensor layouts to test the charge collection properties at borders
- Two sensor layout: A1 and A2

DPW

gap

A2 layout

- ightharpoonup deep-p-well connected to the p-gain
 - all the field lines cross the gain region
 - charges generated at borders are multiplied
 - 100% fill factor
 - extended collection volume
 - non-uniform gain and timing
- ➤ "standard" termination implants → Gap
 - peripheral field lines don't cross the gain region
 - charges collected at borders are NOT multiplied
 - direct path to the p-gain
 - «dead area» at the borders with gain 1
 - more uniform time response

MADPix Electronics

- ❖ Cascoded common source + differential buffer (1.2V)
- ❖ FE **AC** coupled with sensor
- ❖ Power: 0.18mW/ch

- Source follower (3.3V)
- ❖ AC coupled with FE
- Power: 1.65mW/ch

S. Durando e U. Follo

MADPix Test Board

Controlled through FPGA (DACs, Digital potentiometers, Test pulse)

- 4 SMA driving 50Ω line (top 4 matrices) → **Analogue** read-out (Oscilloscope/Digitizer)
- 4 Discriminator (bottom 4 matrices) → **Digital** read-out (FPGA)

Flectrical characterisation at INFN Torino

Only four adjacent pixels can be read simultaneously

- Board designed by Marco Mignone (INFN Torino)
- Firmware written by Richard Weadon (INFN Torino)

MADPix at the Test Beam

- Test beam setup in collaboration with INFN Bologna
 - → at CERN Proton Synchrotron (PS)
 - \rightarrow with p/π of 10 GeV/c

M. Bregant, S. Bufalino, Z. Buthelezi, D. Cavazza, M. Colocci, G. Fabbri, C. Ferrero, U. Follo, J. Goodhead, S. Förtsch, G. Gioachin, M. Mandurrino, R. Nania, B. Sabiu, G. Souza, S. Strazzi, S. Wimberg

INFN Torino, INFN Bologna, iThemba LABS, Universidade de São Paulo

4 planes telescope:

- → LGAD: 1mm x 1mm sensor used as trigger reference
- → MADPix: 16.4mm x 4.4 mm divided in matrices

Readout > Oscilloscope for signal acquisition

First test beam results: Time resolution

Time resolution of 245 ps can not be explained with jitter -> Main contributor: Sensor

MADPix 2nd test beam: new learnings

Increasing the collection electrode voltage → the time resolution improves

Decreasing the substrate voltage → the time resolution improves

MADPix 2nd test beam: new learnings

Increasing the collection electrode voltage → the time resolution improves

Decreasing the substrate voltage → the time resolution improves

Focused Ion Beam Technique

Focused Ion Beam Facility at INRIM Torino

deposition

Floating guard ring to be shorted

Focused Ion Beam Technique

Focused Ion Beam Facility at INRIM Torino

Floating guard ring to be shorted

Focused Ion Beam Technique

Focused Ion Beam Facility at INRIM Torino

Floating guard ring to be shorted

2 order of magnitude

New production: higher gain

MADPix new short loop 3.2

Short loop: same mask set with different implant dose → optimization of sensor at low price New sensor production with higher gain arrived last September 2024 Expected gain range: 5-20

Latest test beam results

New production: higher gain

Time difference distribution

Most Probable Value of the Landau

Latest test beam results

New production: higher gain

Time resolution sensor + front end (@0.18mW/ch): 88 ps

Time resolution sensor: $\approx 75 \text{ ps}$

Where we started from...

